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Outline 

• MT in a nutshell
• Major challenges
• Major approaches
• Introduction to word-based statistical MT



MT in a nutshell



What is the ultimate 
goal of translation?

• Translation: source language Î target 
language (SÎT)

• Ultimate goal: find a “good” translation for 
text in S:
– Accuracy: faithful to S, including meaning, 

connotation, style, …
– Fluency: the translation is as natural as an 

utterance in T.



Translation is hard, even for human

• Novels

• Word play, jokes, puns, hidden message.

• Concept gaps: double jeopardy, go Greek, fen sui, ….

• Cultural factor: 
– A: Your daughter is very talented.
– B: She is not that good Î Thank you.

• Other constraints: lyrics, dubbing, poem.



“Crazy English” by Richard Lederer

• “Compound” words: Let’s face it: English is a crazy 
language. There is no egg in eggplant or ham in 
hamburger, neither apple nor pine in pineapple. 

• Verb+particle: When a house burns up, it burns down. 
You fill in a form by filling it out and an alarm clock goes
off by going on.

• Predicate+argument: When the stars are out, they are 
visible, but when the lights are out, they are invisible. 
And why, when I wind up my watch, I start it, but when I 
wind up this essay, I end it?



A brief history of MT 
(Based on work by John Hutchins)

• The pioneers (1947-1954):  the first public 
MT demo was given in 1954  (by IBM and 
Georgetown University). 

• The decade of optimism (1954-1966): 
ALPAC (Automatic Language Processing 
Advisory Committee) report in 1966: "there 
is no immediate or predictable prospect of 
useful machine translation." 



A brief history of MT (cont)

• The aftermath of the ALPAC report (1966-
1980): a virtual end to MT research 

• The 1980s: Interlingua, example-based 
MT

• The 1990s: Statistical MT
• The 2000s: Hybrid MT



Where are we now?
• Huge potential/need due to the internet, 

globalization and international politics.

• Quick development time due to SMT, the 
availability of parallel data and computers.

• Translation is reasonable for language pairs with 
a large amount of resource.

• Start to include more “minor” languages.



What is MT good for?
• Rough translation: web data
• Computer-aided human translation
• Translation for limited domain
• Cross-lingual information retrieval

• Machine is better than human in: 
– Speed: much faster than humans
– Memory: can easily memorize millions of word/phrase 

translations.
– Manpower: machines are much cheaper than humans
– Fast learner: it takes minutes or hours to build a new system. 

Erasable memory ☺



Evaluation of MT systems
• Unlike many NLP tasks (e.g., tagging, chunking, parsing, 

IE, pronoun resolution), there is no single gold standard 
for MT.

• Human evaluation: accuracy, fluency, …
– Problem: expensive, slow, subjective, non-reusable.

• Automatic measures:
– Edit distance
– Word error rate (WER)
– BLEU
– …



Major challenges in MT



Major challenges

• Getting the right words:
– Choosing the correct root form
– Getting the correct inflected form
– Inserting “spontaneous” words

• Putting the words in the correct order:
– Word order: SVO vs. SOV, …
– Translation divergence



Lexical choice
• Homonymy/Polysemy: bank, run

• Concept gap: no corresponding concepts in 
another language: go Greek, go Dutch, fen sui, 
lame duck, …

• Coding (Concept Î lexeme mapping) 
differences:
– More distinction in one language: e.g., “cousin”
– Different division of conceptual space:  



Choosing the appropriate inflection

• Inflection: gender, number, case, tense, …

• Ex:
– Number: Ch-Eng: all the concrete nouns: 

ch_bookÎ book, books
– Gender: Eng-Fr: all the adjectives
– Case:    Eng-Korean: all the arguments
– Tense:   Ch-Eng: all the verbs: 

ch_buyÎ buy, bought, will buy



Inserting spontaneous words
• Determiners: Ch-Eng:

– ch_bookÎ a book, the book, the books, books

• Prepositions: Ch-Eng
– ch_NovemberÎ… in November

• Conjunction: Eng-Ch:
Although S1, S2 Î ch_although S1, ch_but S2

• Dropped argument: Ch-Eng:
ch_buy le ma ? Î Has Subj bought  Obj ?



