Introduction to MT

CSE 415 Fei Xia Linguistics Dept 02/24/06

Outline

- MT in a nutshell
- Major challenges
- Major approaches
- Introduction to word-based statistical MT

MT in a nutshell

What is the ultimate goal of translation?

- Translation: source language → target language (S→T)
- Ultimate goal: find a "good" translation for text in S:
 - Accuracy: faithful to S, including meaning, connotation, style, …
 - Fluency: the translation is as natural as an utterance in T.

Translation is hard, even for human

- Novels
- Word play, jokes, puns, hidden message.
- Concept gaps: double jeopardy, go Greek, fen sui,
- Cultural factor:
 - A: Your daughter is very talented.
 - B: She is not that good \rightarrow Thank you.
- Other constraints: lyrics, dubbing, poem.

"Crazy English" by Richard Lederer

- "Compound" words: Let's face it: English is a crazy language. There is no egg in eggplant or ham in hamburger, neither apple nor pine in pineapple.
- Verb+particle: When a house *burns* up, it *burns* down. You *fill* in a form by *filling* it out and an alarm clock goes off by going on.
- Predicate+argument: When the stars are out, they are visible, but when the lights are out, they are invisible.
 And why, when I wind up my watch, I start it, but when I wind up this essay, I end it?

A brief history of MT (Based on work by John Hutchins)

- The pioneers (1947-1954): the first public MT demo was given in 1954 (by IBM and Georgetown University).
- The decade of optimism (1954-1966): ALPAC (Automatic Language Processing Advisory Committee) report in 1966: "there is no immediate or predictable prospect of useful machine translation."

A brief history of MT (cont)

- The aftermath of the ALPAC report (1966-1980): a virtual end to MT research
- The 1980s: Interlingua, example-based MT
- The 1990s: Statistical MT
- The 2000s: Hybrid MT

Where are we now?

- Huge potential/need due to the internet, globalization and international politics.
- Quick development time due to SMT, the availability of parallel data and computers.
- Translation is reasonable for language pairs with a large amount of resource.
- Start to include more "minor" languages.

What is MT good for?

- Rough translation: web data
- Computer-aided human translation
- Translation for limited domain
- Cross-lingual information retrieval
- Machine is better than human in:
 - Speed: much faster than humans
 - Memory: can easily memorize millions of word/phrase translations.
 - Manpower: machines are much cheaper than humans
 - Fast learner: it takes minutes or hours to build a new system.
 Erasable memory ③

Evaluation of MT systems

- Unlike many NLP tasks (e.g., tagging, chunking, parsing, IE, pronoun resolution), there is no single gold standard for MT.
- Human evaluation: accuracy, fluency, ...
 - Problem: expensive, slow, subjective, non-reusable.
- Automatic measures:
 - Edit distance
 - Word error rate (WER)
 - BLEU

— ...

Major challenges in MT

Major challenges

- Getting the right words:
 - Choosing the correct root form
 - Getting the correct inflected form
 - Inserting "spontaneous" words
- Putting the words in the correct order:
 Word order: SVO vs. SOV, ...
 - Translation divergence

Lexical choice

- Homonymy/Polysemy: bank, run
- Concept gap: no corresponding concepts in another language: go Greek, go Dutch, fen sui, lame duck, ...
- Coding (Concept → lexeme mapping) differences:
 - More distinction in one language: e.g., "cousin"
 - Different division of conceptual space:

Choosing the appropriate inflection

- Inflection: gender, number, case, tense, ...
- Ex:
 - Number: Ch-Eng: all the concrete nouns:
 ch_book → book, books
 - Gender: Eng-Fr: all the adjectives
 - Case: Eng-Korean: all the arguments
 - Tense: Ch-Eng: all the verbs:

ch_buy → buy, bought, will buy

Inserting spontaneous words

- Determiners: Ch-Eng:
 - ch_book -> a book, the book, the books, books
- Prepositions: Ch-Eng
 ch_November → … in November
- Conjunction: Eng-Ch: Although S1, S2 → ch_although S1, ch_but S2
- Dropped argument: Ch-Eng:
 ch_buy le ma ? → Has Subj bought Obj ?

