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Announcements

§No in-person Lecture on Friday, May 24:
Please watch recorded video instead (on canvas)

§HW6/2 due on Friday

§HW7 to be released on Friday, due on May 31
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Course Evals

§Opens on Saturday, May 25

§Please take a few minutes before we start to fill out 
the course evals

§ I read every word of your comments and make 
adjustments where needed based on the 
feedback; have done this in the past
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Recap: semistructure data

§ Loose terminology; any "parsable" file qualifies

§Self-describing, “data first”

§We discuss only Json

§Other formats: protobuf, XML, csv
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JSON Standard – Rules of the Game

§ JavaScript Object Notation (JSON)
• "Lightweight text-based open standard designed for 

human-readable data interchange"

{ 
"book":[ 

{ 
"id": "01",
"language": "Java",
"author": "H. Javeson",
"year": 2015

},
{ 

         "author": "E. Sepp",
"id": "07",
"language": "C++",
"edition": null,
"sale": true

}
]

}
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JSON Standard – Rules of the Game

§ JavaScript Object Notation (JSON)
• "Lightweight text-based open standard designed for 

human-readable data interchange"

Primitives include:
• String (in quotes)
• Numeric (unquoted number)
• Boolean (unquoted true/false)
• Null (literally just null)

Types{ 
"book":[ 

{ 
"id": "01",
"language": "Java",
"author": "H. Javeson",
"year": 2015

},
{ 

         "author": "E. Sepp",
"id": "07",
"language": "C++",
"edition": null,
"sale": true

}
]

}
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JSON Standard – Rules of the Game

§ JavaScript Object Notation (JSON)
• "Lightweight text-based open standard designed for 

human-readable data interchange"

Objects are an unordered collection of 
name-value pairs:
• "name": <value>
• Values can be primitives, objects, or 

arrays
• Enclosed by { }

Types{ 
"book":[ 

{ 
"id": "01",
"language": "Java",
"author": "H. Javeson",
"year": 2015

},
{ 

         "author": "E. Sepp",
"id": "07",
"language": "C++",
"edition": null,
"sale": true

}
]

}
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JSON Standard – Rules of the Game

§ JavaScript Object Notation (JSON)
• "Lightweight text-based open standard designed for 

human-readable data interchange"

Types{ 
"book":[ 

{ 
"id": "01",
"language": "Java",
"author": "H. Javeson",
"year": 2015

},
{ 

         "author": "E. Sepp",
"id": "07",
"language": "C++",
"edition": null,
"sale": true

}
]

}

Objects are an unordered collection of 
name-value pairs:
• "name": <value>
• Values can be primitives, objects, or 

arrays
• Enclosed by { }
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JSON Standard – Rules of the Game

§ JavaScript Object Notation (JSON)
• "Lightweight text-based open standard designed for 

human-readable data interchange"

Arrays are an ordered list of values:
• Order is preserved in interpretation
• May contain any mix of types
• Enclosed by [ ]

Types{ 
"book":[ 

{ 
"id": "01",
"language": "Java",
"author": "H. Javeson",
"year": 2015

},
{ 

         "author": "E. Sepp",
"id": "07",
"language": "C++",
"edition": null,
"sale": true

}
]

}
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JSON Standard – Rules of the Game

§ JSON Standard too expressive
• Implementations restrict syntax
• Ex: Duplicate fields

{ 
"id": "01",
"language": "Java",
"author": "H. Javeson",

   "author": "D. Suciu",
   "author": "A. Cheung",

"year": 2015
}
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JSON Standard – Rules of the Game

§ JSON Standard too expressive
• Implementations restrict syntax
• Ex: Duplicate fields

{ 
"id": "01",
"language": "Java",
"author": "H. Javeson",

   "author": "D. Suciu",
   "author": "A. Cheung",

"year": 2015
}

{ 
"id": "01",
"language": "Java",
"author": ["H. Javeson",

              "D. Suciu",
              "A. Cheung"],

"year": 2015
}

NOT ALLOWED
(duplicated authors)

OK
(author array)
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Thinking About Semi-Structured Data

What is the data model of semistructured data?

