b

Shuffe S5, S, 0n (o7

sesionld
Numberfsession
Date
X1 | exparimentio
o [’ \
al s L L e
dividual = SetupName ~Val . Lothat -nl DRI
Ldalo SowpType / ¥ » e
1 |sessionid ¥ [0 / h =8 O Eimig Hoser N
NumberOfTrial Pcsabuien Foi e nos) Waider/ iy
v [seiano = / A V1 ST
Fis [sablectiv SetopCondion wagiion d =
ouration :
NMarker :!I
Setupharker 7 Worker 3 Worker 3 Worker 3
RecordedMovieFie
[ote. . (a) Traditional parallel query plan
‘Trial_has_Timecourse Trial_has_Trajectory : - d I
¥ 9 !~ -
waa [rsin s {Tiain FoN AN s
X A HyperCube s
2 [rimecoursern 2 | Trajectory0 AR f Condd s Shufle i ol
/ ; Podrick,
oflm L g —>
i Kevsroe H [s]
Timecourse Trajectory = . 2
PX | Timee 10 PE | Te 1] b= e
ourse esiectory! Myscene Gregor
a1 ~Tho"Gienna >4l kv
Frequency Frequency 2 Bromn
Segmentio segmentid Meryn
KindOfData KindOfData Gendry yn
Nerames Markero
) P NFrames i ube shuffle-based parallel
LT

Introduction to Data Management

SQL++

Paul G. Allen School of Computer Science and Engineering
University of Washington, Seattle

May 22, 2024

Announcements

* No in-person Lecture on Friday, May 24
Please watch recorded video instead (on canvas)

» HW6/2 due on Friday

» HWY to be released on Friday, due on May 31

May 22, 2024 Semistructured Data

Course Evals

* Opens on Saturday, May 25

= Please take a few minutes before we start to fill out
the course evals

" | read every word of your comments and make
adjustments where needed based on the
feedback; have done this in the past

May 22, 2024

Recap: semistructure data

» Loose terminology; any "parsable" file qualifies

» Self-describing, “data first”

= We discuss only Json

= Other formats: protobuf, XML, csv

May 22, 2024

JSON Standard — Rules of the Game

» JavaScript Object Notation (JSON)

« "Lightweight text-based open standard designed for
human-readable data interchange”

{
"book": [
{
"id": "e1",
"language": "Java",
"author": "H. Javeson",
"year": 2015
}s
{
"author": "E. Sepp",
"id": "e7",
"language"”: "C++",
"edition": null,
"sale": true
}
]
}

May 22, 2024

JSON Standard — Rules of the Game

» JavaScript Object Notation (JSON)

* "Lightweight text-based open standard designed for

human-readable data interchange”

{

}

"book": [

{

}
]

"id": "e1",
"language": "Java",
"author": "H. Javeson",
"year": 2015

"author": "E. Sepp",
"id": "e7",
"language": "C++",
"edition": null,
"sale": true

May 22, 2024

Types
Primitives include:

« String (in quotes)

* Numeric (unquoted number)
« Boolean (unquoted true/false)

* Null (literally just null)

JSON Standard — Rules of the Game

» JavaScript Object Notation (JSON)

« "Lightweight text-based open standard designed for
human-readable data interchange”

{
"book" : [Types

t Objects are an unordered collection of
d": "o17, name-value pairs:

"language”: "Java", . "

"author": "H. Javeson", * "name": <value>

"year": 2015 « Values can be primitives, objects, or
}s arrays

"author”: "E. Sepp", * Enclosed by { }

"id": "e7",
"language"”: "C++",
"edition": null,
"sale": true
}
]
}

May 22, 2024

JSON Standard — Rules of the Game

» JavaScript Object Notation (JSON)

« "Lightweight text-based open standard designed for
human-readable data interchange”

]
}

}

"id":
"language": "Java",
"author": "H. Javeson",
"year": 2015

ll@lll,

"author": "E. Sepp",
"id": "e7",
"language"”: "C++",
"edition": null,
"sale": true

May 22, 2024

Types

Objects are an unordered collection of

name-value pairs:

* "name": <value>

« Values can be primitives, objects, or
arrays

* Enclosed by {}

JSON Standard — Rules of the Game

» JavaScript Object Notation (JSON)