Major challenges

- Getting the right words:
 - Choosing the correct root form
 - Getting the correct inflected form
 - Inserting "spontaneous" words
- Putting the words in the correct order: - Word order: SVO vs. SOV, ...
 - Translation divergence

Word order

- SVO, SOV, VSO, ...
- $VP + PP \rightarrow PP VP$
- $VP + AdvP \rightarrow AdvP + VP$
- Adj + N → N + Adj

• NP + PP → PP NP

- NP + S → S NP
- $P + NP \rightarrow NP + P$

Translation divergences (based on Bonnie Dorr's work)

- Thematic divergence: I like Mary →
 S: Marta me gusta a mi ('Mary pleases me')
- Promotional divergence: John usually goes home →
 S: Juan suele ira casa ('John tends to go home')
- Demotional divergence: I like eating →G: Ich esse gern ("I eat likingly)
- Structural divergence: John entered the house →
 S: Juan entro en la casa ('John entered in the house')

Translation divergences (cont)

- Conflational divergence: I stabbed John →
 S: Yo le di punaladas a Juan ('I gave knifewounds to John')
- Categorial divergence: I am hungry →
 G: Ich habe Hunger ('I have hunger')
- Lexical divergence: John broke into the room →
 S: Juan forzo la entrada al cuarto ('John forced the entry to the room')

Ambiguity

- Ambiguity that needs to be "resolved":
 - Ex1: wh-movement
 - Eng: **Why** do you think that he came yesterday?
 - Ch: you **why** think he yesterday come ASP?
 - Ch: you think he yesterday **why** come?
 - Ex2: PP-attachment: "he saw a man with a telescope"
 - Ex3: lexical choice: "a German teacher"

Ambiguity (cont)

- Ambiguity that can be "carried over".
 - Ex1: "Mary and John bought a house last year."
- Important factors:
 - Language pair
 - Type of ambiguity

Major approaches

What kinds of resources are available to MT?

- Translation lexicon:
 - Bilingual dictionary
- Templates, transfer rules:
 Grammar books
- Parallel data, comparable data
- Thesaurus, WordNet, FrameNet, ...
- NLP tools: tokenizer, morph analyzer, parser, ...
- ➔ There are more resources for major languages than "minor" languages.

Major approaches

- Transfer-based
- Interlingua
- Example-based (EBMT)
- Statistical MT (SMT)
- Hybrid approach

The MT triangle

Transfer-based MT

- Analysis, transfer, generation:
 - 1. Parse the source sentence
 - 2. Transform the parse tree with transfer rules
 - 3. Translate source words
 - 4. Get the target sentence from the tree
- Resources required:
 - Source parser
 - A translation lexicon
 - A set of transfer rules
- An example: Mary bought a book yesterday.

Transfer-based MT (cont)

- Parsing: linguistically motivated grammar or formal grammar?
- Transfer:
 - context-free rules? A path on a dependency tree?
 - Apply at most one rule at each level?
 - How are rules created?
- Translating words: word-to-word translation?
- Generation: using LM or other additional knowledge?
- How to create the needed resources automatically?

Interlingua

- For n languages, we need n(n-1) MT systems.
- Interlingua uses a language-independent representation.
- Conceptually, Interlingua is elegant: we only need n analyzers, and n generators.
- Resource needed:
 - A language-independent representation
 - Sophisticated analyzers
 - Sophisticated generators

Interlingua (cont)

- Questions:
 - Does language-independent meaning representation really exist? If so, what does it look like?
 - It requires deep analysis: how to get such an analyzer: e.g., semantic analysis
 - It requires non-trivial generation: How is that done?
 - It forces disambiguation at various levels: lexical, syntactic, semantic, discourse levels.
 - It cannot take advantage of similarities between a particular language pair.

Example-based MT

- Basic idea: translate a sentence by using the closest match in parallel data.
- First proposed by Nagao (1981).
- Ex:
 - Training data:
 - w1 w2 w3 w4 → v2 v3 v1 v4
 - W3' **→** v3'
 - Test sent:
 - w1 w2 w3' → v2 v3' v1

EMBT (cont)

- Types of EBMT:
 - Lexical (shallow)
 - Morphological / POS analysis
 - Parse-tree based (deep)
- Types of data required by EBMT systems:
 - Parallel text
 - Bilingual dictionary
 - Thesaurus for computing semantic similarity
 - Syntactic parser, dependency parser, etc.

