b

$estionlD
NumberOfsession
Date
1 | oxperimeatio
Py —_—
e [senpio I =7
[= S
g o [Senphame | A e
sarpType et
F11 [sessonid > [oee L]
NumberOfTrial Reiclation E
Filter %
#a [sabjectin setupCondton d =
st
NMarker >i!I ‘Worker 3 Worker 3
SetupMarker M, Y X ok
Recort edMovieFile viciTa i
et HII . | (a) Traditional parallel query plan
Triahas_Timecoursa Trial_has_Trajectory = N A " e
s N e 74 | — [—
; B = T o
....... ector X 2 »
Fi2 [rimecouwsen 2 [Tjectonyo Zi o o : [GIE] shme v X
¢ { ‘ol ! Podric o3 ¢ | BLJ—— s |
oras, KeyiShae’ 5
Timecourse Trajectory = c . ol e —
PX | Timece o LLRRT L] b= e
pune cjectary o G
B B it K7
Frequency frequency . Brom
Segmentid SegmentiD Menyn,
KindOfDats KindOfData Gendry yn
Nerames Markertd
g NFrames iCube shuffle-based parallel
LT

Introduction to Data Management

Transactions: Isolation Levels

Paul G. Allen School of Computer Science and Engineering
University of Washington, Seattle

May 6, 2024 Isolation Levels

Announcements

* HWS is due on Friday

May 6, 2024 Isolation Levels

= TXN = sequence of Reads and Writes of elements
« BEGIN TRANSACTION
« COMMIT or ROLLBACK

= Schedule = interleaving of operations of TXNs

= Serial Schedule = one TXN after the other

May 6, 2024 Isolation Levels

A Schedule

time

May 6, 2024

T1 T2
READ(A, 1)
READ(A, s)
S :=8*2
t:=t+100
WRITE(A, 1)
WRITE(A,s)
READ(B,s)
S :=8*2
READ(B, t)
WRITE(B,s)
t:=t+100

WRITE(B,1)

Isolation Levels

A Serial Schedule

time

May 6, 2024

T1 T2

READ(A, 1)

t:=t+100

WRITE(A, 1)

READ(B, t)

t:=t+100

WRITE(B,1)
READ(A, s)
S :=8*2
WRITE(A,s)
READ(B,s)
S :=8*2
WRITE(B,s)

Isolation Levels

= Serializable Schedule = equivalent to a serial one

= Conflict Serializable Schedule = ...

May 6, 2024 Isolation Levels

Serializable and Conflict-Serializable

May 6, 2024

T1 T2

READ(A, 1)

t:=t+100

WRITE(A, 1)
READ(A, s)
S :=8*2
WRITE(A,s)

READ(B, t)

t:=t+100

WRITE(B,1)
READ(B,s)
S :=8*2
WRITE(B,s)

Isolation Levels

Non-Serializable, Non-Conflict-Serializable

May 6, 2024

T1 T2

READ(A, 1)

t:=t+100

WRITE(A, 1)
READ(A, s)
S :=8*2
WRITE(A,s)
READ(B,s)
S :=8*2
WRITE(B,s)

READ(B, t)

t:=t+100

WRITE(B,1)

Isolation Levels

Serializable, Non-Conflict-Serializable

May 6, 2024

T1 T2

READ(A, 1)

t:=t+100

WRITE(A, 1)
READ(A, s)
S ;= s+2
WRITE(A,s)
READ(B,s)
S ;= s+2
WRITE(B,s)

READ(B, t)

t:=t+100

WRITE(B,1)

Isolation Levels

Serializable, Non-Conflict-Serializable

May 6, 2024

T1 T2

READ(A, t)

t:=t+100

WRITE(A, t)
READ(A, s)
S =s+2]
WRITE(A,s)
READ(B,s)
S = s+2]
WRITE(B,s)

READ(B, t)

t:=t+100

WRITE(B,t)

Isolation Levels

(x+100)+2=
(x+2)+100

Non-Serializable, Non-Conflict-Serializable

May 6, 2024

T1 T2
READ(A, 1)
t:=t+100
READ(A, s)
WRITE(A, 1)
S ;= s+2
WRITE(A,s)
READ(B,s)
S ;= s+2
WRITE(B,s)
READ(B, t)
t:=t+100
WRITE(B,1)

Isolation Levels

Non-Serializable, Non-Conflict-Serializable

May 6, 2024

T1 T2
READ(A, 1)
t:=t+100
READ(A, s)
WRITE(A, 1)
S ;= s+2
WRITE(A,s)
READ(B,s)
S ;= s+2
WRITE(B,s)
READ(B, t)
t:=t+100
WRITE(B,1)

Isolation Levels

Why not

serializable?

