
1

SQL++

May 22, 2024

Introduction to Data Management

SQL++

Announcements

§No in-person Lecture on Friday, May 24:
Please watch recorded video instead (on canvas)

§HW6/2 due on Friday

§HW7 to be released on Friday, due on May 31

May 22, 2024 Semistructured Data 2

Course Evals

§Opens on Saturday, May 25

§Please take a few minutes before we start to fill out
the course evals

§ I read every word of your comments and make
adjustments where needed based on the
feedback; have done this in the past

May 22, 2024 SQL++ 3

Recap: semistructure data

§ Loose terminology; any "parsable" file qualifies

§Self-describing, “data first”

§We discuss only Json

§Other formats: protobuf, XML, csv

May 22, 2024 SQL++ 4

JSON Standard – Rules of the Game

§ JavaScript Object Notation (JSON)
• "Lightweight text-based open standard designed for

human-readable data interchange"

{
"book":[

{
"id": "01",
"language": "Java",
"author": "H. Javeson",
"year": 2015

},
{

 "author": "E. Sepp",
"id": "07",
"language": "C++",
"edition": null,
"sale": true

}
]

}

May 22, 2024 SQL++ 5

JSON Standard – Rules of the Game

§ JavaScript Object Notation (JSON)
• "Lightweight text-based open standard designed for

human-readable data interchange"

Primitives include:
• String (in quotes)
• Numeric (unquoted number)
• Boolean (unquoted true/false)
• Null (literally just null)

Types{
"book":[

{
"id": "01",
"language": "Java",
"author": "H. Javeson",
"year": 2015

},
{

 "author": "E. Sepp",
"id": "07",
"language": "C++",
"edition": null,
"sale": true

}
]

}

May 22, 2024 SQL++ 6

JSON Standard – Rules of the Game

§ JavaScript Object Notation (JSON)
• "Lightweight text-based open standard designed for

human-readable data interchange"

Objects are an unordered collection of
name-value pairs:
• "name": <value>
• Values can be primitives, objects, or

arrays
• Enclosed by { }

Types{
"book":[

{
"id": "01",
"language": "Java",
"author": "H. Javeson",
"year": 2015

},
{

 "author": "E. Sepp",
"id": "07",
"language": "C++",
"edition": null,
"sale": true

}
]

}

May 22, 2024 SQL++ 7

JSON Standard – Rules of the Game

§ JavaScript Object Notation (JSON)
• "Lightweight text-based open standard designed for

human-readable data interchange"

Types{
"book":[

{
"id": "01",
"language": "Java",
"author": "H. Javeson",
"year": 2015

},
{

 "author": "E. Sepp",
"id": "07",
"language": "C++",
"edition": null,
"sale": true

}
]

}

Objects are an unordered collection of
name-value pairs:
• "name": <value>
• Values can be primitives, objects, or

arrays
• Enclosed by { }

May 22, 2024 SQL++ 8

JSON Standard – Rules of the Game

§ JavaScript Object Notation (JSON)
• "Lightweight text-based open standard designed for

human-readable data interchange"

Arrays are an ordered list of values:
• Order is preserved in interpretation
• May contain any mix of types
• Enclosed by []

Types{
"book":[

{
"id": "01",
"language": "Java",
"author": "H. Javeson",
"year": 2015

},
{

 "author": "E. Sepp",
"id": "07",
"language": "C++",
"edition": null,
"sale": true

}
]

}

May 22, 2024 SQL++ 9

JSON Standard – Rules of the Game

§ JSON Standard too expressive
• Implementations restrict syntax
• Ex: Duplicate fields

{
"id": "01",
"language": "Java",
"author": "H. Javeson",

 "author": "D. Suciu",
 "author": "A. Cheung",

"year": 2015
}

May 22, 2024 SQL++ 10

JSON Standard – Rules of the Game

§ JSON Standard too expressive
• Implementations restrict syntax
• Ex: Duplicate fields

{
"id": "01",
"language": "Java",
"author": "H. Javeson",

 "author": "D. Suciu",
 "author": "A. Cheung",

"year": 2015
}

{
"id": "01",
"language": "Java",
"author": ["H. Javeson",

 "D. Suciu",
 "A. Cheung"],

"year": 2015
}

NOT ALLOWED
(duplicated authors)

OK
(author array)

May 22, 2024 SQL++ 11

Thinking About Semi-Structured Data

What is the data model of semistructured data?

