b

$estionlD
NumberOfsession
Date
1 | oxperimeatio
Py —_—
e [senpio I =7
[= S
g o [Senphame | A e
sarpType et
F11 [sessonid > [oee L]
NumberOfTrial Reiclation E
Filter %
#a [sabjectin setupCondton d =
st
NMarker >i!I ‘Worker 3 Worker 3
SetupMarker M, Y X ok
Recort edMovieFile viciTa i
et HII . | (a) Traditional parallel query plan
Triahas_Timecoursa Trial_has_Trajectory = N A " e
s N e 74 | — [—
; B = T o
....... ector X 2 »
Fi2 [rimecouwsen 2 [Tjectonyo Zi o o : [GIE] shme v X
¢ { ‘ol ! Podric o3 ¢ | BLJ—— s |
oras, KeyiShae’ 5
Timecourse Trajectory = c . ol e —
PX | Timece o LLRRT L] b= e
pune cjectary o G
B B it K7
Frequency frequency . Brom
Segmentid SegmentiD Menyn,
KindOfDats KindOfData Gendry yn
Nerames Markertd
g NFrames iCube shuffle-based parallel
LT

Introduction to Data Management

Transactions: Isolation Levels

Paul G. Allen School of Computer Science and Engineering
University of Washington, Seattle

May 8, 2024 TXN Wrapup

Announcements

* HWS is due on Friday

* HWG6 has two parts:
« Part 1 due 5/17. No late days (for quick feedback)
* Part 2 due 5/24. Much more work than part 1

May 8, 2024 TXN Wrapup

Lock Types

May 8, 2024

Shared/Exclusive Locks

Reads don’t conflict with each other.

» Exclusive/Write Lock = Xi(A)

* May read or write
* No other locks may exist

» Shared/Read Lock = S;(A)

« May only read
* May exist with other shared locks

= Unlocked

* No access

May 8, 2024 TXN Wrapup

Shared/Exclusive Locks

...but another TXN holds this...

| lunlocked S X
requests

...then we do or don’t grant permission

May 8, 2024 TXN Wrapup

Discussion

* \When TXN wants to read A, it requests S(A)

= |f later it wants to write A, then it requests X(A)

= This is called lock escalation

May 8, 2024 TXN Wrapup

Discussion

» TXNs slow down the DBMS significantly

» Performance is measured in TXN/sec (TPS)
https://www.tpc.org/defaultd.asp
* 1,000-10,000 is OK
* 10,000-100,000 is AMAZING
* 100,000-1,000,000 research papers only...

* For higher TPS use weaker isolation levels,
which allow for some conflicts

May 8, 2024 TXN Wrapup

https://www.tpc.org/default5.asp

Weaker Isolation Levels

May 8, 2024

Isolation Levels

= SET TRANSACTION ISOLATION LEVEL ...
* READ UNCOMMITED
* READ COMMITED
« REPEATABLE READ
« SERIALIZABLE
* SNAPSHOT ISOLATION (MVCC)

» Default isolation level and configurability depends
on the DBMS (read the docs)

= Serializable is often not the default

May 8, 2024 TXN Wrapup

|solation Level Design Spectrum

FAST CORRECT

May 8, 2024 TXN Wrapup

|solation Level Design Spectrum

CORRECT

May 8, 2024 TXN Wrapup

READ UNCOMMITTED

= \Writes = Strict 2PL write locks
= Reads - No locks needed
» Reads never wait! But dirty reads are possible

May 8, 2024 TXN Wrapup

READ UNCOMMITTED

= \Writes = Strict 2PL write locks
= Reads - No locks needed
» Reads never wait! But dirty reads are possible

X(A) W(A)
R(A)
COMMIT

ABORT U(A)

May 8, 2024 TXN Wrapup

READ UNCOMMITTED

= \Writes = Strict 2PL write locks
= Reads - No locks needed
» Reads never wait! But dirty reads are possible

Write lock obeys
Strict 2PL

Read executes
whenever

X(A) W(A)
R(A)
COMMIT

ABORT U(A)

May 8, 2024 TXN Wrapup

READ UNCOMMITTED

= \Writes = Strict 2PL write locks
= Reads - No locks needed
» Reads never wait! But dirty reads are possible

Still possible to get isolated results, but you have
to be “lucky” when a write operation is done