Non-Serializable, Non-Conflict-Serializable

T1 T2
READ(A, 1)
t:=t+100
READ(A, s)
WRITE(A, t)
Ns = §42
WRITE(A,s)
READ(B,s)
S = s+2
WRITE(B,s)
READ(B, 1)
t:=t+100

WRITE(B,1)

May 6, 2024

Isolation Levels

Why not

serializable?

Discussion

» To check for conflict-serializability
use the precedence graph

» To check for serializability:
need to understand what TXNs are doing

May 6, 2024 Isolation Levels

Recap: Concurrency Control Manager

» Scheduler a.k.a. Concurrency Control Manager
» Pessimistic (Locks) or Optimistic (various...)

Locks:
= |,(A) = transaction T,acquires lock for element A
= U,(A) = transaction T, releases lock for element A

May 6, 2024 Isolation Levels

Locks Alone do not Enforce Serializability

May 6, 2024

T1

12

L1(A), READ(A, t)
t:= t+100

WRITE(A, t),U1(A)

L1(B)
READ(B, t)

t:= t+100
WRITE(B,1),U1(B)

L2(A), READ(A, s)
S :=8*2
WRITE(A,s),U2(A)
L2(B), READ(B,s)
S :=8*2
WRITE(B,s),U2(B)

We used locks, but

this is a non-serializable schedule

Isolation Levels

Recap: Two-Phase Locking

In every TXN, all locks must come before any unlock

time

Theorem: If all TXNs follow 2PL, then schedule is conflict-serializable

May 6, 2024 Isolation Levels

Recap: Non-recoverable Schedule

May 6, 2024

T1

T2

L1(A),L1(B),READ(A, t)
t:= t+100

WRITE(A, t),

READ(B, t)

t:= t+100

WRITE(B,1), U1(A),U1(B)

ROLLBACK

L2(A), READ(A, s)
S =82
WRITE(A,s),U2(A)
L2(B), READ(B,s)
S =82
WRITE(B,s),U2(B)
COMMIT

Isolation Levels

Recap: Non-recoverable Schedule

May 6, 2024

T1 T2

L1(A),L1(B),READ(A, t)
t:= t+100

WRITE(A, t),

READ(B, t)

t:= t+100

WRITE(B,1), U1(A),U1(B)

Dirty read

L2(A), READ(A, s)
S =82
WRITE(A,s),U2(A)
L2(B), READ(B,s)
S =82
WRITE(B,s),U2(B)
COMMIT

ROLLBACK

Isolation Levels

Recap: Deadlocks

L(A)

L(B) L(C) L(D)

L(B) blocked...

May 6, 2024

L(C) blocked...
L(D) blocked...

L(A) blocked...

Checking for deadlock: Abort a TXN
» Construct the WAITS-FOR graph

» Check if it has a cycle
Checking for a cycle is fast (see CSE373), but it is very
slow compared to the simple R/W operations

Isolation Levels

= Strict 2PL ensures conflict-serializable and
recoverable schedules

» \When the database is static (no insert/delete) then
every conflict-serializable schedule is serializable

* When database is dynamic (has inserts/deletes)
then it no longer holds because of fantoms (later)

May 6, 2024 Isolation Levels

Lock Types

May 6, 2024

Shared/Exclusive Locks

Reads don’t conflict with each other.

» Exclusive/Write Lock = Xi(A)

* May read or write
* No other locks may exist

» Shared/Read Lock = S;(A)

« May only read
* May exist with other shared locks

= Unlocked

* No access

May 6, 2024 Isolation Levels

Shared/Exclusive Locks

...but another TXN holds this...

| lunlocked S X
requests

...then we do or don’t grant permission

May 6, 2024 Isolation Levels

Discussion

* \When TXN wants to read A, it requests S(A)

= |f later it wants to write A, then it requests X(A)

= This Is called lock escalation

May 6, 2024 Isolation Levels

More Discussion

Starvation:

* \When a TXN waits for a lock, and never gets it
» Usually prevented by placing TXN in a queue

* Need to pay more attention to S/X locks
« Some TXNs hold an S lock

« One TXN requests X lock and waits
« But more TXNs arrive and requests S locks, granted
 Solution: stop granting S locks when X requests exists