« "Lightweight text-based open standard designed for
human-readable data interchange”

{
"book": [
{
"id": "e1",
"language": "Java",
"author": "H. Javeson",
"year": 2015
}s
{
"author": "E. Sepp",
"id": "e7",
"language"”: "C++",
"edition": null,
"sale": true
}
]
}

May 22, 2024

Types

Arrays are an ordered list of values:

Order is preserved in interpretation
May contain any mix of types
Enclosed by []

JSON Standard — Rules of the Game

= JSON Standard too expressive
* Implementations restrict syntax
« Ex: Duplicate fields

"id": "e1",

"language": "Java",
"author": "H. Javeson",
"author”: "D. Suciu",
"author": "A. Cheung",
"year": 2015

}

May 22, 2024

JSON Standard — Rules of the Game

= JSON Standard too expressive
* Implementations restrict syntax
« Ex: Duplicate fields

NOT ALLOWED (0] 3¢

(duplicated authors) (author array)

{ {
"id": "e1", "id": "e1",
"language": "Java", "language": "Java",
"author": "H. Javeson"”, "author": ["H. Javeson",
"author": "D. Suciu", "D. Suciu",
"author": "A. Cheung", "A. Cheung"],
"year": 2015 "year": 2015

} }

May 22, 2024

Thinking About Semi-Structured Data

What is the data model of semistructured data?

{

}

"book": [
{
"id": "e1",
"language": "Java",
"author": "H. Javeson",
"year": 2015
}s
{
"author": "E. Sepp",
"id": "e7",
"language"”: "C++",
"edition": null,
"sale": true
}
]

May 22, 2024

Thinking About Semi-Structured Data

What is the data model of semistructured data?
A Tree!

book

id
lang
author

H. Javeson

May 22, 2024

From Relational to Semi-Structured

Person

Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

What is a table in semi-
structured land?

May 22, 2024

From Relational to Semi-Structured

Person

Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

What is a table in semi-
structured land?

EEeEl Atable is just a

collection of rows

May 22, 2024

From Relational to Semi-Structured

Person

Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

What is a table in semi-
structured land?

Ll Or, an array of
5 ; ; rows (elements)

May 22, 2024

From Relational to Semi-Structured

Person

Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

What is a table in semi-
structured land?

el Or, an array of

rows (elements)

Rows are simple
(unnested) objects

May 22, 2024

From Relational to Semi-Structured

Person

Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

person

May 22, 2024

"person’

{

L

"name": "Dan",
"phone": "555-123-4567"

"name": "Alvin",
"phone": "555-234-5678"

"name": "Magda",
"phone": "555-345-6789"

From Relational to Semi-Structured

Person

Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

How can NULL
be represented?

May 22, 2024

{

"person":|[
{
"name": "Dan",
"phone": "555-123-4567"
}s
{
"name": "Alvin",
"phone": "555-234-5678"
}s
{
"name": "Magda",
"phone": "555-345-6789"
}

From Relational to Semi-Structured

Person

Dan 555-123-4567
Alvin 555-234-5678
Magda NULL

How can NULL
be represented?

May 22, 2024

{

"person":|[
{
"name": "Dan",
"phone": "555-123-4567"
}s
{
"name": "Alvin",
"phone": "555-234-5678"
}s
{
"name": "Magda",
"phone": "555-345-6789"
}

From Relational to Semi-Structured

Person

Dan 555-123-4567
Alvin 555-234-5678
Magda NULL

How can NULL
be represented?

May 22, 2024

{

"person":|[
{
"name" :
"phone":
}s
{
"name" :
"phone":
}s
{
"name" :
"phone":
}

IIDanll,

"555-123-4567"

"Alvin",

"555-234-5678"

IIMagdall’

null

From Relational to Semi-Structured

Person

Dan 555-123-4567
Alvin 555-234-5678
Magda NULL

How can NULL
be represented?

May 22, 2024

{

"person":|[
{
"name": "Dan",
"phone": "555-123-4567"
}s
{
"name": "Alvin",
"phone": "555-234-5678"
}s
{
"name": "Magda"
}
] OK for field to
be missing!

