
1

Transactions: Locks

May 2, 2024 Locks

Recap

§ TXN = sequence of Reads and Writes of elements

§Schedule = interleaving of operations of TXNs

§Serial Schedule = one TXN after the other

§Serializable Schedule = equivalent to a serial one

§Conflict Serializable Schedule = …

§Precedence Graph = to check conflict serializability

May 2, 2024 Locks 2

Recap: the Precedence Graph

1 2 3

This schedule is NOT conflict-serializable

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

May 2, 2024 Serializability 3

B
A

B

Note for HWs and Exams

Always draw the full graph, unless ONLY asked if
(yes or no) the schedule is conflict serializable

4May 2, 2024 Locks

Today’s Agenda

§Concurrency control manager

§ Locks

§ 2PL

§Strict 2PL

§Deadlocks

May 3, 2024 Locks 5

Concurrency Control Manager

§Scheduler a.k.a. Concurrency Control Manager
• The module that schedules the transaction’s actions

§Main goal: ensure the schedule is serializable

§Second goal: optimize for throughput

May 2, 2024 Locks 6

Will discuss how

Concurrency Control Manager

Two types:

§Pessimistic CC Manager (Locks)

§Optimistic CC Manager (e.g. Snapshot Isolation)

May 2, 2024 Locks 7

We discuss
only this

Locks

May 2, 2024 Serializability 8

Locking Scheduler

§Each element has a unique lock

§Each TXN must acquire lock before R/W element

§ If the lock is held by another TXN, then wait

§Once lock is available, it may proceed

§ The TXN must release the lock(s)

May 2, 2024 Locks 9

TXN Actions

§Ri(A) = transaction Ti reads element A

§Wi(A) = transaction Ti reads element A

§ Li(A) = transaction Ti acquires lock for element A

§Ui(A) = transaction Ti releases lock for element A

May 2, 2024 Locks 10

Recap: A Non-Serializable Schedule

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A, s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

May 2, 2024 Serializability 11

Let’s see how
locks can

prevent this

Locks in Action
T1 T2
L1(A), READ(A, t)

May 2, 2024 Serializability 12

Locks in Action
T1 T2
L1(A), READ(A, t)
t := t+100
WRITE(A, t),U1(A)
L1(B)

May 2, 2024 Serializability 13

Locks in Action
T1 T2
L1(A), READ(A, t)
t := t+100
WRITE(A, t),U1(A)
L1(B)

May 2, 2024 Serializability 14

Scheduler
decides that

T1 should wait
now

Locks in Action
T1 T2
L1(A), READ(A, t)
t := t+100
WRITE(A, t),U1(A)
L1(B)

May 2, 2024 Serializability 15

Scheduler
decides that

T1 should wait
now

Why wait?

For various performance reasons:
• It takes long time to read B from disk, or
• T2 just arrived and has higher priority, or
• T2 was waiting for too long, or
• …

We want to allow the scheduler lots of freedom
to schedule another TXN when it wants.

Our focus is only to prevent
non-serializable schedules

Locks in Action
T1 T2
L1(A), READ(A, t)
t := t+100
WRITE(A, t),U1(A)
L1(B)

May 2, 2024 Serializability 16

Locks in Action
T1 T2
L1(A), READ(A, t)
t := t+100
WRITE(A, t),U1(A)
L1(B)

L2(A), READ(A, s)
s := s*2
WRITE(A,s),U2(A)

May 2, 2024 Serializability 17

Locks in Action
T1 T2
L1(A), READ(A, t)
t := t+100
WRITE(A, t),U1(A)
L1(B)

L2(A), READ(A, s)
s := s*2
WRITE(A,s),U2(A)
L2(B)…

May 2, 2024 Serializability 18

Denied: T2
put to sleep

Locks in Action
T1 T2
L1(A), READ(A, t)
t := t+100
WRITE(A, t),U1(A)
L1(B)

L2(A), READ(A, s)
s := s*2
WRITE(A,s),U2(A)
L2(B)…

May 3, 2024 Serializability 19

This is the key step:
we stopped the scheduler from
allowing T2 to read B at this time

Denied: T2
put to sleep

Locks in Action
T1 T2
L1(A), READ(A, t)
t := t+100
WRITE(A, t),U1(A)
L1(B)

