lation
dividusl

b

sessioniD

Date
Experimentin

NumberOfsession

Trial

Lrialip

PR

e
FKs

sessioniD

Setupid
Subjectid
ouration
NMiarker
Setupharker

Hote

NumberOfTrial

9
Y/
e /1

Record edMovichie

Trial_has_Timecourse

1
2

Trslip
Timecoursein

Timecourse

o

Timecourseld

Sandor

Frequency
SegmentiD

N

=

Rosiin

Ez;m* o
Waider!

\ N s
I 3
Cersél
Toras
Walto®

JofireMargaeran
Myroella Gregor

Vo
Iyn

|

I ) U ANV [ANAN

T

Sian0m g

Shuffe S5, S, 0n (o7

Worker 3 Worker 3

(a) Traditional parallel query plan

% pus
N
HyperCube pus

Shuffie
J,

s,

i

2

gCube shuffle-based parallel

ntroduction to Data Managemen

Transactions: Locks

May 2, 2024

Paul G. Allen School of Computer Science and Engineering

University of Washington, Seattle




= TXN = sequence of Reads and Writes of elements
= Schedule = interleaving of operations of TXNs

= Serial Schedule = one TXN after the other

= Serializable Schedule = equivalent to a serial one
= Conflict Serializable Schedule = ...

* Precedence Graph = to check conflict serializability

May 2, 2024 Locks




Recap: the Precedence Graph

— T

ry(A); 1(B); wWo(A); ra(B); r3(A); wy(B); ws(A); wy(B)

This schedule is NOT conflict-serializable

May 2, 2024



Note for HWs and Exams

Always draw the full graph, unless ONLY asked if
(yes or no) the schedule is conflict serializable

May 2, 2024 Locks



Today’s Agenda

= Concurrency control manager

= | ocks

= 2PL

= Strict 2PL

= Deadlocks

May 3, 2024




Concurrency Control Manager

» Scheduler a.k.a. Concurrency Control Manager
 The module that schedules the transaction’s actions

e

= Main goal: ensure the schedule is serializable

= Second goal: optimize for throughput

May 2, 2024




Concurrency Control Manager

Two types:

We discuss
only this

» Optimistic CC Manager (e.g. Snapshot Isolation)

» Pessimistic CC Manager (Locks)

May 2, 2024




Locks

May 2, 2024 Serializability



Locking Scheduler

» Each element has a unique lock

= Each TXN must acquire lock before R/W element

= [f the lock is held by another TXN, then wait

» Once lock is available, it may proceed

» The TXN must release the lock(s)

May 2, 2024




TXN Actions

* R,(A) = transaction T, reads element A

= \W(A) = transaction T, reads element A

= |,(A) = transaction T,acquires lock for element A

= U,(A) = transaction T, releases lock for element A

May 2, 2024




Recap: A Non-Serializable Schedule

Let’'s see how
locks can

T1 prevent this

READ(A, 1)

t:=t+100

WRITE(A, 1)
READ(A, s)
S =82
WRITE(A,s)
READ(B,s)
S =82
WRITE(B,s)

READ(B, t)

t:=t+100

WRITE(B,1)

May 2, 2024 Serializability



Locks in Action

T1 T2
L1(A), READ(A, t)

May 2, 2024 Serializability



Locks in Action

May 2, 2024

T1

12

L1(A), READ(A, t)
t:= t+100
WRITE(A, t),U1(A)
L1(B)

Serializability



Locks in Action

T1 T2
L1(A), READ(A, t)
t:= t+100
WRITE(A, t),U1(A)
L1(B)

Scheduler
decides that
T1 should wait
now

May 2, 2024 Serializability




Locks in Action

T1 T2

L1(A), READ(A, 1)

t:=t+100

WRITE(A, t),U1(A)

L1(8) Why wait?

Scheduler
decides that
T1 should wait
now

May 2, 2024

For various performance reasons:
|t takes long time to read B from disk, or
« T2 just arrived and has higher priority, or
« T2 was waiting for too long, or

We want to allow the scheduler lots of freedom
to schedule another TXN when it wants.