From Relational to Semi-Structured

Person

Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Are there things that
the Relational Model
can’t represent?

May 22, 2024

{

"person":|[
{
"name": "Dan",
"phone": "555-123-4567"
}s
{
"name": "Alvin",
"phone": "555-234-5678"
}s
{
"name": "Magda",
"phone": "555-345-6789"
}

From Relational to Semi-Structured

Person

Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Are there things that
the Relational Model
can’t represent?

Non-flat datal!
* Array data
* Multi-part data

May 22, 2024

{

"person":|[
{
"name": "Dan",
"phone": "555-123-4567"
s
{
"name": "Alvin",
"phone": "555-234-5678"
s
{
"name": "Magda",
"phone": "555-345-6789"
}

From Relational to Semi-Structured

Person
Dan 27?7

Alvin 555-234-5678
Magda 555-345-6789

Are there things that
the Relational Model
can’t represent?

Non-flat datal!
« Array data
* Multi-part data

May 22, 2024

{

"person":|[
{
"name": "Dan",
"phone": [

"555-123-4567",
"555-987-6543"

"name": "Alvin",
"phone": "555-234-5678"

"name": "Magda",
"phone": "555-345-6789"

From Relational to Semi-Structured

Person

27?7 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Are there things that
the Relational Model

can’t represent?

Non-flat datal!
* Array data
* Multi-part data

May 22, 2024

{

"person":|[
{
"name": {
"fname": "Dan",
"lname": "Suciu"
s
"phone": "555-123-4567"
}s
{
"name": "Alvin",
"phone": "555-234-5678"
}s
{
"name": "Magda",
"phone": "555-345-6789"
}

Discussion

= Relational data is represented using shallow,
regular trees

* NULLs can be encoded either as NULL, or by
simply omitting the attribute

* The value of an attribute is no longer restricted to
be an atomic type: it can be a record, an array, ...

How do we represent relationships?

May 22, 2024

From Relational to Semi-Structured

Person

Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

How do we represent
a many-to-one relationship?

Orders

Dan 1997 Furby
Alvin 2000 Furby
Alvin 2012 Magic8

May 22, 2024

From Relational to Semi-Structured

{

Person

Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Orders

Dan 1997 Furby
Alvin 2000 Furby
Alvin 2012 Magic8

May 22, 2024

"person":[
{
"name": "Dan",
"phone": "555-123-4567",
"orders": |
{
"date": 1997,
"product”: "Furby"
}
1
s
{
"name": "Alvin",
"phone": "555-234-5678",
"orders": |
{
"date": 2000,
"product”: "Furby"
}s
{
"date": 2012,
"product”: "Magic8"
}
1
s
{
"name": "Magda",
"phone": "555-345-6789",
"orders": []
}
]

From Relational to Semi-Structured

{

Person

Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Orders

Dan 1997 Furby

Alvin 2000 Furby

Alvin 2012 Magic8
Precomputed

equijoin!

May 22, 2024

"person":[
{
llnamell: "Dan",
"phone": "555-123-4567",
"orders": |
{
"date": 1997,
"product”: "Furby"

}
]

"name": "Alvin",
"phone": "555-234-5678",
"orders": |

{
"date": 2000,
"product”: "Furby"
}s
{

"date": 2012,
"product”: "Magic8"
}
]

"name": "Magda",
"phone": "555-345-6789",
"orders": []

From Relational to Semi-Structured

Person

Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

How do we represent
a many-to-many relationship?

Orders
PName | Date | Product _
Dan 1997 Furby
Alvin 2000 Furby
Alvin 2012 Magic8
Product
ProdName | Price _
Furby 9.99
Magic8 15.99

Tomagachi 18.99

May 22, 2024

From Relational to Semi-Structured

Person

Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

How do we represent
a many-to-many relationship?

Orders

PName | Date | Product _

Dan 1997 Furby

Alvin 2000 Furby

Alvin 2012 Magic8 Nest the data”

Person - Orders - Product

Product
ProdName | Price _

Furby 9.99

Magic8 15.99

Tomagachi 18.99

May 22, 2024

From Relational to Semi-Structured

Person

Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

How do we represent
a many-to-many relationship?