{ 
"book":[ 

{ 
"id": "01",
"language": "Java",
"author": "H. Javeson",
"year": 2015

},
{ 

         "author": "E. Sepp",
"id": "07",
"language": "C++", 
"edition": null,
"sale": true

}
]

}
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Thinking About Semi-Structured Data

What is the data model of semistructured data?
A Tree!

book

0 1

id
lang

author
year

id
lang

author

ed
sale

H. Javeson

Java 2015
01

E. Sepp

C++ true

07
null

May 22, 2024 SQL++ 13



From Relational to Semi-Structured

Name Phone
Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Person

person

What is a table in semi-
structured land?
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From Relational to Semi-Structured

Name Phone
Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Person

person

row row row

A table is just a
collection of rows

What is a table in semi-
structured land?
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From Relational to Semi-Structured

Name Phone
Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Person

person

0 1 2

Or, an array of
rows (elements)

What is a table in semi-
structured land?
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From Relational to Semi-Structured

Name Phone
Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Person

person

0 1 2

name phone

Alvin 555…

Rows are simple
(unnested) objects

What is a table in semi-
structured land?
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Or, an array of
rows (elements)



From Relational to Semi-Structured

Name Phone
Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Person

{ 
"person":[

{ 
"name": "Dan",
"phone": "555-123-4567"

}, 
{ 

"name": "Alvin",
"phone": "555-234-5678"

}, 
{ 

"name": "Magda",
"phone": "555-345-6789"

}
]

}

person

0 1 2

name phone

Alvin 555…

May 22, 2024 SQL++ 18



From Relational to Semi-Structured

Name Phone
Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Person

{ 
"person":[

{ 
"name": "Dan",
"phone": "555-123-4567"

}, 
{ 

"name": "Alvin",
"phone": "555-234-5678"

}, 
{ 

"name": "Magda",
"phone": "555-345-6789"

}
]

}

How can NULL 
be represented?
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From Relational to Semi-Structured

Name Phone
Dan 555-123-4567
Alvin 555-234-5678
Magda NULL

Person

{ 
"person":[

{ 
"name": "Dan",
"phone": "555-123-4567"

}, 
{ 

"name": "Alvin",
"phone": "555-234-5678"

}, 
{ 

"name": "Magda",
"phone": "555-345-6789"

}
]

}

How can NULL 
be represented?
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From Relational to Semi-Structured

Name Phone
Dan 555-123-4567
Alvin 555-234-5678
Magda NULL

Person

{ 
"person":[

{ 
"name": "Dan",
"phone": "555-123-4567"

}, 
{ 

"name": "Alvin",
"phone": "555-234-5678"

}, 
{ 

"name": "Magda",
"phone": null

}
]

}

How can NULL 
be represented?
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From Relational to Semi-Structured

Name Phone
Dan 555-123-4567
Alvin 555-234-5678
Magda NULL

Person

{ 
"person":[

{ 
"name": "Dan",
"phone": "555-123-4567"

}, 
{ 

"name": "Alvin",
"phone": "555-234-5678"

}, 
{ 

"name": "Magda"
}

]
}

How can NULL 
be represented?

OK for field to 
be missing!
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From Relational to Semi-Structured

Name Phone
Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Person

{ 
"person":[

{ 
"name": "Dan",
"phone": "555-123-4567"

}, 
{ 

"name": "Alvin",
"phone": "555-234-5678"

}, 
{ 

"name": "Magda",
"phone": "555-345-6789"

}
]

}

Are there things that 
the Relational Model 

can’t represent?
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From Relational to Semi-Structured

Name Phone
Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Person

{ 
"person":[

{ 
"name": "Dan",
"phone": "555-123-4567"

}, 
{ 

"name": "Alvin",
"phone": "555-234-5678"

}, 
{ 

"name": "Magda",
"phone": "555-345-6789"

}
]

}

Are there things that 
the Relational Model 

can’t represent?