More chances of deadlocks (next)

May 6, 2024 Isolation Levels

S/X Locks May Lead Easier to Deadlocks

T1 12

S1(A), READ(A, 1)
t:=t+100

S2(A), READ(A, s)
S :=8*2

X1(A
- X2(A)

May 6, 2024 Isolation Levels

Discussion

Enforcing ACID properties slows down the RDBMs

= Concurrency (l): need to wait, need to abort

= Recovery (A): need to double write to the log

May 6, 2024 Isolation Levels

Thrashing

May 6, 2024

Throughput (txns/sec TPS)

thrashing

Too many TXN
are waiting for locks,
or too many TXN
aborted b/c deadlock

of active transactions

Isolation Levels

v

Discussion

= |solated, atomic TXN usually incurs a high cost

» Performance is measured in TXN/sec (TPS)
https://www.tpc.org/defaultd.asp
* 1,000-10,000 is OK
* 10,000-100,000 is AMAZING
* 100,000-1,000,000 research papers only...

* For higher TPS use weaker isolation levels,
which allow for some conflicts

May 6, 2024 Isolation Levels

https://www.tpc.org/default5.asp

Conflicts Between
Concurrent Operations

May 6, 2024

Common Concurrency Conflicts

= Dirty/Inconsistent Read

» Lost Update

» Unrepeatable Read

= Phantom Read

These never happen in serializable schedules,
but may happen in weaker levels of isolation

May 6, 2024 Isolation Levels

Dirty/Inconsistent Read

Dirty read reading data of uncommitted TXN
a.k.a. inconsistent read

time

+ Dirty/Inconsistent Read
* Lost Update

* Unrepeatable Read

* Phantom Read

Manager wants to CEO wants to check
balance project budgets company balance

May 6, 2024 Isolation Levels

Dirty/Inconsistent Read

Dirty read reading data of uncommitted TXN
a.k.a. inconsistent read

+ Dirty/Inconsistent Read
* Lost Update

* Unrepeatable Read

* Phantom Read

Manager wants to CEO wants to check
balance project budgets company balance
SELECT SUM(money) ...
GEJ -$10mil from project A
+$7mil to project B
+$3mil to project C
\/

May 6, 2024 Isolation Levels

Dirty/Inconsistent Read

Dirty read reading data of uncommitted TXN
a.k.a. inconsistent read

time

+$7mil to project B

+$3mil to project C

+ Dirty/Inconsistent Read
* Lost Update

* Unrepeatable Read

* Phantom Read

Manager wants to CEO wants to check
balance project budgets company balance

SELECT SUM
-$10mil from projeth\ V

(money) ...

May 6, 2024 Isolation Levels

Dirty/Inconsistent Read

. . * Dirty/Inconsistent Read
Dirty read reading data of uncommitted TXN ~|; testusdte
a.k.a. inconsistent read + Phantom Read

time

Manager wants to CEO wants to check
balance project budgets company balance

SELECT SUM(money) ...
-$10mil from prOJect:\ V

+$7mil to project B

+$3mil to project C

N -V

Isolation Levels

May 6, 2024

Dirty/Inconsistent Read

. . + Dirty/Inconsistent Read
Dirty read reading data of uncommitted TXN ~|; testusdte
a.k.a. inconsistent read + Phantom Read