L2(A), READ(A, s)
s := s*2
WRITE(A,s),U2(A)
L2(B)…

READ(B, t)
t := t+100
WRITE(B,t)

May 3, 2024 Serializability 20

After a while,
T1 is ready
to continue

Locks in Action
T1 T2
L1(A), READ(A, t)
t := t+100
WRITE(A, t),U1(A)
L1(B)

L2(A), READ(A, s)
s := s*2
WRITE(A,s),U2(A)
L2(B)…

READ(B, t)
t := t+100
WRITE(B,t),U1(B)

May 3, 2024 Serializability 21

Releases
lock on B

Locks in Action
T1 T2
L1(A), READ(A, t)
t := t+100
WRITE(A, t),U1(A)
L1(B)

L2(A), READ(A, s)
s := s*2
WRITE(A,s),U2(A)
L2(B)…

READ(B, t)
t := t+100
WRITE(B,t),U1(B)

READ(B,s)
s := s*2
WRITE(B,s),U2(B)

May 3, 2024 Serializability 22

T2 may
proceed

now

Locks in Action
T1 T2
L1(A), READ(A, t)
t := t+100
WRITE(A, t),U1(A)
L1(B)

L2(A), READ(A, s)
s := s*2
WRITE(A,s),U2(A)
L2(B)…

READ(B, t)
t := t+100
WRITE(B,t),U1(B)

READ(B,s)
s := s*2
WRITE(B,s),U2(B)

May 2, 2024 Serializability 23

But there is a BIG problem!
(what???)

Locks in Action
T1 T2
L1(A), READ(A, t)
t := t+100
WRITE(A, t),U1(A)
L1(B)

L2(A), READ(A, s)
s := s*2
WRITE(A,s),U2(A)
L2(B)…

READ(B, t)
t := t+100
WRITE(B,t),U1(B)

READ(B,s)
s := s*2
WRITE(B,s),U2(B)

May 2, 2024 Serializability 24

But there is a BIG problem!
(what???)

Let’s replay…

Locks in Action
T1 T2
L1(A), READ(A, t)
t := t+100
WRITE(A, t),U1(A)

May 2, 2024 Serializability 25

Locks in Action
T1 T2
L1(A), READ(A, t)
t := t+100
WRITE(A, t),U1(A)

May 2, 2024 Serializability 26

Scheduler decided
to put T1 on wait

before it acquired L1(B)

Locks in Action
T1 T2
L1(A), READ(A, t)
t := t+100
WRITE(A, t),U1(A)

L2(A), READ(A, s)
s := s*2
WRITE(A,s),U2(A)
L2(B)

May 2, 2024 Serializability 27

Locks in Action
T1 T2
L1(A), READ(A, t)
t := t+100
WRITE(A, t),U1(A)

L2(A), READ(A, s)
s := s*2
WRITE(A,s),U2(A)
L2(B)

May 2, 2024 Serializability 28

Granted

Locks in Action
T1 T2
L1(A), READ(A, t)
t := t+100
WRITE(A, t),U1(A)

L2(A), READ(A, s)
s := s*2
WRITE(A,s),U2(A)
L2(B), READ(B,s)
s := s*2
WRITE(B,s),U2(B)

May 2, 2024 Serializability 29

Locks in Action
T1 T2
L1(A), READ(A, t)
t := t+100
WRITE(A, t),U1(A)

L2(A), READ(A, s)
s := s*2
WRITE(A,s),U2(A)
L2(B), READ(B,s)
s := s*2
WRITE(B,s),U2(B)

L1(B)
READ(B, t)
t := t+100
WRITE(B,t),U1(B)

May 2, 2024 Serializability 30

Locks in Action
T1 T2
L1(A), READ(A, t)
t := t+100
WRITE(A, t),U1(A)

L2(A), READ(A, s)
s := s*2
WRITE(A,s),U2(A)
L2(B), READ(B,s)
s := s*2
WRITE(B,s),U2(B)

L1(B)
READ(B, t)
t := t+100
WRITE(B,t),U1(B)

May 3, 2024 Serializability 31

This is a non-serializable schedule

Locks in Action
T1 T2
L1(A), READ(A, t)
t := t+100
WRITE(A, t),U1(A)