{
"book":[

{
"id": "01",
"language": "Java",
"author": "H. Javeson",
"year": 2015

},
{

 "author": "E. Sepp",
"id": "07",
"language": "C++",
"edition": null,
"sale": true

}
]

}

May 22, 2024 SQL++ 12

Thinking About Semi-Structured Data

What is the data model of semistructured data?
A Tree!

book

0 1

id
lang

author
year

id
lang

author

ed
sale

H. Javeson

Java 2015
01

E. Sepp

C++ true

07
null

May 22, 2024 SQL++ 13

From Relational to Semi-Structured

Name Phone
Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Person

person

What is a table in semi-
structured land?

May 22, 2024 SQL++ 14

From Relational to Semi-Structured

Name Phone
Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Person

person

row row row

A table is just a
collection of rows

What is a table in semi-
structured land?

May 22, 2024 SQL++ 15

From Relational to Semi-Structured

Name Phone
Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Person

person

0 1 2

Or, an array of
rows (elements)

What is a table in semi-
structured land?

May 22, 2024 SQL++ 16

From Relational to Semi-Structured

Name Phone
Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Person

person

0 1 2

name phone

Alvin 555…

Rows are simple
(unnested) objects

What is a table in semi-
structured land?

May 22, 2024 SQL++ 17

Or, an array of
rows (elements)

From Relational to Semi-Structured

Name Phone
Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Person

{
"person":[

{
"name": "Dan",
"phone": "555-123-4567"

},
{

"name": "Alvin",
"phone": "555-234-5678"

},
{

"name": "Magda",
"phone": "555-345-6789"

}
]

}

person

0 1 2

name phone

Alvin 555…

May 22, 2024 SQL++ 18

From Relational to Semi-Structured

Name Phone
Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Person

{
"person":[

{
"name": "Dan",
"phone": "555-123-4567"

},
{

"name": "Alvin",
"phone": "555-234-5678"

},
{

"name": "Magda",
"phone": "555-345-6789"

}
]

}

How can NULL
be represented?

May 22, 2024 SQL++ 19

From Relational to Semi-Structured

Name Phone
Dan 555-123-4567
Alvin 555-234-5678
Magda NULL

Person

{
"person":[

{
"name": "Dan",
"phone": "555-123-4567"

},
{

"name": "Alvin",
"phone": "555-234-5678"

},
{

"name": "Magda",
"phone": "555-345-6789"

}
]

}

How can NULL
be represented?

May 22, 2024 SQL++ 20

From Relational to Semi-Structured

Name Phone
Dan 555-123-4567
Alvin 555-234-5678
Magda NULL

Person

{
"person":[

{
"name": "Dan",
"phone": "555-123-4567"

},
{

"name": "Alvin",
"phone": "555-234-5678"

},
{

"name": "Magda",
"phone": null

}
]

}

How can NULL
be represented?

May 22, 2024 SQL++ 21

From Relational to Semi-Structured

Name Phone
Dan 555-123-4567
Alvin 555-234-5678
Magda NULL

Person

{
"person":[

{
"name": "Dan",
"phone": "555-123-4567"

},
{

"name": "Alvin",
"phone": "555-234-5678"

},
{

"name": "Magda"
}

]
}

How can NULL
be represented?

OK for field to
be missing!

May 22, 2024 SQL++ 22

From Relational to Semi-Structured

Name Phone
Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Person

{
"person":[

{
"name": "Dan",
"phone": "555-123-4567"

},
{

"name": "Alvin",
"phone": "555-234-5678"

},
{

"name": "Magda",
"phone": "555-345-6789"

}
]

}

Are there things that
the Relational Model

can’t represent?

May 22, 2024 SQL++ 23

From Relational to Semi-Structured

Name Phone
Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Person

{
"person":[

{
"name": "Dan",
"phone": "555-123-4567"

},
{

"name": "Alvin",
"phone": "555-234-5678"

},
{

"name": "Magda",
"phone": "555-345-6789"

}
]

}

Are there things that
the Relational Model

can’t represent?