Orders
PName | Date | Product _
Dan 1997 Furby
Alvin 2000 Furby
Alvin 2012 Magic8 Nest the data®
Person - Orders - Product
Product
m We might miss some products!
Furb 9.99 &
uroy ' Product data will be duplicated!
Magic8 15.99

Tomagachi 18.99

May 22, 2024

From Relational to Semi-Structured

Person

Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

How do we represent
a many-to-many relationship?

Orders
PName | Date | Product _

Dan 1997 Furby

Alvin 2000 Furby

Alvin 2012 Magic8 Nest the data”

Product - Orders = Person

Product
ProdName | Price _

Furby 9.99

Magic8 15.99

Tomagachi 18.99

May 22, 2024

From Relational to Semi-Structured

Person

Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

How do we represent
a many-to-many relationship?

Orders
\PName | Date | Product
Dan 1997 Furby
Alvin 2000 Furby
Alvin 2012 Magic8 Nest the data®
Product - Orders - Person
Product
m We might miss some people!
Furb 9.99 o
uroy ' People data will be duplicated!
Magic8 15.99

Tomagachi 18.99

May 22, 2024

From Relational to Semi-Structured

Person

Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

How do we represent
a many-to-many relationship?

Orders
PName | Date | Product _

Dan 1997 Furby

Alvin 2000 Furby

Alvin 2012 Magic8 Convert each table to a

Product separate array/document?
ProdName | Price _

Furby 9.99

Magic8 15.99

Tomagachi 18.99

May 22, 2024

From Relational to Semi-Structured

Person

Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

How do we represent
a many-to-many relationship?

Orders
PName | Date | Product _
Dan 1997 Furby
Alvin 2000 Furby
Alvin 2012 Magic8 Convert each table to a
Product separate array/document?
m We wanted to avoid joining
Furby 9.99 in the first place!
Magic8 15.99

Tomagachi 18.99

May 22, 2024

Summary of Semistructured Data

» Self-describing

« Data and its schema presented together

" Irregular/flexible
* Missing attributes
* Repeated attributes (or arrays)
o Attribute may have different types in different objects

* 1-to-many relationships: very natural
* Many-many relationships: cumbersome

May 22, 2024

AsterixDB and SQL++

» AsterixDB as a case study of Document Store
« Semi-structured data model in JSON
* Introducing AsterixDB and SQL++

Asterixes

May 22, 2024

The 5 W’'s of AsterixDB

= \Who
* M. J. Carey & co.

* What
» "A Scalable, Open Source DBMS*
* It is now also an Apache project

= \Where
« UC Irvine, Cloudera Inc, Google, IBM, ...

= \When
« 2014
= Why

» To develop a next-gen system for managing semi-
structured data

May 22, 2024

The 5 W’s of SQL++

= \Who
« K. W. Ong & Y. Papakonstantinou

= \What

* A query language that is applicable to JSON native
stores and SQL databases

* Where
« UC San Diego

= \When
« 2015
= Why

« Stand in for other semi-structured query languages that
lack formal semantics.

May 22, 2024

Why We are Choosing SQL++

» Strong foundations
 Original paper: https://arxiv.org/pdf/1405.3631.pdf

* Nested relational algebra™:
https://dl.acm.org/citation.cfm?id=588133

= Many systems adopting or converging to SQL++
« Apache AsterixDB
« CouchBase (N1QL)
« Apache Dirill
« Snowflake
« Amazon Partiql, https://partigl.org/

* There are much better papers on Nested Relational Algebra (ask DanS)
May 22, 2024 SQL++ 42

https://arxiv.org/pdf/1405.3631.pdf
https://dl.acm.org/citation.cfm?id=588133
https://partiql.org/

Asterix Data Model (ADM)

» ADM = nearly identical to JSON

» Adds: multiset or bag
« Encapsulated by double curly braces {{ }}

* Adds: universally unique identifier (uuid)
« Ex: 123e4567-e89b-12d3-a456-426655440000
« Useful for auto-generating unique keys

May 22, 2024

Introducing the New and Improved SQL++

May 22, 2024 SQL++ 44

SQL++ Mini Demo

Demo Time!

