
Transactions: Isolation Levels

May 8, 2024 TXN Wrapup 1

Announcements

§HW5 is due on Friday

§HW6 has two parts:
• Part 1 due 5/17. No late days (for quick feedback)
• Part 2 due 5/24. Much more work than part 1

May 8, 2024 TXN Wrapup 2

Lock Types

May 8, 2024 TXN Wrapup 3

Shared/Exclusive Locks

Reads don’t conflict with each other.

§Exclusive/Write Lock à Xi(A)
• May read or write
• No other locks may exist

§Shared/Read Lock à Si(A)
• May only read
• May exist with other shared locks

§Unlocked
• No access

May 8, 2024 TXN Wrapup 4

Shared/Exclusive Locks

unlocked S X
S Yes Yes No
X Yes No No

If a TXN
requests
this…

…but another TXN holds this…

…then we do or don’t grant permission

May 8, 2024 TXN Wrapup 5

Discussion

§When TXN wants to read A, it requests S(A)

§ If later it wants to write A, then it requests X(A)

§ This is called lock escalation

May 8, 2024 TXN Wrapup 6

Discussion

§ TXNs slow down the DBMS significantly

§Performance is measured in TXN/sec (TPS)
https://www.tpc.org/default5.asp

• 1,000-10,000 is OK
• 10,000-100,000 is AMAZING
• 100,000-1,000,000 research papers only…

§ For higher TPS use weaker isolation levels,
which allow for some conflicts

May 8, 2024 TXN Wrapup 7

https://www.tpc.org/default5.asp

Weaker Isolation Levels

May 8, 2024 TXN Wrapup 8

Isolation Levels

§ SET TRANSACTION ISOLATION LEVEL …
• READ UNCOMMITED
• READ COMMITED
• REPEATABLE READ
• SERIALIZABLE
• SNAPSHOT ISOLATION (MVCC)

§Default isolation level and configurability depends
on the DBMS (read the docs)

§Serializable is often not the default

May 8, 2024 TXN Wrapup 9

Isolation Level Design Spectrum

CORRECTFAST

Serializable

Repeatable Read

Read Committed

Read Uncommitted

None (Chaos?)

May 8, 2024 TXN Wrapup 10

Isolation Level Design Spectrum

CORRECTFAST

Serializable

Repeatable Read

Read Committed

Read Uncommitted

None (Chaos?)

May 8, 2024 TXN Wrapup 11

READ UNCOMMITTED

§Writes à Strict 2PL write locks
§Reads à No locks needed
§Reads never wait! But dirty reads are possible

May 8, 2024 TXN Wrapup 12

READ UNCOMMITTED

§Writes à Strict 2PL write locks
§Reads à No locks needed
§Reads never wait! But dirty reads are possible

T1 T2
X(A) W(A)

R(A)
COMMIT

ABORT U(A)

May 8, 2024 TXN Wrapup 13

READ UNCOMMITTED

§Writes à Strict 2PL write locks
§Reads à No locks needed
§Reads never wait! But dirty reads are possible

T1 T2
X(A) W(A)

R(A)
COMMIT

ABORT U(A)

Write lock obeys
Strict 2PL

Read executes
whenever

May 8, 2024 TXN Wrapup 14

READ UNCOMMITTED

§Writes à Strict 2PL write locks
§Reads à No locks needed
§Reads never wait! But dirty reads are possible

T1 T2
X(A) W(A)
ABORT U(A)

R(A)
COMMIT

T1 T2
R(A)
COMMIT

X(A) W(A)
ABORT U(A)

Still possible to get isolated results, but you have
to be “lucky” when a write operation is done

T1 T2
R(A)

X(A) W(A)
ABORT U(A)

COMMIT

May 8, 2024 TXN Wrapup 15

READ UNCOMMITTED

§Writes à Strict 2PL write locks
§Reads à No locks needed
§Reads never wait! But dirty reads are possible

T1 T2
X(A) W(A)
ABORT U(A)

R(A)
COMMIT

T1 T2
R(A)
COMMIT

X(A) W(A)
ABORT U(A)

Still possible to get isolated results, but you have
to be “lucky” when a write operation is done

T1 T2
R(A)

X(A) W(A)
ABORT U(A)

COMMIT
Serial

Serial

Serializable (lucky!)
May 8, 2024 TXN Wrapup 16

READ UNCOMMITTED

Reads never wait

Use cases:

§Static data (few or no writes after data initialization)

§Read accuracy is not mission critical

May 8, 2024 TXN Wrapup 17

Isolation Level Design Spectrum

CORRECTFAST

Serializable

Repeatable Read

Read Committed

Read Uncommitted

None (Chaos?)