L2(A), READ(A, s)
s := s*2
WRITE(A,s),U2(A)
L2(B), READ(B,s)
s := s*2
WRITE(B,s),U2(B)

L1(B)
READ(B, t)
t := t+100
WRITE(B,t),U1(B)

May 3, 2024 Serializability 32

This is a non-serializable schedule

Solution: 2PL

2PL

May 2, 2024 Serializability 33

Two-Phase Locking

The 2PL rule:

In every TXN, all locks must come before any unlock

May 2, 2024 Locks 34

tim
e

Locks

Unlocks

Two-Phase Locking

T1
L1(A)
READ(A, t)
t := t+100
WRITE(A, t)
U1(A)
L1(B)
READ(B, t)
t := t+100
WRITE(B,t)
U1(B)

May 2, 2024 Serializability 35

Not 2PL

Two-Phase Locking

T1
L1(A)
READ(A, t)
t := t+100
WRITE(A, t)
U1(A)
L1(B)
READ(B, t)
t := t+100
WRITE(B,t)
U1(B)

May 2, 2024 Serializability 36

T1
L1(A)
READ(A, t)
t := t+100
WRITE(A, t)
L1(B)
U1(A)
READ(B, t)
t := t+100
WRITE(B,t)
U1(B)

2PLNot 2PL

Two-Phase Locking

T1
L1(A)
READ(A, t)
t := t+100
WRITE(A, t)
U1(A)
L1(B)
READ(B, t)
t := t+100
WRITE(B,t)
U1(B)

May 2, 2024 Serializability 37

T1
L1(A)
READ(A, t)
t := t+100
WRITE(A, t)
L1(B)
U1(A)
READ(B, t)
t := t+100
WRITE(B,t)
U1(B)

T1
L1(A)
L1(B)
READ(A, t)
t := t+100
WRITE(A, t)
U1(A)
READ(B, t)
t := t+100
WRITE(B,t)
U1(B)

2PLNot 2PL

Example with Multiple Transactions

Equivalent to each transaction executing entirely
the moment it enters shrinking phase

Locks 38

T1 T2 T3 T4

Growing
phase

Shrinking
phase

May 2, 2024

Two-Phase Locking
T1 T2
L1(A), L1(B)
READ(A, t)
t := t+100
WRITE(A, t),U1(A)

L2(A), READ(A, s)
s := s*2
WRITE(A,s)
L2(B)…

READ(B, t)
t := t+100
WRITE(B,t),U1(B)

READ(B,s)
s := s*2
WRITE(B,s),U2(B)