R(A)
- COMMIT
X(A) W(A) (A) WEA) R(A)
ABORT U(A) ABORT UA) X(A) W(A)
R(A) ABORT U(A)
COMMIT COMMIT

May 8, 2024 TXN Wrapup

READ UNCOMMITTED

= \Writes = Strict 2PL write locks
= Reads - No locks needed
» Reads never wait! But dirty reads are possible

Still possible to get isolated results, but you have
to be “lucky” when a write operation is done

R(A)
=
X(A) W(A) KA WEA) R(A)
ABORT U(A) ABORT U(A) _ X(A) W(A)
R(A) Serial ABORT U(A)
COMMIT COMMIT
Serial Serializable (lucky!)

May 8, 2024 TXN Wrapup

READ UNCOMMITTED

Reads never wait
Use cases:
» Static data (few or no writes after data initialization)

» Read accuracy is not mission critical

May 8, 2024 TXN Wrapup

|solation Level Design Spectrum

CORRECT

May 8, 2024 TXN Wrapup

READ COMMITTED

= \Writes = Strict 2PL write locks

» Reads - Short-duration read locks
« Acquire lock right before, release right after (not 2PL)

= No dirty reads. But non-repeatable reads possible.

May 8, 2024 TXN Wrapup

READ COMMITTED

= \Writes = Strict 2PL write locks

» Reads - Short-duration read locks
« Acquire lock right before, release right after (not 2PL)

= No dirty reads. But non-repeatable reads possible.

T2

X(A) W(A)
>€<A

COMMIT
ABORT U(A

May 8, 2024 TXN Wrapup

READ COMMITTED

= \Writes = Strict 2PL write locks

» Reads - Short-duration read locks
« Acquire lock right before, release right after (not 2PL)

= No dirty reads. But non-repeatable reads possible.

A dirty read could only happen if a read occurs after
a write and before a COMMIT/ROLLBACK

T2

X(A) W(A)
>€<A

COMMIT
ABORT U(A

May 8, 2024 TXN Wrapup

READ COMMITTED

= \Writes = Strict 2PL write locks

» Reads - Short-duration read locks
« Acquire lock right before, release right after (not 2PL)

= No dirty reads. But non-repeatable reads possible.

A dirty read could only happen if a read occurs after
a write and before a COMMIT/ROLLBACK

ﬂ

X(A) W(A) X(A) W(A)
><(A S(A) blocked...
COMMIT ABORT U(A) ...granted S(A)
ABORT U(A R(A)

COMMIT U(A)

May 8, 2024 TXN Wrapup

READ COMMITTED

= \Writes = Strict 2PL write locks

» Reads - Short-duration read locks
« Acquire lock right before, release right after (not 2PL)

= No dirty reads. L

But non-repeatable SIA)
reads possible.

May 8, 2024 TXN Wrapup

READ COMMITTED

= \Writes = Strict 2PL write locks

» Reads - Short-duration read locks
« Acquire lock right before, release right after (not 2PL)

= No dirty reads. L

But non-repeatable SIA)

. X(A) blocked...
reads possible. A

May 8, 2024 TXN Wrapup

READ COMMITTED

= \Writes = Strict 2PL write locks

» Reads - Short-duration read locks
« Acquire lock right before, release right after (not 2PL)

= No dirty reads. L

But non-repeatable SIA)

: X(A) blocked...
reads possible. R(A)

U(A)

May 8, 2024 TXN Wrapup

READ COMMITTED

= \Writes = Strict 2PL write locks

» Reads - Short-duration read locks
« Acquire lock right before, release right after (not 2PL)

= No dirty reads. L

But non-repeatable SIA)

. X(A) blocked...
reads possible. A

.. R(A)
...granted X(A) U(A)

May 8, 2024 TXN Wrapup

READ COMMITTED

= \Writes = Strict 2PL write locks

» Reads - Short-duration read locks
« Acquire lock right before, release right after (not 2PL)

= No dirty reads. L

But non-repeatable SIA)

: X(A) blocked...
reads possible. R(A)

...granted X(A) U(A)
S(A) blocked...

Wants to
read again

May 8, 2024 TXN Wrapup

READ COMMITTED

= \Writes = Strict 2PL write locks

» Reads - Short-duration read locks
« Acquire lock right before, release right after (not 2PL)

= No dirty reads. L

But non-repeatable SIA)

: X(A) blocked...
reads possible. R(A)

...granted X(A) U(A)
S(A) blocked...