May 8, 2024 TXN Wrapup 18

READ COMMITTED

§Writes à Strict 2PL write locks
§Reads à Short-duration read locks

• Acquire lock right before, release right after (not 2PL)
§No dirty reads. But non-repeatable reads possible.

May 8, 2024 TXN Wrapup 19

T1 T2
X(A) W(A)

R(A)
COMMIT

ABORT U(A)

READ COMMITTED

§Writes à Strict 2PL write locks
§Reads à Short-duration read locks

• Acquire lock right before, release right after (not 2PL)
§No dirty reads. But non-repeatable reads possible.

May 8, 2024 TXN Wrapup 20

T1 T2
X(A) W(A)

R(A)
COMMIT

ABORT U(A)

READ COMMITTED

§Writes à Strict 2PL write locks
§Reads à Short-duration read locks

• Acquire lock right before, release right after (not 2PL)
§No dirty reads. But non-repeatable reads possible.

A dirty read could only happen if a read occurs after
a write and before a COMMIT/ROLLBACK

May 8, 2024 TXN Wrapup 21

T1 T2
X(A) W(A)

R(A)
COMMIT

ABORT U(A)

READ COMMITTED

§Writes à Strict 2PL write locks
§Reads à Short-duration read locks

• Acquire lock right before, release right after (not 2PL)
§No dirty reads. But non-repeatable reads possible.

T1 T2
X(A) W(A)

S(A) blocked…
ABORT U(A) …granted S(A)

R(A)
COMMIT U(A)

A dirty read could only happen if a read occurs after
a write and before a COMMIT/ROLLBACK

May 8, 2024 TXN Wrapup 22

READ COMMITTED

§Writes à Strict 2PL write locks
§Reads à Short-duration read locks

• Acquire lock right before, release right after (not 2PL)
§No dirty reads.

But non-repeatable
reads possible.

T1 T2
S(A)

May 8, 2024 TXN Wrapup 23

READ COMMITTED

§Writes à Strict 2PL write locks
§Reads à Short-duration read locks

• Acquire lock right before, release right after (not 2PL)
§No dirty reads.

But non-repeatable
reads possible.

T1 T2
S(A)

X(A) blocked…
…

May 8, 2024 TXN Wrapup 24

READ COMMITTED

§Writes à Strict 2PL write locks
§Reads à Short-duration read locks

• Acquire lock right before, release right after (not 2PL)
§No dirty reads.

But non-repeatable
reads possible.

T1 T2
S(A)

X(A) blocked…
… R(A)

U(A)

May 8, 2024 TXN Wrapup 25

READ COMMITTED

§Writes à Strict 2PL write locks
§Reads à Short-duration read locks

• Acquire lock right before, release right after (not 2PL)
§No dirty reads.

But non-repeatable
reads possible.

T1 T2
S(A)

X(A) blocked…
… R(A)
…granted X(A) U(A)

May 8, 2024 TXN Wrapup 26

READ COMMITTED

§Writes à Strict 2PL write locks
§Reads à Short-duration read locks

• Acquire lock right before, release right after (not 2PL)
§No dirty reads.

But non-repeatable
reads possible.

T1 T2
S(A)

X(A) blocked…
… R(A)
…granted X(A) U(A)

S(A) blocked…

May 8, 2024 TXN Wrapup 27

Wants to
read again

READ COMMITTED

§Writes à Strict 2PL write locks
§Reads à Short-duration read locks

• Acquire lock right before, release right after (not 2PL)
§No dirty reads.

But non-repeatable
reads possible.

T1 T2
S(A)

X(A) blocked…
… R(A)
…granted X(A) U(A)

S(A) blocked…
W(A) …
COMMIT U(A)

May 8, 2024 TXN Wrapup 28

READ COMMITTED

§Writes à Strict 2PL write locks
§Reads à Short-duration read locks

• Acquire lock right before, release right after (not 2PL)
§No dirty reads.

But non-repeatable
reads possible.

T1 T2
S(A)

X(A) blocked…
… R(A)
…granted X(A) U(A)

S(A) blocked…
W(A) …
COMMIT U(A) …granted S(A)

May 8, 2024 TXN Wrapup 29

READ COMMITTED

§Writes à Strict 2PL write locks
§Reads à Short-duration read locks

• Acquire lock right before, release right after (not 2PL)
§No dirty reads.