Non-flat data!
• Array data
• Multi-part data

May 22, 2024 SQL++ 24

From Relational to Semi-Structured

Name Phone
Dan ???
Alvin 555-234-5678
Magda 555-345-6789

Person

{
"person":[

{
"name": "Dan",
"phone": [

"555-123-4567",
"555-987-6543"

]
 },

{
"name": "Alvin",
"phone": "555-234-5678"

},
{

"name": "Magda",
"phone": "555-345-6789"

}
]

}

Are there things that
the Relational Model

can’t represent?

Non-flat data!
• Array data
• Multi-part data

May 22, 2024 SQL++ 25

From Relational to Semi-Structured

Name Phone
??? 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Person

{
"person":[

{
"name": {

"fname": "Dan",
"lname": "Suciu"

},
"phone": "555-123-4567"

},
{

"name": "Alvin",
"phone": "555-234-5678"

},
{

"name": "Magda",
"phone": "555-345-6789"

}
]

}

Are there things that
the Relational Model

can’t represent?

Non-flat data!
• Array data
• Multi-part data

May 22, 2024 SQL++ 26

Discussion

§Relational data is represented using shallow,
regular trees

§NULLs can be encoded either as NULL, or by
simply omitting the attribute

§ The value of an attribute is no longer restricted to
be an atomic type: it can be a record, an array, …

How do we represent relationships?

May 22, 2024 SQL++ 27

From Relational to Semi-Structured

Name Phone
Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Person

PName Date Product
Dan 1997 Furby
Alvin 2000 Furby
Alvin 2012 Magic8

Orders
How do we represent

a many-to-one relationship?

May 22, 2024 SQL++ 28

From Relational to Semi-Structured

Name Phone
Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Person

Orders

{
"person":[

{
"name": "Dan",
"phone": "555-123-4567",
"orders": [

 {
 "date": 1997,

 "product": "Furby"
 }
]

},
{

"name": "Alvin",
"phone": "555-234-5678",
"orders": [

 {
 "date": 2000,

 "product": "Furby"
 },
 {
 "date": 2012,

 "product": "Magic8"
 }
]

},
{

"name": "Magda",
"phone": "555-345-6789",
"orders": []

}
]

}

PName Date Product
Dan 1997 Furby
Alvin 2000 Furby
Alvin 2012 Magic8

May 22, 2024 SQL++ 29

From Relational to Semi-Structured

Name Phone
Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Person

Orders

{
"person":[

{
"name": "Dan",
"phone": "555-123-4567",
"orders": [

 {
 "date": 1997,

 "product": "Furby"
 }
]

},
{

"name": "Alvin",
"phone": "555-234-5678",
"orders": [

 {
 "date": 2000,

 "product": "Furby"
 },
 {
 "date": 2012,

 "product": "Magic8"
 }
]

},
{

"name": "Magda",
"phone": "555-345-6789",
"orders": []

}
]

}

Precomputed
equijoin!

PName Date Product
Dan 1997 Furby
Alvin 2000 Furby
Alvin 2012 Magic8

May 22, 2024 SQL++ 30

From Relational to Semi-Structured

Name Phone
Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Person

PName Date Product
Dan 1997 Furby
Alvin 2000 Furby
Alvin 2012 Magic8

Orders

ProdName Price
Furby 9.99
Magic8 15.99
Tomagachi 18.99

Product

How do we represent
a many-to-many relationship?

May 22, 2024 SQL++ 31

From Relational to Semi-Structured

Name Phone
Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Person

Orders

Product

Nest the data?
Person à Orders à Product

PName Date Product
Dan 1997 Furby
Alvin 2000 Furby
Alvin 2012 Magic8

ProdName Price
Furby 9.99
Magic8 15.99
Tomagachi 18.99

May 22, 2024 SQL++ 32

How do we represent
a many-to-many relationship?

From Relational to Semi-Structured

Name Phone
Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Person

Orders

Product

Nest the data?
Person à Orders à Product

We might miss some products!
&

Product data will be duplicated!

PName Date Product
Dan 1997 Furby
Alvin 2000 Furby
Alvin 2012 Magic8

ProdName Price
Furby 9.99
Magic8 15.99
Tomagachi 18.99

May 22, 2024 SQL++ 33

How do we represent
a many-to-many relationship?