W(A)

COMMIT U(A)

May 8, 2024 TXN Wrapup

READ COMMITTED

= \Writes = Strict 2PL write locks

» Reads - Short-duration read locks
« Acquire lock right before, release right after (not 2PL)

= No dirty reads. L

But non-repeatable SIA)

: X(A) blocked...
reads possible. R(A)

...granted X(A) U(A)
S(A) blocked...

W(A)

COMMIT U(A) ...granted S(A)

May 8, 2024 TXN Wrapup

READ COMMITTED

= \Writes = Strict 2PL write locks

» Reads - Short-duration read locks
« Acquire lock right before, release right after (not 2PL)

. T

= No dirty reads. = A)
But non-repeatable X(A) blocked. .
reads possible. R(A)

...granted X(A) U(A)
S(A) blocked...

W(A)

COMMIT U(A) ...granted S(A)

Second Read R(A)
different value

COMMIT

May 8, 2024 TXN Wrapup

READ COMMITTED

» Fast READ since operation happens as soon as
write txns are done

» Use cases:
« Guarantee that read result is valid at some point

» Often useful for e-commerce situations

« Guarantee customer has good info to start with but doesn’t
block other customers from purchasing

Qe % W @ Reservation Not Possible

Sorry, but the couchette berth you have requested
on the NJ 421 from Dusseldorf Hbf to Innsbruck
Hbf is no longer available. Please change your

Price: “1“ for FREE'- reservation request.

Stock .
|C'>‘n\y 2 leftin stock--order $00

it (padtoCant) i}

May 8, 2024 TXN Wrapup

|solation Level Design Spectrum

FAST CORRECT

May 8, 2024 TXN Wrapup

REPEATABLE READ

» Writes = Strict 2PL write locks
» Reads - Strict 2PL read locks
» Unrepeatable reads are prevented

May 8, 2024 TXN Wrapup

REPEATABLE READ

» Writes = Strict 2PL write locks
» Reads - Strict 2PL read locks
» Unrepeatable reads are prevented

S(A)
X(A) blocked...
R(A)
...granted X(U(A)

A><A) blocked...

W(A)
COMMIT U(A) ...granted S(A)

R(A)

COMMIT U(A)

May 8, 2024 TXN Wrapup

REPEATABLE READ

= \Writes - Strict 2PL write locks
» Reads - Strict 2PL read locks
» Unrepeatable reads are prevented

S(A)
X(A) blocked... S(A)
. R(A) X(A) blocked...
...granted X(U(A) R(A)

A><A) blocked... ‘ R(A)

W(A) ...granted X(A) COMMIT U(A)
COMMIT U(A) ...granted S(A) W(A)

R(A) COMMIT U(A)

COMMIT U(A)

May 8, 2024 TXN Wrapup

REPEATABLE READ

= Writes > Strict 2PL write locks
" Reads > Strict 2PL read locks Serialiesbe

» Unrepeatable reads are prevented

S(A)
X(A) blocked... S(A)
. R(A) X(A) blocked...
...granted X(U(A) R(A)

A><A) blocked... ‘ R(A)

W(A) ...granted X(A) COMMIT U(A)
COMMIT U(A) ...granted S(A) W(A)

R(A) COMMIT U(A)

COMMIT U(A)

May 8, 2024 TXN Wrapup

REPEATABLE READ

» Ensures conflict serializability

» Recall: in a static database (no insert/delete)
conflict serializability implies serializability

» Use cases: consistency is mission critical

May 8, 2024 TXN Wrapup

|solation Level Design Spectrum

Il

FAST CORRECT

May 8, 2024 TXN Wrapup

The Phantom Menace

» Same read has more rows
» Asset checking scenario:

Accountant wants to
check company assets

SELECT *
FROM products
WHERE price < 10.00

time

SELECT *
FROM products
WHERE price < 20.00

May 8, 2024 TXN Wrapup

Warehouse catalogs
new products

INSERT INTO Products
VALUES (‘nuts’, 10, 8.99)

Phantom Reads

» Conflict serializability does not prevent phantoms.

These are
the SQL

queries

SELECT * FROM Table;

INSERT INTO Table

VALUES (C...);
SELECT * FROM Table:

May 8, 2024 TXN Wrapup

Phantom Reads

» Conflict serializability does not prevent phantoms.