But non-repeatable
reads possible.

T1 T2
S(A)

X(A) blocked…
… R(A)
…granted X(A) U(A)

S(A) blocked…
W(A) …
COMMIT U(A) …granted S(A)

R(A)
…
COMMIT

May 8, 2024 TXN Wrapup 30

Second Read
different value

READ COMMITTED

§ Fast READ since operation happens as soon as
write txns are done

§Use cases:
• Guarantee that read result is valid at some point
• Often useful for e-commerce situations

• Guarantee customer has good info to start with but doesn’t
block other customers from purchasing

May 8, 2024 TXN Wrapup 31

Isolation Level Design Spectrum

CORRECTFAST

Serializable

Repeatable Read

Read Committed

Read Uncommitted

None (Chaos?)

May 8, 2024 TXN Wrapup 32

REPEATABLE READ

§Writes à Strict 2PL write locks
§Reads à Strict 2PL read locks
§Unrepeatable reads are prevented

May 8, 2024 TXN Wrapup 33

REPEATABLE READ

§Writes à Strict 2PL write locks
§Reads à Strict 2PL read locks
§Unrepeatable reads are prevented

T1 T2
S(A)

X(A) blocked…
… R(A)
…granted X(A) U(A)

S(A) blocked…
W(A) …
COMMIT U(A) …granted S(A)

R(A)
COMMIT U(A)

May 8, 2024 TXN Wrapup 34

REPEATABLE READ

§Writes à Strict 2PL write locks
§Reads à Strict 2PL read locks
§Unrepeatable reads are prevented

T1 T2
S(A)

X(A) blocked…
… R(A)
… R(A)
…granted X(A) COMMIT U(A)
W(A)
COMMIT U(A)

T1 T2
S(A)

X(A) blocked…
… R(A)
…granted X(A) U(A)

S(A) blocked…
W(A) …
COMMIT U(A) …granted S(A)

R(A)
COMMIT U(A)

May 8, 2024 TXN Wrapup 35

REPEATABLE READ

§Writes à Strict 2PL write locks
§Reads à Strict 2PL read locks
§Unrepeatable reads are prevented

T1 T2
S(A)

X(A) blocked…
… R(A)
… R(A)
…granted X(A) COMMIT U(A)
W(A)
COMMIT U(A)

T1 T2
S(A)

X(A) blocked…
… R(A)
…granted X(A) U(A)

S(A) blocked…
W(A) …
COMMIT U(A) …granted S(A)

R(A)
COMMIT U(A)

Conflict
serializable!

May 8, 2024 TXN Wrapup 36

REPEATABLE READ

§Ensures conflict serializability

§Recall: in a static database (no insert/delete)
conflict serializability implies serializability

§Use cases: consistency is mission critical

May 8, 2024 TXN Wrapup 37

Isolation Level Design Spectrum

CORRECTFAST

Serializable

Repeatable Read

Read Committed

Read Uncommitted

None (Chaos?)

May 8, 2024 TXN Wrapup 38

The Phantom Menace

§Same read has more rows
§Asset checking scenario:

Accountant wants to
check company assets

Warehouse catalogs
new products

SELECT *
FROM products
WHERE price < 10.00

SELECT *
FROM products
WHERE price < 20.00

INSERT INTO Products
VALUES (‘nuts’, 10, 8.99)

tim
e

May 8, 2024 TXN Wrapup 39

Phantom Reads

§Conflict serializability does not prevent phantoms.

SELECT * FROM Table;

INSERT INTO Table
VALUES (C…);

SELECT * FROM Table;

These are
the SQL
queries

May 8, 2024 TXN Wrapup 40

Phantom Reads

§Conflict serializability does not prevent phantoms.

T1 T2
R(A)
R(B)

W(C)
R(A)
R(B)
R(C)

SELECT * FROM Table;

INSERT INTO Table
VALUES (C…);

SELECT * FROM Table;

These are
the SQL
queries

And this is
how we modeled
the TXNs using

R/W to elements

May 8, 2024 TXN Wrapup 41

Phantom Reads

§Conflict serializability does not prevent phantoms.

SELECT * FROM Table;

INSERT INTO Table
VALUES (C…);

SELECT * FROM Table;

May 8, 2024 TXN Wrapup 42

T1 T2
R(A)
R(B)

W(C)
R(A)
R(B)
R(C)

Phantom Reads

§Conflict serializability does not prevent phantoms.