From Relational to Semi-Structured

Name Phone
Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Person

Orders

Product

Nest the data?
Product à Orders à Person

PName Date Product
Dan 1997 Furby
Alvin 2000 Furby
Alvin 2012 Magic8

ProdName Price
Furby 9.99
Magic8 15.99
Tomagachi 18.99

May 22, 2024 SQL++ 34

How do we represent
a many-to-many relationship?

From Relational to Semi-Structured

Name Phone
Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Person

Orders

Product

Nest the data?
Product à Orders à Person

We might miss some people!
&

People data will be duplicated!

PName Date Product
Dan 1997 Furby
Alvin 2000 Furby
Alvin 2012 Magic8

ProdName Price
Furby 9.99
Magic8 15.99
Tomagachi 18.99

May 22, 2024 SQL++ 35

How do we represent
a many-to-many relationship?

From Relational to Semi-Structured

Name Phone
Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Person

Orders

Product
Convert each table to a

separate array/document?

PName Date Product
Dan 1997 Furby
Alvin 2000 Furby
Alvin 2012 Magic8

ProdName Price
Furby 9.99
Magic8 15.99
Tomagachi 18.99

May 22, 2024 SQL++ 36

How do we represent
a many-to-many relationship?

From Relational to Semi-Structured

Name Phone
Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Person

Orders

Product
Convert each table to a

separate array/document?

We wanted to avoid joining
in the first place!

PName Date Product
Dan 1997 Furby
Alvin 2000 Furby
Alvin 2012 Magic8

ProdName Price
Furby 9.99
Magic8 15.99
Tomagachi 18.99

May 22, 2024 SQL++ 37

How do we represent
a many-to-many relationship?

Summary of Semistructured Data

§Self-describing
• Data and its schema presented together

§ Irregular/flexible
• Missing attributes
• Repeated attributes (or arrays)
• Attribute may have different types in different objects

§ 1-to-many relationships: very natural
§Many-many relationships: cumbersome

May 22, 2024 SQL++ 38

AsterixDB and SQL++

§AsterixDB as a case study of Document Store
• Semi-structured data model in JSON
• Introducing AsterixDB and SQL++

May 22, 2024 SQL++ 39

The 5 W’s of AsterixDB

May 22, 2024 SQL++ 40

§Who
• M. J. Carey & co.

§What
• "A Scalable, Open Source DBMS“
• It is now also an Apache project

§Where
• UC Irvine, Cloudera Inc, Google, IBM, …

§When
• 2014

§Why
• To develop a next-gen system for managing semi-

structured data

The 5 W’s of SQL++

May 22, 2024 SQL++ 41

§Who
• K. W. Ong & Y. Papakonstantinou

§What
• A query language that is applicable to JSON native

stores and SQL databases
§Where

• UC San Diego
§When

• 2015
§Why

• Stand in for other semi-structured query languages that
lack formal semantics.

Why We are Choosing SQL++

May 22, 2024 SQL++ 42

§Strong foundations
• Original paper: https://arxiv.org/pdf/1405.3631.pdf
• Nested relational algebra*:

https://dl.acm.org/citation.cfm?id=588133

§Many systems adopting or converging to SQL++
• Apache AsterixDB
• CouchBase (N1QL)
• Apache Drill
• Snowflake
• Amazon Partiql, https://partiql.org/

* There are much better papers on Nested Relational Algebra (ask DanS)

https://arxiv.org/pdf/1405.3631.pdf
https://dl.acm.org/citation.cfm?id=588133
https://partiql.org/

Asterix Data Model (ADM)

§ADM = nearly identical to JSON

§Adds: multiset or bag
• Encapsulated by double curly braces {{ }}

§Adds: universally unique identifier (uuid)
• Ex: 123e4567-e89b-12d3-a456-426655440000
• Useful for auto-generating unique keys

May 22, 2024 SQL++ 43

Introducing the New and Improved SQL++

May 22, 2024 SQL++ 44

SQL++ Mini Demo

Demo Time!