And this is
how we modeled
the TXNs using
R/W to elements

These are
the SQL

queries

SELECT * FROM Table; R(A)

R(B)
INSERT INTO Table

WC) VaLUES (C...):
SELECT * FROM Table; R(A)

R(B)
R(C)

May 8, 2024 TXN Wrapup

Phantom Reads

» Conflict serializability does not prevent phantoms.

SELECT * FROM Table; R(A)
R(B)

INSERT INTO Table

WC) VaLUES (C...):
SELECT * FROM Table; R(A)

R(B)
R(C)

May 8, 2024 TXN Wrapup

Phantom Reads

» Conflict serializability does not prevent phantoms.

A conflict-serializable
schedule!

SELECT * FROM Table; R(A)

R(B)
INSERT INTO Table
WC) VaLUES (C...):
SELECT * FROM Table; R(A)
R(B)

R(C)

May 8, 2024 TXN Wrapup

Phantom Reads

» Conflict serializability does not prevent phantoms.

May 8, 2024

A conflict-serializable
schedule!

SELECT * FROM Table;

SELECT * FROM Table;

What is the
equivalent
serial schedule?

R(A)
R(B)
ey JSERLO
R(A)
R(B)
R(C)

TXN Wrapup

Phantom Reads

» Conflict serializability does not prevent phantoms.

What is the
A conflict-serializable equivalent

schedule! serial schedule?

Answer: T2, T1
(make sure you know why)

SELECT * FROM Table; R(A)

INSERT INTO Table
W) vaLUES (C...):
SELECT * FROM Table: R(A)

R(B)
R(C)

May 8, 2024 TXN Wrapup

Phantom Reads

» Conflict serializability does not prevent phantoms.

"All models are wrong, some are useful*”

* George Box

A conflict-serializable _ _
schedule! Modeling the DB as a set of elements is

only useful for static databases.

SELECT * FROM Table; R(A)
R(B)

INSERT INTO Table
WC) VaLUES (C...):
SELECT * FROM Table; R(A)

R(B)
R(C)

May 8, 2024 TXN Wrapup

In a static database:
» Conflict serializability implies serializability

In a dynamic database:
» This no longer holds: we need to handle phatoms

May 8, 2024 TXN Wrapup

SERIALIZABLE Level

= \Write Lock = Strict 2PL
» Read Lock = Strict 2PL
* Locks on tables to handle phantom problem

May 8, 2024 TXN Wrapup

SERIALIZABLE Level

= \Write Lock = Strict 2PL
» Read Lock = Strict 2PL
* Locks on tables to handle phantom problem

T [T2

R(A)
R(B)
I(C)
R(A)
R(B)
R(C)

May 8, 2024 TXN Wrapup

SERIALIZABLE Level

= \Write Lock = Strict 2PL
» Read Lock = Strict 2PL
* Locks on tables to handle phantom problem

T2
— =
R(A) Change element R(T)
R(B) granularity to Table X(T) blocked

© (T) blocked...

o R(T)

COMMIT U(T) ...granted X(T)
R(B) W(T)
) COMMIT U(T)

May 8, 2024 TXN Wrapup

FAST CORRECT

May 8, 2024 TXN Wrapup

Practical Aspects of TXN

May 8, 2024

Rule of Thumb

Write the TXN as short as possible, but not shorter

BEGIN TRANSACTION

Read (A)Write (A)
Read (B)Write (B)

Prompt user
for input

COMMIT

NO

May 8, 2024 TXN Wrapup

Rule of Thumb

Write the TXN as short as possible, but not shorter

BEGIN TRANSACTION

Read (A)Write (A)

Read (B)Write (B)

e

Prompt user
for input

.

