Emily Bender Natural Language Processing

- 1. Applications of NLP
 - grammar and spell checking
 - computer assistend language learning
 - assistive and augmentative communication
 - machine translation
 - information retrieval
 - information extraction
 - HCI
- 2. Approaches
 - knowledge engineering (rules)
 - machine learning
 - hybrid
- 3. Subtasks
 - identify which language
 - tag parts of speech
 - disambiguate word sense
 - recognize named entities
 - detect phrases
 - segment documents to sentence and then words
 - parsing
 - generation
 - reference resolution

Emily Bender (con'd)

4. Evaluation requires

- test set with gold standard answers
- metrics of comparison
- baseline to compare against
- there are many ways to parse a single sentence
- just counting n-grams may be enough
- 5. Head-Driven Phrase Structure Grammar (HPSG)
 - declarative, order-independent, constraint-based formalism
 - collection of feature-structure descriptions
 - organized into a type hierarchy
 - rules contain both syntax and semantics
 - can be used by a parser or a generator

Katrin Kirchhof Statistical Speech and Language Processing

- 1. Speech Applications
 - dictation
 - transcription of voicemail, phone conversations, TV shows
 - automated dialog systems
 - call centers
 - hands-free control
 - household appliances
 - assistive devices
 - search of audio archives
- 2. NLP Applications
 - document sorting
 - question answering
 - machine translation
 - document summarization
- 3. Subsystems
 - language modeling
 - parsing
 - tagging
 - word sense disambiguation
 - co-reference resolution
 - machine translation

Katrin Kirchhof (con'd)

- 4. Methodology
 - Early systems used rules.
 - Current systems use statistical pattern recognition.
 - Noisy channel model uses Bayes' rule.
 - Acoustic model uses a hidden Markov Model, a stochastic FSA.
 - The probabilities for the acoustic model are learned via EM.
 - The language model also needs to learn probabilities P(x|x1 x2 xn)
 - Machine translation systems use phrase-based models, mappings between phrases.

Fei Xia Machine Translation

- 1. Applications
 - rough translation of web dta
 - computer-aided human translation
 - limited domain translation
 - cross lingual information retrieval
- 2. Evaluation requires automatic measures, since no gold standard
- 3. Challenges
 - choosing the correct root form
 - getting the correct inflected form
 - inserting spontaneous words
 - putting words in the correct order
 - one language may have a concept the other does not
 - resolving ambiguity

4. Resources

- bilingual dictionary
- grammar books
- parallel comparable data
- thesaurs
- NLP tools

Fei Xia (con'd)

- 5. Major Approaches
 - transfer-based: parse the source, transform parse tree, translate the words
 - interlingua: translate to a language independent representation
 - example-based: use the closest match in training data
 - statistical: given sentence pairs with 1-1 word mapping, learn parameters of a model
 - hypbrid