Major challenges

• Getting the right words:
– Choosing the correct root form
– Getting the correct inflected form
– Inserting “spontaneous” words

• Putting the words in the correct order:
– Word order: SVO vs. SOV, …
– Translation divergence



Word order
• SVO, SOV, VSO, …
• VP + PP Î PP VP
• VP + AdvPÎ AdvP + VP

• Adj + N Î N + Adj
• NP + PP Î PP NP
• NP + S Î S NP

• P + NP Î NP + P



Translation divergences
(based on Bonnie Dorr’s work)

• Thematic divergence:  I like Mary Î
S: Marta me gusta a mi (‘Mary pleases me’)

• Promotional divergence: John usually goes home Î
S: Juan suele ira casa (‘John tends to go home’)

• Demotional divergence: I like eating ÎG: Ich esse gern
(“I eat likingly)

• Structural divergence: John entered the house Î
S: Juan entro en la casa (‘John entered in the house’)



Translation divergences (cont)
• Conflational divergence: I stabbed John Î

S: Yo le di punaladas a Juan (‘I gave knife-
wounds to John’)

• Categorial divergence: I am hungry Î
G: Ich habe Hunger (‘I have hunger’)

• Lexical divergence: John broke into the room Î
S: Juan forzo la entrada al cuarto (‘John forced 
the entry to the room’)



Ambiguity

• Ambiguity that needs to be “resolved”:  
– Ex1: wh-movement

• Eng: Why do you think that he came yesterday?
• Ch: you why think he yesterday come ASP?
• Ch: you think he yesterday why come?

– Ex2: PP-attachment: “he saw a man with a 
telescope”

– Ex3: lexical choice: “a German teacher”



Ambiguity (cont)

• Ambiguity that can be “carried over”. 
– Ex1: “Mary and John bought a house last 

year.”

• Important factors:
– Language pair
– Type of ambiguity



Major approaches



What kinds of resources are 
available to MT?

• Translation lexicon: 
– Bilingual dictionary

• Templates, transfer rules:
– Grammar books

• Parallel data, comparable data

• Thesaurus, WordNet, FrameNet, …

• NLP tools: tokenizer, morph analyzer, parser, …

Î There are more resources for major languages than “minor”
languages.



Major approaches

• Transfer-based
• Interlingua
• Example-based (EBMT)
• Statistical MT (SMT)
• Hybrid approach



The MT triangle
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Transfer-based MT
• Analysis, transfer, generation:

1. Parse the source sentence
2. Transform the parse tree with transfer rules
3. Translate source words
4. Get the target sentence from the tree

• Resources required:
– Source parser
– A translation lexicon
– A set of transfer rules

• An example: Mary bought a book yesterday.



Transfer-based MT (cont)
• Parsing:  linguistically motivated grammar or formal 

grammar?
• Transfer: 

– context-free rules? A path on a dependency tree? 
– Apply at most one rule at each level?
– How are rules created?

• Translating words: word-to-word translation?
• Generation: using LM or other additional knowledge?

• How to create the needed resources automatically? 



Interlingua
• For n languages, we need n(n-1) MT systems.
• Interlingua uses a language-independent 

representation. 
• Conceptually, Interlingua is elegant: we only 

need n analyzers, and n generators.

• Resource needed:
– A language-independent representation
– Sophisticated analyzers
– Sophisticated generators



Interlingua (cont)
• Questions:

– Does language-independent meaning representation 
really exist? If so, what does it look like?

– It requires deep analysis: how to get such an 
analyzer: e.g., semantic analysis

– It requires non-trivial generation: How is that done?
– It forces disambiguation at various levels: lexical, 

syntactic, semantic, discourse levels.
– It cannot take advantage of similarities between a 

particular language pair.



Example-based MT

• Basic idea: translate a sentence by using 
the closest match in parallel data.

• First proposed by Nagao (1981).
• Ex: 

– Training data:
• w1 w2 w3 w4 Î v2 v3 v1 v4
• W3’Î v3’

– Test sent:
• w1 w2 w3’Î v2 v3’ v1  



EMBT (cont)
• Types of EBMT:

– Lexical (shallow)
– Morphological / POS analysis 
– Parse-tree based (deep)

• Types of data required by EBMT systems:
– Parallel text
– Bilingual dictionary 
– Thesaurus for computing semantic similarity
– Syntactic parser, dependency parser, etc.



Statistical MT
• Sentence pairs: word mapping is one-to-one.

– (1) S:  a  b  c   
T:   l   m n    

– (2) S:  c b
T:  n m

Î (a, l) and 
(b, m), (c, n),  or
(b, n), (c, m)



SMT (cont)
• Basic idea: learn all the parameters from parallel data.

• Major types:
– Word-based
– Phrase-based

• Strengths:
– Easy to build, and it requires no human knowledge
– Good performance when a large amount of training data is 

available.

• Weaknesses:
– How to express linguistic generalization? 



Comparison of resource requirement

Transfer-
based

Interlingua EBMT SMT

dictionary + + +

Transfer 
rules

+

parser + + + (?)

semantic
analyzer

+

parallel data + +

others Universal 
representation

thesaurus



Hybrid MT

• Basic idea: combine strengths of different 
approaches:
– Transfer-based: generalization at syntactic 

level
– Interlingua: conceptually elegant
– EBMT: memorizing translation of n-grams; 

generalization at various level.
– SMT: fully automatic; using LM; optimizing 

some objective functions.