May 2, 2024 Serializability 39

Denied

May 2, 2024 Locks 40

Two-Phase Locking

Theorem: If all TXNs follow 2PL, then schedule is conflict-serializable

May 2, 2024 Locks 41

Two-Phase Locking

Theorem: If all TXNs follow 2PL, then schedule is conflict-serializable

Proof. Suppose precedence graph has a cycle

May 2, 2024 Locks 42

Two-Phase Locking

Theorem: If all TXNs follow 2PL, then schedule is conflict-serializable

Proof. Suppose precedence graph has a cycle

1 2

3

A

BC

…R1(A)…U1(A)…L2(A)…W2(A)…

time

May 2, 2024 Locks 43

Two-Phase Locking

Theorem: If all TXNs follow 2PL, then schedule is conflict-serializable

Proof. Suppose precedence graph has a cycle

1 2

3

A

BC

Edge due to element A
E.g. …R1(A)…W2(A)…

…R1(A)…U1(A)…L2(A)…W2(A)…

time

May 2, 2024 Locks 44

Two-Phase Locking

Theorem: If all TXNs follow 2PL, then schedule is conflict-serializable

Proof. Suppose precedence graph has a cycle

1 2

3

A

BC

Edge due to element A
E.g. …R1(A)…W2(A)…

…R1(A)…U1(A)…L2(A)…W2(A)…

time

T1 must release lock
before T2 can get the lock

May 2, 2024 Locks 45

Two-Phase Locking

Theorem: If all TXNs follow 2PL, then schedule is conflict-serializable

Proof. Suppose precedence graph has a cycle

1 2

3

A

BC

Edge due to element A
E.g. …R1(A)…W2(A)…

…R1(A)…U1(A)…L2(A)…W2(A)…

time

May 2, 2024 Locks 46

Two-Phase Locking

Theorem: If all TXNs follow 2PL, then schedule is conflict-serializable

Proof. Suppose precedence graph has a cycle

1 2

3

A

BC

…U1(A)…L2(A)…

time

May 2, 2024 Locks 47

Two-Phase Locking

Theorem: If all TXNs follow 2PL, then schedule is conflict-serializable

Proof. Suppose precedence graph has a cycle

1 2

3

A

BC Edge due to
element B

…U1(A)…L2(A)…

time

May 2, 2024 Locks 48

Two-Phase Locking

Theorem: If all TXNs follow 2PL, then schedule is conflict-serializable

Proof. Suppose precedence graph has a cycle

1 2

3

A

BC Edge due to
element B

…U1(A)…L2(A)…U2(B)…L3(B)…U3(C)…L1(C)…U1(A)…

time

T2 releases lock on B
after locking A

WHY??

May 2, 2024 Locks 49

Two-Phase Locking

Theorem: If all TXNs follow 2PL, then schedule is conflict-serializable

Proof. Suppose precedence graph has a cycle

1 2

3

A

BC Edge due to
element B

…U1(A)…L2(A)…U2(B)…L3(B)…U3(C)…L1(C)…U1(A)…

time

T2 releases lock on B
after locking A

WHY?? 2PL!!

May 2, 2024 Locks 50

Two-Phase Locking

Theorem: If all TXNs follow 2PL, then schedule is conflict-serializable

Proof. Suppose precedence graph has a cycle

1 2

3

A

BC Edge due to
element B

…U1(A)…L2(A)…U2(B)…L3(B)…U3(C)…L1(C)…U1(A)…

time

Comes after U2(B)

WHY??

May 2, 2024 Locks 51

Two-Phase Locking

Theorem: If all TXNs follow 2PL, then schedule is conflict-serializable

Proof. Suppose precedence graph has a cycle

1 2

3

A

BC

…U1(A)…L2(A)…U2(B)…L3(B)…U3(C)…L1(C)…U1(A)…

time

May 2, 2024 Locks 52

Two-Phase Locking

Theorem: If all TXNs follow 2PL, then schedule is conflict-serializable

Proof. Suppose precedence graph has a cycle

1 2

3

A

BC

…U1(A)…L2(A)…U2(B)…L3(B)…U3(C)…L1(C)…U1(A)…

time

May 2, 2024 Locks 53

Two-Phase Locking

Theorem: If all TXNs follow 2PL, then schedule is conflict-serializable

Proof. Suppose precedence graph has a cycle

1 2

3

A

BC

…U1(A)…L2(A)…U2(B)…L3(B)…U3(C)…L1(C)…U1(A)…

time

May 2, 2024 Locks 54

Two-Phase Locking

Theorem: If all TXNs follow 2PL, then schedule is conflict-serializable

Proof. Suppose precedence graph has a cycle

1 2

3

A

BC

…U1(A)…L2(A)…U2(B)…L3(B)…U3(C)…L1(C)…U1(A)…

time

Contradiction!

May 2, 2024 Locks 55

Two-Phase Locking

Theorem: If all TXNs follow 2PL, then schedule is conflict-serializable

Proof. Suppose precedence graph has a cycle

1 2

3

A

BC

…U1(A)…L2(A)…U2(B)…L3(B)…U3(C)…L1(C)…U1(A)…

time

Contradiction!

Precedence graph cannot have a cycle.
Schedule is conflict serializable.

Discussion

§Computers use locks in many places

§ In databases, we need locks with the 2PL rule to
guarantee conflict serializability

§However, 2PL fails to guarantee ”recoverability”

May 2, 2024 Locks 56

May 2, 2024 Locks 57

Strict 2PL

Rollback/Recovery

§ If a TXN issues Rollback,
then all its updates need to be undone

§ If another TXN read those dirty values,
then the system must abort that TXN as well

§But if the other TXN has already committed,
then big problem!

May 2, 2024 Locks 58

Example
T1 T2
L1(A),L1(B),READ(A, t)
t := t+100
WRITE(A, t),
READ(B, t)
t := t+100
WRITE(B,t), U1(A),U1(B)

.