Non-flat data!
• Array data
• Multi-part data
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From Relational to Semi-Structured

Name Phone
Dan ???
Alvin 555-234-5678
Magda 555-345-6789

Person

{ 
"person":[

{ 
"name": "Dan",
"phone": [

"555-123-4567",
"555-987-6543"

]
      }, 

{ 
"name": "Alvin",
"phone": "555-234-5678"

}, 
{ 

"name": "Magda",
"phone": "555-345-6789"

}
]

}

Are there things that 
the Relational Model 

can’t represent?

Non-flat data!
• Array data
• Multi-part data
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From Relational to Semi-Structured

Name Phone
??? 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Person

{ 
"person":[

{ 
"name": {

"fname": "Dan",
"lname": "Suciu"

},
"phone": "555-123-4567"

}, 
{ 

"name": "Alvin",
"phone": "555-234-5678"

}, 
{ 

"name": "Magda",
"phone": "555-345-6789"

}
]

}

Are there things that 
the Relational Model 

can’t represent?

Non-flat data!
• Array data
• Multi-part data
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Discussion

§Relational data is represented using shallow, 
regular trees

§NULLs can be encoded either as NULL, or by 
simply omitting the attribute

§ The value of an attribute is no longer restricted to 
be an atomic type: it can be a record, an array, …

How do we represent relationships?
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From Relational to Semi-Structured

Name Phone
Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Person

PName Date Product
Dan 1997 Furby
Alvin 2000 Furby
Alvin 2012 Magic8

Orders
How do we represent

a many-to-one relationship?
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From Relational to Semi-Structured

Name Phone
Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Person

Orders

{ 
"person":[

{ 
"name": "Dan",
"phone": "555-123-4567",
"orders": [

            {
               "date": 1997,

      "product": "Furby"
            }
         ]

}, 
{ 

"name": "Alvin",
"phone": "555-234-5678",
"orders": [

            {
               "date": 2000,

      "product": "Furby"
            },
            {
               "date": 2012,

      "product": "Magic8"
            }
         ]

}, 
{ 

"name": "Magda",
"phone": "555-345-6789",
"orders": []

}
]

}

PName Date Product
Dan 1997 Furby
Alvin 2000 Furby
Alvin 2012 Magic8
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From Relational to Semi-Structured

Name Phone
Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Person

Orders

{ 
"person":[

{ 
"name": "Dan",
"phone": "555-123-4567",
"orders": [

            {
               "date": 1997,

      "product": "Furby"
            }
         ]

}, 
{ 

"name": "Alvin",
"phone": "555-234-5678",
"orders": [

            {
               "date": 2000,

      "product": "Furby"
            },
            {
               "date": 2012,

      "product": "Magic8"
            }
         ]

}, 
{ 

"name": "Magda",
"phone": "555-345-6789",
"orders": []

}
]

}

Precomputed 
equijoin!

PName Date Product
Dan 1997 Furby
Alvin 2000 Furby
Alvin 2012 Magic8
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From Relational to Semi-Structured

Name Phone
Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Person

PName Date Product
Dan 1997 Furby
Alvin 2000 Furby
Alvin 2012 Magic8

Orders

ProdName Price
Furby 9.99
Magic8 15.99
Tomagachi 18.99

Product

How do we represent
a many-to-many relationship?
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From Relational to Semi-Structured

Name Phone
Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Person

Orders

Product

Nest the data?
Person à Orders à Product

PName Date Product
Dan 1997 Furby
Alvin 2000 Furby
Alvin 2012 Magic8

ProdName Price
Furby 9.99
Magic8 15.99
Tomagachi 18.99
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From Relational to Semi-Structured

Name Phone
Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Person

Orders

Product

Nest the data?
Person à Orders à Product

We might miss some products!
&

Product data will be duplicated!

PName Date Product
Dan 1997 Furby
Alvin 2000 Furby
Alvin 2012 Magic8

ProdName Price
Furby 9.99
Magic8 15.99
Tomagachi 18.99
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How do we represent
a many-to-many relationship?