time

Manager wants to CEO wants to check
balance project budgets company balance

SELECT SUM(money) ..
-$10mil from prOJeth\

+$7mil to project B
x Dirty read

+$3mil to project C
«

Isolation Levels

May 6, 2024

Lost Update

A lost update happens when a write
IS overwritten by another TXN

User 1 wants to pool
money into account 1

time

May 6, 2024 Isolation Levels

 Dirty/Inconsistent Read
* Lost Update

* Unrepeatable Read

* Phantom Read

Account 1 =100, Account 2 =100

User 2 wants to pool money

into account 2

Lost Update

A lost update happens when a write
IS overwritten by another TXN

User 1 wants to pool
money into account 1

Set account 1 = 200

time

Set account2=0

May 6, 2024 Isolation Levels

 Dirty/Inconsistent Read
* Lost Update
* Unrepeatable Read

 Phantom Read

Account 1 =100, Account 2 =100

User 2 wants to pool money

into account 2

Lost Update

A lost update happens when a write
IS overwritten by another TXN

User 1 wants to pool
money into account 1

Set account 1 = 200

time

Set account2=0

May 6, 2024 Isolation Levels

 Dirty/Inconsistent Read
* Lost Update
* Unrepeatable Read

 Phantom Read

Account 1 =100, Account 2 =100

User 2 wants to pool money
into account 2

Set account 2 = 200

Set account1 =0

Lost Update

A lost update happens when a write
IS overwritten by another TXN

Account 1 =100, Account 2 =100

v/

At end: Account 1 =0, Account 2 = 200

May 6, 2024 Isolation Levels

 Dirty/Inconsistent Read
* Lost Update
* Unrepeatable Read

 Phantom Read

User 1 wants to pool User 2 wants to pool money
money into account 1 into account 2
o Set account 1 =200
£
Setaccount2 =0
Set account 2 = 200
v Setaccount1 =0

Lost Update

A lost update happens when a write
IS overwritten by another TXN

Account 1 =100, Account 2 =100

Set account 1 = 200

time

' X
At end: Account1 =0, Account2=0

May 6, 2024 Isolation Levels

 Dirty/Inconsistent Read
* Lost Update
* Unrepeatable Read

 Phantom Read

User 1 wants to pool User 2 wants to pool money

money into account 1 Lost update into account 2

Set account 2 = 200
Set account2=0

Set account1 =0

Unrepeatable Read

An unrepeatable read happens when

 Dirty/Inconsistent Read
* Lost Update

* Unrepeatable Read

* Phantom Read

data read twice differs

check company assets inventory levels

SELECT inventory
FROM Products
WHERE pid =1

time

UPDATE Produ

WHERE pid = 1

SELECT inventory*price
Y FROM Products
WHERE pid =1

May 6, 2024 Isolation Levels

Accountant wants to Warehouse updates

cts

SET inventory =0

Unrepeatable Read

An unrepeatable read happens when

 Dirty/Inconsistent Read
* Lost Update

* Unrepeatable Read

* Phantom Read

data read twice differs

check company assets inventory levels

SELECT inventory
FROM Products
WHERE pid =1

time

UPDATE Produ

WHERE pid = 1

SELECT inventory*price
Y FROM Products
WHERE pid =1

Second read of
Products.inventory
is different

May 6, 2024 Isolation Levels

Accountant wants to Warehouse updates

cts

SET inventory =0

Phantom Read

A phantom read happens when

a record is inserted/delete during reads

time

May 6, 2024

Accountant wants to
check company assets

SELECT *
FROM products
WHERE price < 10.00

SELECT *
FROM products
WHERE price < 20.00

Isolation Levels

 Dirty/Inconsistent Read
* Lost Update

* Unrepeatable Read

* Phantom Read

Warehouse receives new

products

INSERT INTO Products
VALUES (‘nuts’, 10, 8.99)

Returns a product

that should have been

in the first query

Weaker Isolation Levels

May 6, 2024

Isolation Levels

= SET TRANSACTION ISOLATION LEVEL ...
* READ UNCOMMITED
* READ COMMITED
« REPEATABLE READ
« SERIALIZABLE
* SNAPSHOT ISOLATION (MVCC)

» Default isolation level and configurability depends
on the DBMS (read the docs)

= Serializable is often not the default

May 6, 2024 Isolation Levels

|solation Level Design Spectrum

FAST CORRECT

May 6, 2024 Isolation Levels

|solation Level Design Spectrum

CORRECT

May 6, 2024 Isolation Levels

READ UNCOMMITTED

= \Writes = Strict 2PL write locks
= Reads - No locks needed
» Reads never wait! But dirty reads are possible

X(A) W(A)
R(A)
COMMIT

ABORT U(A)

May 6, 2024 Isolation Levels

READ UNCOMMITTED

= \Writes = Strict 2PL write locks
= Reads - No locks needed
» Reads never wait! But dirty reads are possible

Write lock obeys
Strict 2PL

Read executes
whenever

X(A) W(A)
R(A)
COMMIT
ABORT U(A)

May 6, 2024 Isolation Levels

READ UNCOMMITTED

= \Writes = Strict 2PL write locks
= Reads - No locks needed
» Reads never wait! But dirty reads are possible

Still possible to get isolated results, but you have
to be “lucky” when a write operation is done

R(A)
-
X(A) W(A)
X(A) W(A) R(A)
ABORT U(A) ABORT UA) X(A) W(A)
R(A) ABORT U(A)
COMMIT COMMIT

May 6, 2024 Isolation Levels

READ UNCOMMITTED

= \Writes = Strict 2PL write locks
= Reads - No locks needed
» Reads never wait! But dirty reads are possible

Still possible to get isolated results, but you have
to be “lucky” when a write operation is done

R(A)
=
X(A) W(A) KA WEA) R(A)
ABORT U(A) ABORT U(A) _ X(A) W(A)
R(A) Serial ABORT U(A)
COMMIT COMMIT
Serial Serializable (lucky!)