SELECT * FROM Table;

INSERT INTO Table
VALUES (C…);

SELECT * FROM Table;

A conflict-serializable
schedule!

May 8, 2024 TXN Wrapup 43

T1 T2
R(A)
R(B)

W(C)
R(A)
R(B)
R(C)

Phantom Reads

§Conflict serializability does not prevent phantoms.

SELECT * FROM Table;

INSERT INTO Table
VALUES (C…);

SELECT * FROM Table;

What is the
equivalent

serial schedule?
A conflict-serializable

schedule!

May 8, 2024 TXN Wrapup 44

T1 T2
R(A)
R(B)

W(C)
R(A)
R(B)
R(C)

Phantom Reads

§Conflict serializability does not prevent phantoms.

SELECT * FROM Table;

INSERT INTO Table
VALUES (C…);

SELECT * FROM Table;

What is the
equivalent

serial schedule?
A conflict-serializable

schedule!

May 8, 2024 TXN Wrapup 45

T1 T2
R(A)
R(B)

W(C)
R(A)
R(B)
R(C)

Answer: T2, T1
(make sure you know why)

Phantom Reads

§Conflict serializability does not prevent phantoms.

SELECT * FROM Table;

INSERT INTO Table
VALUES (C…);

SELECT * FROM Table;

A conflict-serializable
schedule!

May 8, 2024 TXN Wrapup 46

T1 T2
R(A)
R(B)

W(C)
R(A)
R(B)
R(C)

”All models are wrong, some are useful*”

Modeling the DB as a set of elements is
only useful for static databases.

* George Box

Recap

In a static database:
§Conflict serializability implies serializability

In a dynamic database:
§ This no longer holds: we need to handle phatoms

May 8, 2024 TXN Wrapup 47

SERIALIZABLE Level

§Write Lock à Strict 2PL
§Read Lock à Strict 2PL
§ Locks on tables to handle phantom problem

May 8, 2024 TXN Wrapup 48

SERIALIZABLE Level

§Write Lock à Strict 2PL
§Read Lock à Strict 2PL
§ Locks on tables to handle phantom problem

T1 T2
R(A)
R(B)

I(C)
R(A)
R(B)
R(C)

May 8, 2024 TXN Wrapup 49

SERIALIZABLE Level

§Write Lock à Strict 2PL
§Read Lock à Strict 2PL
§ Locks on tables to handle phantom problem

T1 T2
R(A)
R(B)

I(C)
R(A)
R(B)
R(C)

T1 T2
S(T)
R(T)

X(T) blocked…
R(T) …
COMMIT U(T) …granted X(T)

W(T)
COMMIT U(T)

Change element
granularity to Table

May 8, 2024 TXN Wrapup 50

Summary

CORRECTFAST

Serializable

Repeatable Read

Read Committed

Read Uncommitted

None (Chaos?)

May 8, 2024 TXN Wrapup 51

Practical Aspects of TXN

May 8, 2024 TXN Wrapup 52

May 8, 2024 TXN Wrapup 53

Rule of Thumb

Write the TXN as short as possible, but not shorter

BEGIN TRANSACTION
…
Read(A)Write(A)
Read(B)Write(B)
…
Prompt user
 for input
…

COMMIT

NO

May 8, 2024 TXN Wrapup 54

Rule of Thumb

Write the TXN as short as possible, but not shorter

BEGIN TRANSACTION
…
Read(A)Write(A)
Read(B)Write(B)
…
Prompt user
 for input
…

COMMIT

NO

Never!!

May 8, 2024 TXN Wrapup 55

Rule of Thumb

Write the TXN as short as possible, but not shorter

BEGIN TRANSACTION
…
Read(A)Write(A)
Read(B)Write(B)
…
Prompt user
 for input
…

COMMIT

BEGIN TRANSACTION
…
Read(A)Write(A)
Read(B)Write(B)
COMMIT
…
Prompt user
 for input
BEGIN TRANSACTION
…

COMMIT
NO

May 8, 2024 TXN Wrapup 56

Rule of Thumb

Write the TXN as short as possible, but not shorter

BEGIN TRANSACTION
…
Read(A)Write(A)
Read(B)Write(B)
…
Prompt user
 for input
…

COMMIT

BEGIN TRANSACTION
…
Read(A)Write(A)
Read(B)Write(B)
COMMIT
…
Prompt user
 for input
BEGIN TRANSACTION
…