Statistical MT

- Sentence pairs: word mapping is one-to-one.
 - (1) S: a b c T: l m n

- (2) S: c b T: n m

→ (a, l) and
 (b, m), (c, n), or
 (b, n), (c, m)

SMT (cont)

- Basic idea: learn all the parameters from parallel data.
- Major types:
 - Word-based
 - Phrase-based
- Strengths:
 - Easy to build, and it requires no human knowledge
 - Good performance when a large amount of training data is available.
- Weaknesses:
 - How to express linguistic generalization?

Comparison of resource requirement

	Transfer- based	Interlingua	EBMT	SMT
dictionary	+	+	+	
Transfer rules	+			
parser	+	+	+ (?)	
semantic analyzer		+		
parallel data			+	+
others		Universal representation	thesaurus	

Hybrid MT

- Basic idea: combine strengths of different approaches:
 - Transfer-based: generalization at syntactic level
 - Interlingua: conceptually elegant
 - EBMT: memorizing translation of n-grams; generalization at various level.
 - SMT: fully automatic; using LM; optimizing some objective functions.

Types of hybrid HT

- Borrowing concepts/methods:
 - EBMT from SMT: automatically learned translation lexicon
 - Transfer-based from SMT: automatically learned translation lexicon, transfer rules; using LM
- Using multiple MT systems in a pipeline:
 Using transfer-based MT as a preprocessor of SMT
- Using multiple MT systems in parallel, then adding a re-ranker.

Summary

- Major challenges in MT
 - Choose the right words (root form, inflection, spontaneous words)
 - Put them in right positions (word order, unique constructions, divergences)

Summary (cont)

- Major approaches
 - Transfer-based MT
 - Interlingua
 - Example-based MT
 - Statistical MT
 - Hybrid MT

Additional slides

Introduction to word-based SMT

Word-based SMT

- Classic paper: (Brown et al., 1993)
- Models 1-5
- Source-channel model

$$T^* = \arg \max_{T} P(T \mid S)$$

= $\arg \max_{T} \frac{P(S \mid T)P(T)}{P(S)}$
= $\arg \max_{T} P(S \mid T)P(T)$

 $E^* = \arg\max_{E} P(F \mid E)P(E)$

Word alignment

Modeling p(F | E) with alignment a

$$P(F \mid E) = \sum_{a} P(a, F \mid E)$$
$$= \sum_{a} P(a \mid E) * P(F \mid a, E)$$

IBM Model 1 Generative process

- To generate F from E:
 - Pick a length *m* for F, with prob P(m | I)
 - Choose an alignment a, with prob P(a | E, m)
 - Generate Fr sent given the Eng sent and the alignment, with prob P(F | E, a, m).

Final formula for Model 1

$$P(F \mid E) = \frac{P(m \mid l)}{(l+1)^m} \prod_{j=1}^m \sum_{i=1}^l P(f_j \mid e_i)$$

m: Fr sentence length I: Eng sentence length f_j : the jth Fr word e_i : the ith Eng word

Two types of parameters:

- Length prob: P(m | I)
- Translation prob: $P(f_j | e_i)$, or $t(f_j | e_i)$,

Estimating t(f|e): a naïve approach

- A naïve approach:
 - Count the times that f appears in F and e appears in E.
 - Count the times that e appears in E
 - Divide the 1st number by the 2nd number.
- Problem:
 - It cannot distinguish true translations from pure coincidence.
 - Ex: t(el | white) \approx t(blanco | white)
- Solution: count the times that f **aligns** to e.