May 22, 2024

Installing AsterixDB

(Details in HW7 spec)

Download from
https://asterixdb.apache.org/download.html

Start local cluster from:
<asterix root>/opt/local/bin/start-sample-cluster

Run by typing this in your browser:
127.0.0.1:19002

Stop cluster when you're done:
<asterix root>/opt/local/bin/stop-sample-cluster

May 22, 2024

https://asterixdb.apache.org/download.html
127.0.0.1:19002

SQL++ Hello World

SELECT x.phone

FROM [
{"name": "Dan", "phone": [300, 150]},
{"name": "Alvin", "phone": 420}
] AS Xx;

May 22, 2024

SQL++ Hello World

SELECT x.phone

FROM [
{"name": "Dan", "phone": [300, 150]},
{"name": "Alvin", "phone": 420}
] AS Xx;

-- output, same for-loop semantics like in SQL
-- array data

/*

{ "phone": [300, 150] }

{ "phone": 420 }

*/

May 22, 2024

SQL++ Hello World

SELECT x.phone

FROM {{
{"name": "Dan", "phone": [300, 150]},
{"name": "Alvin", "phone": 420}
}} AS Xx;

May 22, 2024

SQL++ Hello World

SELECT x.phone
FROM {{
{"name": "Dan", "phone": [300, 150]},
{"name": "Alvin", "phone": 420}
}} AS Xx;

-- same output as array data
-- multiset data

May 22, 2024

SQL++ Hello World

-- error

SELECT x.phone
FROM {"name": "Dan", "phone": [300, 150]} AS Xx;

-- output

-- trying to query an object

/*

Type mismatch: function scan-collection expects its
1st input parameter to be type multiset or array,
but the actual input type is object
[TypeMismatchException]

*/

May 22, 2024

SQL++ Hello World

SELECT x.phone

FROM [
{"name": "Dan", "phone": [300, 150]},
{"name": "Alvin", "phone": null}
] AS Xx;

May 22, 2024

SQL++ Hello World

SELECT x.phone

FROM [
{"name": "Dan", "phone": [300, 150]},
{"name": "Alvin", "phone": null}
] AS Xx;

-- output, null works like in SQL
-- null values

/*

{ "phone": [300, 150] }

{ "phone": null }

*/

May 22, 2024

SQL++ Hello World

SELECT x.phone

FROM [
{"name": "Dan", "phone": [300, 150]},
{"name": "Alvin"}
] AS Xx;

May 22, 2024

SQL++ Hello World

SELECT x.phone

FROM [
{"name": "Dan", "phone": [300, 150]},
{"name": "Alvin"}
] AS Xx;

-- output, missing data is simply passed over (beware of typos!)
-- missing values

/*

{ "phone": [300, 150] }

{1}

*/

May 22, 2024

SQL++ Hello World

SELECT x.fone -- intentional typo

FROM [
{"name": "Dan", "phone": [300, 150]},
{"name": "Alvin", "phone": 420}
] AS Xx;

May 22, 2024

SQL++ Hello World

SELECT x.fone -- intentional typo

FROM [
{"name": "Dan", "phone": [300, 150]},
{"name": "Alvin", "phone": 420}
] AS Xx;

-- output, beware of typos! No errors are thrown
/*
{1}

1}
*/

May 22, 2024

SQL++ Hello World

FROM |

{"name": "Dan", "phone": [300, 150]},
{"name": "Alvin", "phone": 420}
] AS X

WHERE is array(x.phone) OR x.phone > 100
GROUP BY x.name, x.phone
HAVING x.name = "Dan" OR x.name = "Alvin"
SELECT x.phone
ORDER BY x.name DESC;

May 22, 2024

SQL++ Hello World

FROM [
{"name": "Dan", "phone": [300, 150]},
{"name": "Alvin", "phone": 420}
] AS X
WHERE is array(x.phone) OR x.phone > 100
GROUP BY x.name, x.phone
HAVING x.name = "Dan" OR x.name = "Alvin"
SELECT x.phone
ORDER BY x.name DESC;

-- output:

/*

{ "phone": [300, 150] }
{ "phone": 420 }

*/

May 22, 2024

= Patterns in querying
semi-structured data

» SQL++ behind the mask

May 22, 2024