COMMIT
NO YES

May 8, 2024 TXN Wrapup 57

Rule of Thumb

Write the TXN as short as possible, but not shorter

BEGIN TRANSACTION
…
Read(A)Write(A)
Read(B)Write(B)
…
Prompt user
 for input
…

COMMIT

BEGIN TRANSACTION
…
Read(A)Write(A)
Read(B)Write(B)
COMMIT
…
Prompt user
 for input
BEGIN TRANSACTION
…

COMMIT

BEGIN TRANSACTION
…
Read(A)Write(A)
COMMIT
BEGIN TRANSACTION
Read(B)Write(B)
COMMIT
…
Prompt user
 for input
BEGIN TRANSACTION
…

COMMIT NO YES

May 8, 2024 TXN Wrapup 58

Rule of Thumb

Write the TXN as short as possible, but not shorter

BEGIN TRANSACTION
…
Read(A)Write(A)
Read(B)Write(B)
…
Prompt user
 for input
…

COMMIT

BEGIN TRANSACTION
…
Read(A)Write(A)
Read(B)Write(B)
COMMIT
…
Prompt user
 for input
BEGIN TRANSACTION
…

COMMIT

BEGIN TRANSACTION
…
Read(A)Write(A)
COMMIT
BEGIN TRANSACTION
Read(B)Write(B)
COMMIT
…
Prompt user
 for input
BEGIN TRANSACTION
…

COMMIT NO NO
YES

A,B to be
updated in
same TXN

Autocommit

BEGIN TRANSACTION;
 INSERT …
 SELECT …
 …
COMMIT

INSERT …

SELECT …

 …

v.s.

May 8, 2024 TXN Wrapup 59

Autocommit

BEGIN TRANSACTION;
 INSERT …
 SELECT …
 …
COMMIT

INSERT …

SELECT …

 …

By default,
each statement

is one TXN
v.s.

May 8, 2024 TXN Wrapup 60

Autocommit

BEGIN TRANSACTION;
 INSERT …
 SELECT …
 …
COMMIT

INSERT …

SELECT …

 …

By default,
each statement

is one TXN
v.s.

In python:

con = sqlite3.connect("bank.db", autocommit=True)

We say here
if we want

autocommit

May 8, 2024 TXN Wrapup 61

Case Study: SQLite

§Uses locks

§Element = entire database (!!!)

§ Let’s see the details

http://www.sqlite.org/atomiccommit.html

May 8, 2024 TXN Wrapup 62

http://www.sqlite.org/atomiccommit.html

Case Study: SQLite

§Sqlite reads data from the file on disk,…
§…updates it in main memory…
§…writes it back to disk at commit time

§Multiple users can access the same file…
§…and are coordinated via locks

May 8, 2024 TXN Wrapup 63

Case Study: SQLite

Lock types

§READ LOCK (to read)
§RESERVED LOCK (to write)
§PENDING LOCK (wants to commit)
§EXCLUSIVE LOCK (to commit)

May 8, 2024 TXN Wrapup 64

SQLite

Step 1: when a transaction begins

§Acquire a READ LOCK (aka "SHARED" lock)
§ TXNs read data from file to local memory
§ If the transaction commits without writing anything,

then it simply releases the lock

May 8, 2024 TXN Wrapup 65

T1 T2

S

R(A)

R(B) S

R(C)

R(C)

R(A)

… …

CO

SQLite

Step 2: when one transaction wants to write
§Acquire a RESERVED LOCK
§May coexists with READ LOCKs
§Writer TXN may write; in local memory!
§Reader TXN continue to read from the file
§New READ LOCKs accepted
§No other RESERVED LOCK allowed

May 8, 2024 TXN Wrapup 66

T1 T2 T3 T4

R(A) S

R(B) RES

W(B)

R(A) R(B) S

R(A) W(A) R(A)

R(A)

SQLite

Step 2: when one transaction wants to write
§Acquire a RESERVED LOCK
§May coexists with READ LOCKs
§Writer TXN may write; in local memory!
§Reader TXN continue to read from the file
§New READ LOCKs accepted
§No other RESERVED LOCK allowed

May 8, 2024 TXN Wrapup 67

T1 T2 T3 T4

R(A) S

R(B) RES

W(B)

R(A) R(B) S

R(A) W(A) R(A)

R(A)

Update only
in local memory,

not on file

SQLite

Step 2: when one transaction wants to write
§Acquire a RESERVED LOCK
§May coexists with READ LOCKs
§Writer TXN may write; in local memory!
§Reader TXN continue to read from the file
§New READ LOCKs accepted
§No other RESERVED LOCK allowed