COMMIT

NO

May 8, 2024 TXN Wrapup

Rule of Thumb

Write the TXN as short as possible, but not shorter

BEGIN TRANSACTION

BEGIN TRANSACTION | |
Read (A)Write (A)

Read (A)Write (A) Read (B)Write (B)
Read (B)Write (B) COMMIT

Prompt user

Prompt user
for input

for input
BEGIN TRANSACTION

COMMIT

NO

COMMIT

May 8, 2024 TXN Wrapup

Rule of Thumb

Write the TXN as short as possible, but not shorter

N

- ™
BEGIN TRANSACTION

BEGIN TRANSACTION

Read (A)Write (A)
Read (B)Write (B)
_COMMIT

Read (A)Write (A)
Read (B)Write (B)

V -

Prompt user

Prompt user
for input

for input
BEGIN TRANSACTION

COMMIT

NO

COMMIT

YES

May 8, 2024 TXN Wrapup

Rule of Thumb

Write the TXN as short as possible, but not shorter

BEGIN TRANSACTION
BEGIN TRANSACTION

BEGIN TRANSACTION

. | Read (A)Write (A)
Read (A)Write (A)

. | COMMIT

Read (A)Write (A) Read (B)Write (B) BEGIN TRANSACTION
Read (B)Write (B) COMMIT Read (B)Write (B)
Prompt user p COMMIT

Prompt user
for input
BEGIN TRANSACTION

for input
Prompt user

for 1nput
COMMIT h BEGIN TRANSACTION

NO

COMMIT

‘YTEES COMMIT

May 8, 2024 TXN Wrapup

Rule of Thumb

Write the TXN as short as possible, but not shorter

A,B to be
updated in
same TXN

BEGIN TRANSACTION

Read (A)Write (A)
Read (B)Write (B)

Prompt user
for input

COMMIT

NO

May 8, 2024

BEGIN TRANSACTION

Read (A)Write (A)
Read (B)Write (B)
COMMIT

Prompt user
for input
BEGIN TRANSACTION

COMMIT

YES

TXN Wrapup

BEGIN TRANSAVYTION

Read (A)Write (A)
COMMIT

BEGIN TRANSACTION
Read (B)Write (B)
COMMIT

Prompt user
for input
BEGIN TRANSACTION

NO

COMMIT

BEGIN TRANSACTION; INSERT ..

INSERT ..

SELECT .. SELECT ..
V.S.

COMMIT

May 8, 2024 TXN Wrapup

BEGIN TRANSACTION;
INSERT ..
SELECT ..

COMMIT

May 8, 2024

V.S.

INSERT ..

SELECT ..

TXN Wrapup

By default,
each statement
is one TXN

BEGIN TRANSACTION; INSERT .. By default,
INSERT .. each statement
SELECT .. - SELECT .. is one TXN

COMMIT

We say here
if we want
In python: autocommit
con = sqglite3.connect ("bank.db", autocommit=True)

May 8, 2024

TXN Wrapup

Case Study: SQLite

= Uses locks

» Element = entire database (!!!)

= | et’s see the details

http://www.sqlite.org/atomiccommit.html

May 8, 2024 TXN Wrapup 62

http://www.sqlite.org/atomiccommit.html

Case Study: SQLite

» Sqlite reads data from the file on disk,...
» ..updates it in main memory...
= ..writes it back to disk at commit time

= Multiple users can access the same file...
» ...and are coordinated via locks

May 8, 2024 TXN Wrapup

Case Study: SQLite

Lock types

» READ LOCK (to read)

» RESERVED LOCK (to write)

» PENDING LOCK (wants to commit)
» EXCLUSIVE LOCK (to commit)

May 8, 2024 TXN Wrapup

SQLite

Step 1: when a transaction begins

» Acquire a READ LOCK (aka "SHARED" lock)
» TXNs read data from file to local memory

= [f the transaction commits without writing anything,
then it simply releases the lock 2 2

R(A)
RB) S

May 8, 2024 TXN Wrapup

SQLite

Step 2: when one transaction wants to write

* Acquire a RESERVED LOCK

» May coexists with READ LOCKs

= Writer TXN may write; in local memory!

» Reader TXN continue to read from the file

* New READ LOCKSs accepted o o o o

* No other RESERVED LOCK allowed
) s

RB) RES
W(B)
RA) RB) S
R(A) W(A) R(A)
R(A)

May 8, 2024 TXN Wrapup

SQLite

Step 2: when one transaction wants to write

= Acquire a RESERVED LOCK

» May coexists with READ LOCKs

= Writer TXN may write; in local memory!

» Reader TXN continue to read from the file

* New READ LOCKSs accepted e o o o

* No other RESERVED LOCK allowed
®) s

Update only R(B) RES
in local memory, W(B)
not on file RA) R@B) S
W(A) R(A)
R(A)

May 8, 2024 TXN Wrapup

SQLite

Step 2: when one transaction wants to write

* Acquire a RESERVED LOCK

» May coexists with READ LOCKs

= Writer TXN may write; in local memory!