May 22, 2024 SQL++ 45

Installing AsterixDB
(Details in HW7 spec)

Download from
 https://asterixdb.apache.org/download.html

Start local cluster from:
 <asterix root>/opt/local/bin/start-sample-cluster

Run by typing this in your browser:
 127.0.0.1:19002

Stop cluster when you’re done:
 <asterix root>/opt/local/bin/stop-sample-cluster

May 22, 2024 SQL++ 46

https://asterixdb.apache.org/download.html
127.0.0.1:19002

SQL++ Hello World

May 22, 2024 SQL++ 47

SELECT x.phone
 FROM [
 {"name": "Dan", "phone": [300, 150]},
 {"name": "Alvin", "phone": 420}
] AS x;

SQL++ Hello World

May 22, 2024 SQL++ 48

SELECT x.phone
 FROM [
 {"name": "Dan", "phone": [300, 150]},
 {"name": "Alvin", "phone": 420}
] AS x;

-- output, same for-loop semantics like in SQL
-- array data
/*
{ "phone": [300, 150] }
{ "phone": 420 }
*/

SQL++ Hello World

May 22, 2024 SQL++ 49

SELECT x.phone
 FROM {{
 {"name": "Dan", "phone": [300, 150]},
 {"name": "Alvin", "phone": 420}
 }} AS x;

SQL++ Hello World

May 22, 2024 SQL++ 50

SELECT x.phone
 FROM {{
 {"name": "Dan", "phone": [300, 150]},
 {"name": "Alvin", "phone": 420}
 }} AS x;

-- same output as array data
-- multiset data

SQL++ Hello World

May 22, 2024 SQL++ 51

-- error
SELECT x.phone
 FROM {"name": "Dan", "phone": [300, 150]} AS x;

-- output
-- trying to query an object
/*
Type mismatch: function scan-collection expects its
1st input parameter to be type multiset or array,
but the actual input type is object
[TypeMismatchException]
*/

SQL++ Hello World

May 22, 2024 SQL++ 52

SELECT x.phone
 FROM [
 {"name": "Dan", "phone": [300, 150]},
 {"name": "Alvin", "phone": null}
] AS x;

SQL++ Hello World

May 22, 2024 SQL++ 53

SELECT x.phone
 FROM [
 {"name": "Dan", "phone": [300, 150]},
 {"name": "Alvin", "phone": null}
] AS x;

-- output, null works like in SQL
-- null values
/*
{ "phone": [300, 150] }
{ "phone": null }
*/

SQL++ Hello World

May 22, 2024 SQL++ 54

SELECT x.phone
 FROM [
 {"name": "Dan", "phone": [300, 150]},
 {"name": "Alvin"}
] AS x;

SQL++ Hello World

May 22, 2024 SQL++ 55

SELECT x.phone
 FROM [
 {"name": "Dan", "phone": [300, 150]},
 {"name": "Alvin"}
] AS x;

-- output, missing data is simply passed over (beware of typos!)
-- missing values
/*
{ "phone": [300, 150] }
{ }
*/

SQL++ Hello World

May 22, 2024 SQL++ 56

SELECT x.fone -- intentional typo
 FROM [
 {"name": "Dan", "phone": [300, 150]},
 {"name": "Alvin", "phone": 420}
] AS x;

SQL++ Hello World

May 22, 2024 SQL++ 57

SELECT x.fone -- intentional typo
 FROM [
 {"name": "Dan", "phone": [300, 150]},
 {"name": "Alvin", "phone": 420}
] AS x;

-- output, beware of typos! No errors are thrown
/*
{ }
{ }
*/

SQL++ Hello World

May 22, 2024 SQL++ 58

FROM [
 {"name": "Dan", "phone": [300, 150]},
 {"name": "Alvin", "phone": 420}
] AS x
 WHERE is_array(x.phone) OR x.phone > 100
 GROUP BY x.name, x.phone
HAVING x.name = "Dan" OR x.name = "Alvin"
SELECT x.phone
 ORDER BY x.name DESC;

SQL++ Hello World

May 22, 2024 SQL++ 59

FROM [
 {"name": "Dan", "phone": [300, 150]},
 {"name": "Alvin", "phone": 420}
] AS x
 WHERE is_array(x.phone) OR x.phone > 100
 GROUP BY x.name, x.phone
HAVING x.name = "Dan" OR x.name = "Alvin"
SELECT x.phone
 ORDER BY x.name DESC;

-- output:
/*
{ "phone": [300, 150] }
{ "phone": 420 }
*/

Next Time

§Patterns in querying
semi-structured data

§SQL++ behind the mask

May 22, 2024 SQL++ 60

SQL++

SQL++

SQL++

Relational
Model