May 6, 2024 Isolation Levels

READ UNCOMMITTED

Extremely fast READ due to zero lock management
overhead

Use cases:
» Static data (few or no writes after data initialization)

» Read coverage/accuracy is not mission critical

May 6, 2024 Isolation Levels

|solation Level Design Spectrum

CORRECT

May 6, 2024 Isolation Levels

READ COMMITTED

= \Writes = Strict 2PL write locks

» Reads - Short-duration read locks
« Acquire lock right before, release right after (not 2PL)

= No dirty reads. But non-repeatable reads possible.

May 6, 2024 Isolation Levels

READ COMMITTED

= \Writes = Strict 2PL write locks

» Reads - Short-duration read locks
« Acquire lock right before, release right after (not 2PL)

= No dirty reads. But non-repeatable reads possible.

T2

X(A) W(A)
>€<A

COMMIT
ABORT U(A

May 6, 2024 Isolation Levels

READ COMMITTED

= \Writes = Strict 2PL write locks

» Reads - Short-duration read locks
« Acquire lock right before, release right after (not 2PL)

= No dirty reads. But non-repeatable reads possible.

A dirty read could only happen if a read occurs after
a write and before a COMMIT/ROLLBACK

T2

X(A) W(A)
>€<A

COMMIT
ABORT U(A

May 6, 2024 Isolation Levels

READ COMMITTED

= \Writes = Strict 2PL write locks

» Reads - Short-duration read locks
« Acquire lock right before, release right after (not 2PL)

= No dirty reads. But non-repeatable reads possible.

A dirty read could only happen if a read occurs after
a write and before a COMMIT/ROLLBACK

ﬂ

X(A) W(A) X(A) W(A)
><(A S(A) blocked...
COMMIT ABORT U(A) ...granted S(A)
ABORT U(A R(A)

COMMIT U(A)

May 6, 2024 Isolation Levels

READ COMMITTED

= \Writes = Strict 2PL write locks

» Reads - Short-duration read locks
« Acquire lock right before, release right after (not 2PL)

= No dirty reads. L

But non-repeatable SIA)

. X(A) blocked...
reads possible. A

.. R(A)
...granted X(A) U(A)
S(A) blocked...

W(A) .

COMMIT U(A) ...granted S(A)
R(A)
X(A)
W(A)

COMMIT U(A)

READ COMMITTED

= \Writes = Strict 2PL write locks

» Reads - Short-duration read locks
« Acquire lock right before, release right after (not 2PL)

= No dirty reads. L

But non-repeatable SIA)

. X(A) blocked...
reads possible. A

.. R(A)
...granted X(A) U(A)
S(A) blocked...

W(A) .

COMMIT U(A) ...granted S(A)
R(A)
X(A)
W(A)

COMMIT U(A)

READ COMMITTED

» Fast READ since operation happens as soon as
write txns are done

» Use cases:
« Guarantee that read result is valid at some point

» Often useful for e-commerce situations

« Guarantee customer has good info to start with but doesn’t
block other customers from purchasing

Qe % W @ Reservation Not Possible

Sorry, but the couchette berth you have requested
on the NJ 421 from Dusseldorf Hbf to Innsbruck
Hbf is no longer available. Please change your

Price: “1“ for FREE'- reservation request.

Stock .
|C'>‘n\y 2 leftin stock--order $00

it (padtoCant) i}

May 6, 2024 Isolation Levels

|solation Level Design Spectrum

FAST CORRECT

May 6, 2024 Isolation Levels

REPEATABLE READ

» Writes = Strict 2PL write locks
» Reads - Strict 2PL read locks
» Unrepeatable reads are prevented

May 6, 2024 Isolation Levels

REPEATABLE READ

» Writes = Strict 2PL write locks
» Reads - Strict 2PL read locks
» Unrepeatable reads are prevented

S(A)
X(A) blocked...
R(A)
...granted X(U(A)

A><A) blocked...