Types of hybrid HT
• Borrowing concepts/methods:

– EBMT from SMT:  automatically learned translation 
lexicon

– Transfer-based from SMT:  automatically learned 
translation lexicon, transfer rules; using LM

• Using multiple MT systems in a pipeline:
– Using transfer-based MT as a preprocessor of SMT

• Using multiple MT systems in parallel, then 
adding a re-ranker.



Summary

• Major challenges in MT
– Choose the right words (root form, inflection, 

spontaneous words)
– Put them in right positions (word order, unique 

constructions, divergences)



Summary (cont)

• Major approaches
– Transfer-based MT
– Interlingua
– Example-based MT
– Statistical MT
– Hybrid MT



Additional slides



Introduction to 
word-based SMT



Word-based SMT

• Classic paper: (Brown et al., 1993)
• Models 1-5
• Source-channel model
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Word alignment

• Ex:
– F:   f1 f2 f3 f4 f5

– E:   e1 e2 e3 e4



Modeling p(F | E) with alignment a
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IBM Model 1
Generative process

• To generate F from E:
– Pick a length m for F, with prob P(m | l)
– Choose an alignment a, with prob P(a | E, m)
– Generate Fr sent given the Eng sent and the 

alignment, with prob P(F | E, a, m).



Final formula for Model 1
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m: Fr sentence length
l:   Eng sentence length 
fj: the jth Fr word
ei: the ith Eng word

Two types of parameters:
• Length prob: P(m | l)
• Translation prob: P(fj | ei), or t(fj | ei),



Estimating t(f|e): a naïve approach

• A naïve approach:
– Count the times that f appears in F and e appears in E.
– Count the times that e appears in E
– Divide the 1st number by the 2nd number.

• Problem: 
– It cannot distinguish true translations from pure coincidence.
– Ex: t(el | white)     t(blanco | white)

• Solution: count the times that f aligns to e.

≈



Estimating t(f|e) in Model 1

• When each sent pair has a unique word 
alignment

• When each sent pair has several word 
alignments with prob

• When there are no word alignments



When there is a single
word alignment

• We can simply count.

• Training data:
Eng:     b    c                          b

Fr:        x    y                          y

• Prob:
– ct(x,b)=0, ct(y,b)=2, ct(x,c)=1, ct(y,c)=0
– t(x|b)=0,   t(y|b)=1.0, t(x|c)=1.0, t(y|c)=0



When there are
several word alignments

• If a sent pair has several word alignments, use fractional 
counts.

• Training data:
P(a|E,F)=0.3       0.2         0.4          0.1           1.0 

b  c          b  c        b  c         b   c        b

x    y            x   y         x    y           x   y  y

• Prob:
– Ct(x,b)=0.7, Ct(y,b)=1.5, Ct(x,c)=0.3, Ct(y,c)=0.5
– P(x|b)=7/22, P(y|b)=15/22, P(x|c)=3/8, P(y|c)=5/8



Fractional counts

• Let Ct(f, e) be the fractional count of (f, e) pair in 
the training data, given alignment prob P.
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When there are no word 
alignments

• We could list all the alignments, and estimate 
P(a | E, F).
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Formulae so far
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Í New estimate for t(f|e)



The EM algorithm

1. Start with an initial estimate of t(f | e): 
e.g., uniform distribution

2. Calculate P(a | F, E)
3. Calculate Ct (f, e), Normalize to get t(f|e)
4. Repeat Steps 2-3 until the “improvement” 

is too small.



So far, we estimate t(f | e) by enumerating 
all possible alignments

• This process is very expensive, as the number 
of all possible alignments is (l+1)m.
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No need to enumerate 
all word alignments 

• Luckily, for Model 1, there is a way to calculate 
Ct(f, e) efficiently. 
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The algorithm

1. Start with an initial estimate of t(f | e): 
e.g., uniform distribution

2. Calculate P(a | F, E)
3. Calculate Ct (f, e), Normalize to get t(f|e)
4. Repeat Steps 2-3 until the “improvement” 

is too small.



An example

• Training data:
– Sent 1: Eng: “b c”, Fr: “x y”
– Sent 2: Eng: “b”,    Fr: “y”

• Let’s assume that each Eng word generates 
exactly one Fr word 

• Initial values for t(f|e):
t(x|b)=t(y|b)=1/2, t(x|c)=t(y|c)=1/2



After a few iterations

t(x|b) t(y|b) t(x|c) t(y|c) a1 a2

init 1/2 1/2 1/2 1/2 - -

1st

iter
1/4 3/4 1/2 1/2 1/2 1/2

2nd

iter
1/8 7/8 3/4 1/4 1/4 3/4



Summary for word-based SMT
• Main concepts:

– Source channel model
– Word alignment

• Training: EM algorithm

• Advantages:
– It requires only parallel data
– Its extension (phrase-based SMT) produces the best 

results.
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