Estimating t(f|e) in Model 1

- When each sent pair has a unique word alignment
- When each sent pair has several word alignments with prob
- When there are no word alignments

When there is a single word alignment

- We can simply count.
- Training data:
 Eng: b c b
 Fr: x y y
- Prob:
 - ct(x,b)=0, ct(y,b)=2, ct(x,c)=1, ct(y,c)=0- t(x|b)=0, t(y|b)=1.0, t(x|c)=1.0, t(y|c)=0

When there are several word alignments

- If a sent pair has several word alignments, use fractional counts.
- Training data:
 P(a|E,F)=0.3 0.2 0.4 0.1 1.0
 b c b c b c b c b
 | | / | / |
 x y x y x y x y y
- Prob:
 - Ct(x,b)=0.7, Ct(y,b)=1.5, Ct(x,c)=0.3, Ct(y,c)=0.5
 - P(x|b)=7/22, P(y|b)=15/22, P(x|c)=3/8, P(y|c)=5/8

Fractional counts

• Let Ct(f, e) be the fractional count of (f, e) pair in the training data, given alignment prob P.

$$Ct(f,e) = \sum_{E,F} \sum_{a} \left(\begin{array}{c} P(a \mid E,F) \\ \uparrow \end{array} \right) \left[\begin{array}{c} \sum_{j=1}^{|F|} \delta(f,f_j) \delta(e,e_{a_j}) \\ \uparrow \end{array} \right]$$

Alignment prob
$$Actual count of times \\ e and f are linked in \\ (E,F) by alignment a \\ t(f \mid e) = \frac{Ct(f,e)}{\sum Ct(x,e)}$$

 $x \in V_F$

When there are no word alignments

• We could list all the alignments, and estimate P(a | E, F).

$$P(a \mid E, F) = \frac{P(a, F \mid E)}{\sum_{a} P(a, F \mid E)} = \frac{\prod_{j=1}^{m} t(f_j \mid e_{a_j})}{\sum_{a} \prod_{j=1}^{m} t(f_j \mid e_{a_j})}$$

Formulae so far

$$Ct(f,e) = \sum_{E,F} \sum_{a} (P(a \mid E,F) * \sum_{j=1}^{|F|} \delta(f,f_j) \delta(e,e_{a_j}))$$

$$t(f \mid e) = \frac{Ct(f, e)}{\sum_{x \in V_F} Ct(x, e)} \quad \bigstar \text{ New estimate for } t(f|e)$$

The EM algorithm

- Start with an initial estimate of t(f | e): e.g., uniform distribution
- 2. Calculate P(a | F, E)
- 3. Calculate Ct (f, e), Normalize to get t(f|e)
- 4. Repeat Steps 2-3 until the "improvement" is too small.

So far, we estimate *t*(*f* | *e*) by enumerating all possible alignments

 This process is very expensive, as the number of all possible alignments is (*I*+1)^m.

$$Ct(f,e) = \sum_{E,F} \sum_{a} \left(\frac{P'(a \mid E,F)}{\uparrow} * \sum_{j=1}^{|F|} \delta(f,f_j) \delta(e,e_{a_j}) \right)$$

Prev iteration's
Estimate of
Alignment prob
$$Actual count of timese and f are linked in(E,F) by alignment a$$

No need to enumerate all word alignments

• Luckily, for Model 1, there is a way to calculate Ct(f, e) efficiently.

$$t(f \mid e) = \frac{Ct(f, e)}{\sum_{x \in V_F} Ct(x, e)}$$

The algorithm

- Start with an initial estimate of t(f | e): e.g., uniform distribution
- 2. Calculate P(a | F, E)
- 3. Calculate Ct (f, e), Normalize to get t(f|e)
- 4. Repeat Steps 2-3 until the "improvement" is too small.

An example

- Training data:
 - Sent 1: Eng: "b c", Fr: "x y"
 - Sent 2: Eng: "b", Fr: "y"
- Let's assume that each Eng word generates exactly one Fr word
- Initial values for t(f|e): t(x|b)=t(y|b)=1/2, t(x|c)=t(y|c)=1/2

After a few iterations

	t(x b)	t(y b)	t(x c)	t(y c)	a1	a2
init	1/2	1/2	1/2	1/2	-	-
1 st iter	1/4	3/4	1/2	1/2	1/2	1/2
2 nd iter	1/8	7/8	3/4	1/4	1/4	3/4

Summary for word-based SMT

- Main concepts:
 - Source channel model
 - Word alignment
- Training: EM algorithm
- Advantages:
 - It requires only parallel data
 - Its extension (phrase-based SMT) produces the best results.