From Relational to Semi-Structured

Name Phone
Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Person

Orders

Product

Nest the data?
Product à Orders à Person

PName Date Product
Dan 1997 Furby
Alvin 2000 Furby
Alvin 2012 Magic8

ProdName Price
Furby 9.99
Magic8 15.99
Tomagachi 18.99
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a many-to-many relationship?



From Relational to Semi-Structured

Name Phone
Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Person

Orders

Product

Nest the data?
Product à Orders à Person

We might miss some people!
&

People data will be duplicated!

PName Date Product
Dan 1997 Furby
Alvin 2000 Furby
Alvin 2012 Magic8

ProdName Price
Furby 9.99
Magic8 15.99
Tomagachi 18.99
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From Relational to Semi-Structured

Name Phone
Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Person

Orders

Product
Convert each table to a 

separate array/document?

PName Date Product
Dan 1997 Furby
Alvin 2000 Furby
Alvin 2012 Magic8

ProdName Price
Furby 9.99
Magic8 15.99
Tomagachi 18.99
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From Relational to Semi-Structured

Name Phone
Dan 555-123-4567
Alvin 555-234-5678
Magda 555-345-6789

Person

Orders

Product
Convert each table to a 

separate array/document?

We wanted to avoid joining 
in the first place!

PName Date Product
Dan 1997 Furby
Alvin 2000 Furby
Alvin 2012 Magic8

ProdName Price
Furby 9.99
Magic8 15.99
Tomagachi 18.99
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How do we represent
a many-to-many relationship?



Summary of Semistructured Data

§Self-describing
• Data and its schema presented together

§ Irregular/flexible
• Missing attributes
• Repeated attributes (or arrays)
• Attribute may have different types in different objects

§ 1-to-many relationships: very natural
§Many-many relationships: cumbersome
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AsterixDB and SQL++

§AsterixDB as a case study of Document Store
• Semi-structured data model in JSON
• Introducing AsterixDB and SQL++
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The 5 W’s of AsterixDB
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§Who
• M. J. Carey & co.

§What
• "A Scalable, Open Source DBMS“
• It is now also an Apache project

§Where
• UC Irvine, Cloudera Inc, Google, IBM, …

§When
• 2014

§Why
• To develop a next-gen system for managing semi-

structured data



The 5 W’s of SQL++
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§Who
• K. W. Ong & Y. Papakonstantinou

§What
• A query language that is applicable to JSON native 

stores and SQL databases
§Where

• UC San Diego
§When

• 2015
§Why

• Stand in for other semi-structured query languages that 
lack formal semantics.



Why We are Choosing SQL++
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§Strong foundations
• Original paper:     https://arxiv.org/pdf/1405.3631.pdf
• Nested relational algebra*: 

https://dl.acm.org/citation.cfm?id=588133

§Many systems adopting or converging to SQL++
• Apache AsterixDB
• CouchBase (N1QL)
• Apache Drill
• Snowflake
• Amazon Partiql, https://partiql.org/ 

* There are much better papers on Nested Relational Algebra (ask DanS)

https://arxiv.org/pdf/1405.3631.pdf
https://dl.acm.org/citation.cfm?id=588133
https://partiql.org/


Asterix Data Model (ADM)

§ADM = nearly identical to JSON

§Adds: multiset or bag
• Encapsulated by double curly braces {{ }}

§Adds: universally unique identifier (uuid)
• Ex: 123e4567-e89b-12d3-a456-426655440000
• Useful for auto-generating unique keys
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Introducing the New and Improved SQL++
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SQL++ Mini Demo

Demo Time!
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Installing AsterixDB
(Details in HW7 spec)

Download from
 https://asterixdb.apache.org/download.html 

Start local cluster from:
 <asterix root>/opt/local/bin/start-sample-cluster

Run by typing this in your browser:
 127.0.0.1:19002

Stop cluster when you’re done:
 <asterix root>/opt/local/bin/stop-sample-cluster
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https://asterixdb.apache.org/download.html
127.0.0.1:19002