May 8, 2024 TXN Wrapup 68

T1 T2 T3 T4

R(A) S

R(B) RES

W(B)

R(A) R(B) S

R(A) W(A) R(A)

R(A)

T1 T2 T3 T4

R(A) S

R(B) RES

W(B)

R(A) R(B) S

R(A) W(A) R(A)

R(A)

SQLite

Step 2: when one transaction wants to write
§Acquire a RESERVED LOCK
§May coexists with READ LOCKs
§Writer TXN may write; in local memory!
§Reader TXN continue to read from the file
§New READ LOCKs accepted
§No other RESERVED LOCK allowed

May 8, 2024 TXN Wrapup 69

Reads old
values

SQLite

Step 3: when writer transaction wants to commit,
it needs exclusive lock
§Acquire a PENDING LOCK
§May coexists with old READ LOCKs
§No new READ LOCKS are accepted
§Wait for all read locks to be released

May 8, 2024 TXN Wrapup 70

T1 T2 T3 T4 T5

W(B)

R(A) W(A) R(B)

R(A)

CO?

S?

SQLite

Step 3: when writer transaction wants to commit,
it needs exclusive lock
§Acquire a PENDING LOCK
§May coexists with old READ LOCKs
§No new READ LOCKS are accepted
§Wait for all read locks to be released

May 8, 2024 TXN Wrapup 71

T1 T2 T3 T4 T5

W(B)

R(A) W(A) R(B)

R(A)

CO?

S?

No new
READ LOCK

SQLite

Step 3: when writer transaction wants to commit,
it needs exclusive lock
§Acquire a PENDING LOCK
§May coexists with old READ LOCKs
§No new READ LOCKS are accepted
§Wait for all read locks to be released

May 8, 2024 TXN Wrapup 72

Why not write
to disk right now?

T1 T2 T3 T4 T5

W(B)

R(A) W(A) R(B)

R(A)

CO?

R(A)

SQLite

Step 3: when writer transaction wants to commit,
it needs exclusive lock
§Acquire a PENDING LOCK
§May coexists with old READ LOCKs
§No new READ LOCKS are accepted
§Wait for all read locks to be released

May 8, 2024 TXN Wrapup 73

Why not write
to disk right now?

T1 T2 T3 T4 T5

W(B)

R(A) W(A) R(B)

R(A)

CO?

R(A)

This must be
the old value

for serializability

SQLite

Step 4: when all read locks have been released
§Acquire the EXCLUSIVE LOCK
§Nobody can touch the database now
§All updates are written permanently to file
§Release the lock and COMMIT

May 8, 2024 TXN Wrapup 74

T1 T2 T3 T4 T5

W(B)

R(A) W(A) R(B)

R(A)

CO?

R(A)

CO

CO CO

CO

SQLite

None READ
LOCK

RESERVED
LOCK

PENDING
LOCK

EXCLUSIVE
LOCK

commit executed

begin transaction first write no more read lockscommit requested

commit

May 8, 2024 TXN Wrapup 75

SQLite Demo

create table r(a int, b int);
insert into r values (1,10);
insert into r values (2,20);
insert into r values (3,30);

May 8, 2024 TXN Wrapup 76

Demonstrating Locking in SQLite

T1:
 begin transaction;
 select * from r;
 -- T1 has a READ LOCK
T2:
 begin transaction;
 select * from r;
 -- T2 has a READ LOCK

May 8, 2024 TXN Wrapup 77

Demonstrating Locking in SQLite

T1:
 update r set b=11 where a=1;
 -- T1 has a RESERVED LOCK

T2:
 update r set b=21 where a=2;
 -- T2 asked for a RESERVED LOCK: DENIED

May 8, 2024 TXN Wrapup 78

Demonstrating Locking in SQLite

T3:
 begin transaction;
 select * from r;
 commit;
 -- everything works fine, could obtain READ LOCK

May 8, 2024 TXN Wrapup 79

Demonstrating Locking in SQLite

T1:
 commit;
 -- SQL error: database is locked
 -- T1 asked for PENDING LOCK -- GRANTED
 -- T1 asked for EXCLUSIVE LOCK -- DENIED

May 8, 2024 TXN Wrapup 80

Demonstrating Locking in SQLite

T3':
 begin transaction;
 select * from r;
 -- T3 asked for READ LOCK-- DENIED (due to T1)

T2:
 commit;
 -- releases the last READ LOCK; T1 can commit

May 8, 2024 TXN Wrapup 81