» Reader TXN continue to read from the file

* New READ LOCKSs accepted o o o o

* No other RESERVED LOCK allowed
) s

RB) RES
W(B)
RA) RB) S
R(A) W(A) R(A)
R(A)

May 8, 2024 TXN Wrapup

SQLite

Step 2: when one transaction wants to write

= Acquire a RESERVED LOCK

» May coexists with READ LOCKs

= Writer TXN may write; in local memory!

» Reader TXN continue to read from the file

* New READ LOCKSs accepted e o o o

* No other RESERVED LOCK allowed
®) s

R(B) RES

Reads old W(B)

values NeyTq JE [
R(A) W(A) R(A)

R(A)

May 8, 2024 TXN Wrapup

SQLite

Step 3: when writer transaction wants to commit,
it needs exclusive lock

= Acquire a PENDING LOCK

» May coexists with old READ LOCKs
= No new READ LOCKS are accepted

= \Wait for all read locks to be released
o o o o

& & A A
W(B)
RA) W(A) R(B)
R(A)
cO?
S?

May 8, 2024 TXN Wrapup

SQLite

Step 3: when writer transaction wants to commit,
It needs exclusive lock

= Acquire a PENDING LOCK
» May coexists with old READ LOCKs
= No new READ LOCKS are accepted

= \Wait for all read locks to be released
o o o o

- e & &

W(B
R(A) WEA; R(B) REIXCI)DHLGC\SVCK
R(A)
cO?

May 8, 2024 TXN Wrapup

SQLite

Step 3: when writer transaction wants to commit,
It needs exclusive lock
Why not write

" Acquire a PENDING LOCK to disk right now?
» May coexists with old READ LOCKs
= No new READ LOCKS are accepted

= \Wait for all read locks to be released

W(B)
RA) W(A) R(B)
R(A)

cO?
R(A)

May 8, 2024 TXN Wrapup

SQLite

Step 3: when writer transaction wants to commit,
It needs exclusive lock
Why not write

= Acquire a PENDING LOCK to disk right now?
» May coexists with old READ LOCKs
= No new READ LOCKS are accepted
= \Wait for all read locks to be released

W(B)
RAA) W(A) R(B) This must be
R(A) the old value
CO? for serializability

R(A)

May 8, 2024 TXN Wrapup

SQLite

Step 4: when all read locks have been released
= Acquire the EXCLUSIVE LOCK

* Nobody can touch the database now

= All updates are written permanently to file
» Release the lock and COMMIT o

o [[
ah o A A
W(B)
R(A) W(A) R(B)

R(A)
CO?
R(A)
CO
CO CO
CO

May 8, 2024 TXN Wrapup

begin transaction first write commit requested no more read locks

e

READ 2
LOCK

&

e

commit executed

May 8, 2024 TXN Wrapup

SQLite Demo

create table r(a int, b int);
insert into r values (1,10);
insert into r values (2,20);
insert into r values (3,30);

May 8, 2024 TXN Wrapup

Demonstrating Locking in SQLite

T1:

begin transaction;

select * from r;

-- T1 has a READ LOCK
T2:

begin transaction;

select * from r;

-- T2 has a READ LOCK

May 8, 2024 TXN Wrapup

Demonstrating Locking in SQLite

T1:
update r set b=11 where a=1;
-- T1 has a RESERVED LOCK

T2:
update r set b=21 where a=2;
-- T2 asked for a RESERVED LOCK: DENIED

May 8, 2024 TXN Wrapup

Demonstrating Locking in SQLite

T3:
begin transaction;
select * from r;
commit;
-- everything works fine, could obtain READ LOCK

May 8, 2024 TXN Wrapup

Demonstrating Locking in SQLite

T1:
commit;
-- SQL error: database is locked
-- T1 asked for PENDING LOCK -- GRANTED
-- T1 asked for EXCLUSIVE LOCK -- DENIED

May 8, 2024 TXN Wrapup

Demonstrating Locking in SQLite

T3"
begin transaction;
select * from r;
-- T3 asked for READ LOCK-- DENIED (due to T1)

T2:
commit;
-- releases the last READ LOCK:; T1 can commit

May 8, 2024 TXN Wrapup