.

.

.

.

.

.

May 2, 2024 Serializability 59

Example
T1 T2
L1(A),L1(B),READ(A, t)
t := t+100
WRITE(A, t),
READ(B, t)
t := t+100
WRITE(B,t), U1(A),U1(B)

. L2(A), READ(A, s)

. s := s*2

. WRITE(A,s),U2(A)

. L2(B), READ(B,s)

. s := s*2

. WRITE(B,s),U2(B)

.

May 2, 2024 Serializability 60

Example
T1 T2
L1(A),L1(B),READ(A, t)
t := t+100
WRITE(A, t),
READ(B, t)
t := t+100
WRITE(B,t), U1(A),U1(B)

. L2(A), READ(A, s)

. s := s*2

. WRITE(A,s),U2(A)

. L2(B), READ(B,s)

. s := s*2

. WRITE(B,s),U2(B)

. COMMIT

May 2, 2024 Serializability 61

Takes the $$$
and leaves

Example
T1 T2
L1(A),L1(B),READ(A, t)
t := t+100
WRITE(A, t),
READ(B, t)
t := t+100
WRITE(B,t), U1(A),U1(B)

. L2(A), READ(A, s)

. s := s*2

. WRITE(A,s),U2(A)

. L2(B), READ(B,s)

. s := s*2

. WRITE(B,s),U2(B)

. COMMIT
ROLLBACK

May 2, 2024 Serializability 62

Takes the $$$
and leaves

Example
T1 T2
L1(A),L1(B),READ(A, t)
t := t+100
WRITE(A, t),
READ(B, t)
t := t+100
WRITE(B,t), U1(A),U1(B)

. L2(A), READ(A, s)

. s := s*2

. WRITE(A,s),U2(A)

. L2(B), READ(B,s)

. s := s*2

. WRITE(B,s),U2(B)

. COMMIT
ROLLBACK

May 2, 2024 Serializability 63

Takes the $$$
and leaves

Undo the
writes to
A and B

Example
T1 T2
L1(A),L1(B),READ(A, t)
t := t+100
WRITE(A, t),
READ(B, t)
t := t+100
WRITE(B,t), U1(A),U1(B)

. L2(A), READ(A, s)

. s := s*2

. WRITE(A,s),U2(A)

. L2(B), READ(B,s)

. s := s*2

. WRITE(B,s),U2(B)

. COMMIT
ROLLBACK

May 3, 2024 Serializability 64

Takes the $$$
and leaves

Undo the
writes to
A and B

All these
reads were
“dirty reads”

Example
T1 T2
L1(A),L1(B),READ(A, t)
t := t+100
WRITE(A, t),
READ(B, t)
t := t+100
WRITE(B,t), U1(A),U1(B)

. L2(A), READ(A, s)

. s := s*2

. WRITE(A,s),U2(A)

. L2(B), READ(B,s)

. s := s*2

. WRITE(B,s),U2(B)

. COMMIT
ROLLBACK

May 3, 2024 Serializability 65

Takes the $$$
and leaves

Undo the
writes to
A and B

Unrecovarable
schedule

All these
reads were
“dirty reads”

Strict Two Phase Locking

The Strict 2PL rule is:

All locks are released at Commit/Rollback time

May 2, 2024 Locks 66

tim
e

Locks

Unlocks

Example Strict 2PL
T1 T2
L1(A), READ(A, t)
t := t+100
WRITE(A, t), L2(A)…
L1(B),READ(B, t)
t := t+100
WRITE(B,t)
ROLLBACK,U1(A),U1(B)

…. READ(A, s)
s := s*2
WRITE(A,s)
L2(B), READ(B,s)
s := s*2
WRITE(B,s)
COMMIT,U2(A),U2(B)

May 2, 2024 Serializability 67

Denied

Lock
right

before
read

Granted

Example Strict 2PL
T1 T2
L1(A), READ(A, t)
t := t+100
WRITE(A, t)
L1(B), READ(B, t)

L2(C), READ(C, s)
s := s*2
WRITE(C,s)
L2(B),

t := t+100
WRITE(B,t)
COMMIT,U1(A),U1(B)

…READ(B,s)
s := s*2
WRITE(B,s)
COMMIT,U2(A),U2(B)

May 2, 2024 Serializability 68

Interleaving
is possible;
it depends on
the conflicts

Strict Two Phase Locking

§ If all TXN follow the Strict 2PL rule, then any
schedule is conflict serializable and recoverable

§All RDBMS that use locking implement Strict 2PL:
• When TXN wants to read or write, RDBMs inserts a

Lock statement (unless TXN already has that lock)

• When TXN commits or rolls back, RDBMs inserts all
Unlock statements

§ Locking (even Strict 2PL) can lead to deadlocks.