SQL++ Hello World
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SELECT x.phone
  FROM [
          {"name": "Dan", "phone": [300, 150]},
          {"name": "Alvin", "phone": 420}
       ] AS x;



SQL++ Hello World
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SELECT x.phone
  FROM [
          {"name": "Dan", "phone": [300, 150]},
          {"name": "Alvin", "phone": 420}
       ] AS x;

-- output, same for-loop semantics like in SQL
-- array data
/*
{ "phone": [300, 150] }
{ "phone": 420 }
*/



SQL++ Hello World
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SELECT x.phone
  FROM {{
          {"name": "Dan", "phone": [300, 150]},
          {"name": "Alvin", "phone": 420}
       }} AS x;



SQL++ Hello World
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SELECT x.phone
  FROM {{
          {"name": "Dan", "phone": [300, 150]},
          {"name": "Alvin", "phone": 420}
       }} AS x;

-- same output as array data
-- multiset data



SQL++ Hello World
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-- error
SELECT x.phone
  FROM {"name": "Dan", "phone": [300, 150]} AS x;

-- output
-- trying to query an object
/*
Type mismatch: function scan-collection expects its 
1st input parameter to be type multiset or array, 
but the actual input type is object 
[TypeMismatchException]
*/



SQL++ Hello World
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SELECT x.phone
  FROM [
          {"name": "Dan", "phone": [300, 150]},
          {"name": "Alvin", "phone": null}
       ] AS x;



SQL++ Hello World
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SELECT x.phone
  FROM [
          {"name": "Dan", "phone": [300, 150]},
          {"name": "Alvin", "phone": null}
       ] AS x;

-- output, null works like in SQL
-- null values
/*
{ "phone": [300, 150] }
{ "phone": null }
*/



SQL++ Hello World
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SELECT x.phone
  FROM [
          {"name": "Dan", "phone": [300, 150]},
          {"name": "Alvin"}
       ] AS x;



SQL++ Hello World
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SELECT x.phone
  FROM [
          {"name": "Dan", "phone": [300, 150]},
          {"name": "Alvin"}
       ] AS x;

-- output, missing data is simply passed over (beware of typos!)
-- missing values
/*
{ "phone": [300, 150] }
{ }
*/



SQL++ Hello World

May 22, 2024 SQL++ 56

SELECT x.fone -- intentional typo
  FROM [
          {"name": "Dan", "phone": [300, 150]},
          {"name": "Alvin", "phone": 420}
       ] AS x;



SQL++ Hello World

May 22, 2024 SQL++ 57

SELECT x.fone -- intentional typo
  FROM [
          {"name": "Dan", "phone": [300, 150]},
          {"name": "Alvin", "phone": 420}
       ] AS x;

-- output, beware of typos! No errors are thrown
/*
{ }
{ }
*/



SQL++ Hello World
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FROM [
          {"name": "Dan", "phone": [300, 150]},
          {"name": "Alvin", "phone": 420}
       ] AS x
 WHERE is_array(x.phone) OR x.phone > 100
 GROUP BY x.name, x.phone
HAVING x.name = "Dan" OR x.name = "Alvin"
SELECT x.phone
 ORDER BY x.name DESC;



SQL++ Hello World
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FROM [
          {"name": "Dan", "phone": [300, 150]},
          {"name": "Alvin", "phone": 420}
       ] AS x
 WHERE is_array(x.phone) OR x.phone > 100
 GROUP BY x.name, x.phone
HAVING x.name = "Dan" OR x.name = "Alvin"
SELECT x.phone
 ORDER BY x.name DESC;

-- output:
/*
{ "phone": [300, 150] }
{ "phone": 420 }
*/



Next Time

§Patterns in querying 
semi-structured data

§SQL++ behind the mask
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SQL++

SQL++

SQL++

Relational
Model