W(A)
COMMIT U(A) ...granted S(A)

R(A)

COMMIT U(A)

May 6, 2024 Isolation Levels

REPEATABLE READ

= \Writes - Strict 2PL write locks
» Reads - Strict 2PL read locks
» Unrepeatable reads are prevented

S(A)
X(A) blocked... S(A)
. R(A) X(A) blocked...
...granted X(U(A) R(A)

A><A) blocked... ‘ R(A)

W(A) ...granted X(A) COMMIT U(A)
COMMIT U(A) ...granted S(A) W(A)

R(A) COMMIT U(A)

COMMIT U(A)

May 6, 2024 Isolation Levels

REPEATABLE READ

= Writes > Strict 2PL write locks
" Reads > Strict 2PL read locks Serialiesbe

» Unrepeatable reads are prevented

S(A)
X(A) blocked... S(A)
. R(A) X(A) blocked...
...granted X(U(A) R(A)

A><A) blocked... ‘ R(A)

W(A) ...granted X(A) COMMIT U(A)
COMMIT U(A) ...granted S(A) W(A)

R(A) COMMIT U(A)

COMMIT U(A)

May 6, 2024 Isolation Levels

REPEATABLE READ

» Ensures conflict serializability

» Recall: if the database is static (no insert/delete)
then conflict serializability implies serializability

» Use cases: few insert/deletes

May 6, 2024 Isolation Levels

|solation Level Design Spectrum

Il

FAST CORRECT

May 6, 2024 Isolation Levels

The Phantom Menace

» Same read has more rows
» Asset checking scenario:

Accountant wants to
check company assets

SELECT *
FROM products
WHERE price < 10.00

time

SELECT *
FROM products
WHERE price < 20.00

May 6, 2024 Isolation Levels

Warehouse catalogs

new products

INSERT INTO Products
VALUES (‘nuts’, 10, 8.99)

Phantom Reads

» Conflict serializability does not prevent phantoms.

These are
the SQL

queries

SELECT * FROM Table;

INSERT INTO Table

VALUES (C...);
SELECT * FROM Table:

May 6, 2024 Isolation Levels

Phantom Reads

» Conflict serializability does not prevent phantoms.

And this is
how we modeled
the TXNs using
R/W to elements

These are
the SQL

queries

SELECT * FROM Table; R(A)

R(B)
o) INSERT INTO Table
©) vaLues (c..)
SELECT * FROM Table; R(A)
R(B)
R(C)

May 6, 2024 Isolation Levels

Phantom Reads

» Conflict serializability does not prevent phantoms.

SELECT * FROM Table; R(A)

INSERT INTO Table

€)' vaLuEs (C...)

SELECT * FROM Table; R(A)
R(B)
R(C)

May 6, 2024 Isolation Levels

Phantom Reads

» Conflict serializability does not prevent phantoms.

A conflict-serializable
schedule!

T [T2

SELECT * FROM Table; R(A)

R(B)
o) INSERT INTO Table
©) vaLues (c..)
SELECT * FROM Table; R(A)
R(B)
R(C)

May 6, 2024 Isolation Levels

Phantom Reads

» Conflict serializability does not prevent phantoms.

May 6, 2024

A conflict-serializable

schedule!

SELECT * FROM Table;

SELECT * FROM Table;

What is the
equivalent
serial schedule?

T [T2

R(A)

R(B

) o) INSERT INTO Table
©) vaLues (c..)

R(A)

R(B)

R(C)

Isolation Levels

In a static database:
» Conflict serializability implies serializability

In a dynamic database:
» This no longer holds: we need to handle phatoms

May 6, 2024 Isolation Levels

SERIALIZABLE Level

= \Write Lock = Strict 2PL
» Read Lock = Strict 2PL
* Locks on tables to handle phantom problem

May 6, 2024 Isolation Levels

SERIALIZABLE Level

= \Write Lock = Strict 2PL
» Read Lock = Strict 2PL
* Locks on tables to handle phantom problem

T [T2

R(A)
R(B)
I(C)
R(A)
R(B)
R(C)

May 6, 2024 Isolation Levels

SERIALIZABLE Level

= \Write Lock = Strict 2PL
» Read Lock = Strict 2PL
* Locks on tables to handle phantom problem

T2
— =
R(A) Change element R(T)
R(B) granularity to Table X(T) blocked

© (T) blocked...

o R(T)

COMMIT U(T) ...granted X(T)
R(B) W(T)
) COMMIT U(T)

May 6, 2024 Isolation Levels

FAST CORRECT

May 6, 2024 Isolation Levels