May 2, 2024 Locks 69

Deadlocks

May 2, 2024 Serializability 70

2PL Deadlocks

May 2, 2024 Locks 71

T1 (A, B) T2 (B, C) T3 (C, D) T4 (D, A)
L(A) L(B) L(C) L(D)
L(B) blocked…

L(C) blocked…
L(D) blocked…

L(A) blocked…
… … … …

2PL Deadlocks

May 2, 2024 Locks 72

T1 (A, B) T2 (B, C) T3 (C, D) T4 (D, A)
L(A) L(B) L(C) L(D)
L(B) blocked…

L(C) blocked…
L(D) blocked…

L(A) blocked…
… … … …

Can’t make progress since locking
phase is not complete for any TXN!

2PL Deadlocks

May 2, 2024 Locks 73

T1 (A, B) T2 (B, C) T3 (C, D) T4 (D, A)
L(A) L(B) L(C) L(D)
L(B) blocked…

L(C) blocked…
L(D) blocked…

L(A) blocked…
… … … …

T1 T2 T3 T4

Checking for deadlock:
• Construct the WAITS-FOR graph
• Check if it has a cycle
Checking for a cycle is fast (see CSE373), but it is very
slow compared to the simple R/W operations

2PL Deadlocks

May 2, 2024 Locks 74

T1 (A, B) T2 (B, C) T3 (C, D) T4 (D, A)
L(A) L(B) L(C) L(D)
L(B) blocked…

L(C) blocked…
L(D) blocked…

L(A) blocked…
… … … …

If the DBMS finds a cycle:
• We rollback TXNs
• (Hopefully) make progress
• Notice: the app must always check if TXN was aborted

2PL Deadlocks

May 2, 2024 Locks 75

T1 (A, B) T2 (B, C) T3 (C, D) T4 (D, A)
L(A) L(B) L(C) L(D)
L(B) blocked…

L(C) blocked…
L(D) blocked…

L(A) blocked…

2PL Deadlocks

May 2, 2024 Locks 76

T1 (A, B) T2 (B, C) T3 (C, D) T4 (D, A)
L(A) L(B) L(C) L(D)
L(B) blocked…

L(C) blocked…
L(D) blocked…

L(A) blocked…
Abort, U(D)

2PL Deadlocks

May 2, 2024 Locks 77

T1 (A, B) T2 (B, C) T3 (C, D) T4 (D, A)
L(A) L(B) L(C) L(D)
L(B) blocked…

L(C) blocked…
L(D) blocked…

L(A) blocked…
Abort, U(D)

L(D)

2PL Deadlocks

May 2, 2024 Locks 78

T1 (A, B) T2 (B, C) T3 (C, D) T4 (D, A)
L(A) L(B) L(C) L(D)
L(B) blocked…

L(C) blocked…
L(D) blocked…

L(A) blocked…
Abort, U(D)

L(D)
(do operations)

2PL Deadlocks

May 2, 2024 Locks 79

T1 (A, B) T2 (B, C) T3 (C, D) T4 (D, A)
L(A) L(B) L(C) L(D)
L(B) blocked…

L(C) blocked…
L(D) blocked…

L(A) blocked…
Abort, U(D)

L(D)
(do operations)
Commit, U(C), U(D)

L(C)

Discussion

§Supporting transactions usually incurs a high cost

§Performance is measured in TXN/sec (TPS)
• 1,000-10,000 is OK
• 10,000-100,000 is GREAT
• 100,000-1,000,000 research papers only…

§ For higher TPS: NoSQL databases
• Distributed
• Single operation TXN (no transfer from ACC1 to ACC2!)
• Only for apps that can tolerate concurrency annomalies

May 2, 2024 Locks 80