Our focus is only to prevent
non-serializable schedules

Serializability



Locks in Action

May 2, 2024

T1

12

L1(A), READ(A, t)
t:= t+100
WRITE(A, t),U1(A)
L1(B)

Serializability



Locks in Action

May 2, 2024

T1

12

L1(A), READ(A, t)
t:= t+100
WRITE(A, t),U1(A)
L1(B)

L2(A), READ(A, s)
S =82
WRITE(A,s),U2(A)

Serializability



Locks in Action

May 2, 2024

T1

12

L1(A), READ(A, t)
t:= t+100
WRITE(A, t),U1(A)
L1(B)

L2(A), READ(A, s)
S :=8*2
WRITE(A,s),U2(A)
L2(B)...

Serializability

Denied: T2

put to sleep



Locks in Action

T1 T2
L1(A), READ(A, 1)
t:=t+100
WRITE(A, t),U1(A)
L1(B)
L2(A), READ(A, s)
S:=s8"2
WRITE(A,s),U2(A)
Denied: T2
L2(B)... put to sleep

This is the key step:
we stopped the scheduler from
allowing T2 to read B at this time

May 3, 2024 Serializability



Locks in Action

T1

12

L1(A), READ(A, t)
t:= t+100
WRITE(A, t),U1(A)
L1(B)

After a while,
T1 is ready

to continue

READ(B, 1)
t:= t+100
WRITE(B, 1)

May 3, 2024

L2(A), READ(A, s)
S :=8*2
WRITE(A,s),U2(A)
L2(B)...

Serializability



Locks in Action

T1 T2
L1(A), READ(A, t)
t:= t+100
WRITE(A, t),U1(A)
L1(B)

L2(A), READ(A, s)
S =82
WRITE(A,s),U2(A)
L2(B)...
READ(B, t)

t:=t+100
lock on B

May 3, 2024 Serializability



Locks in Action

T1

12

L1(A), READ(A, t)
t:= t+100
WRITE(A, t),U1(A)
L1(B)

READ(B, t)
t:= t+100
WRITE(B,1),U1(B)

L2(A), READ(A, s)

S =82
WRITE(A,s),U2(A)
L2(B)...
T2 may
proceed
now
READ(B,s)
S =82

WRITE(B,s),U2(B

May 3, 2024

Serializability



Locks in Action

May 2, 2024

T1 T2

L1(A), READ(A, 1)

t:=t+100

WRITE(A, t),U1(A)

L1(B)
L2(A), READ(A, s)
S :=8*2
WRITE(A,s),U2(A)
L2(B)...

READ(B, t)

t:=t+100

WRITE(B,1),U1(B)

READ(B,s)
S :=8%2
WRITE(B,s),U2(B

Serializability

But there is a BIG problem!

(what???)




Locks in Action

T1 T2
L1(A), READ(A, t)
t:=t+100 But there is a BIG problem!
WRITE(A, t),U1(A) (what?7?7?)
L1(B)

L2(A), READ(A, s)

S =82

WRITE(A,s),U2(A)

L2(B)...
READ(B, t)
t :=t+100 Let’s replay...
WRITE(B,t),U1(B)

READ(B,s)

S =82

WRITE(B,s),U2(B

May 2, 2024

Serializability



Locks in Action

May 2, 2024

T1

12

L1(A), READ(A, t)
t:= t+100
WRITE(A, t),U1(A)

Serializability



Locks in Action

May 2, 2024

T1 12

L1(A), READ(A, t)
t:= t+100
WRITE(A, t),U1(A)

Serializability

Scheduler decided

to put T1 on wait
before it acquired L1(B)




Locks in Action

T1 12

L1(A), READ(A, 1)
t:=t+100
WRITE(A, t),U1(A)
L2(A), READ(A, s)
S :=8*2
WRITE(A,s),U2(A)
L2(B)

May 2, 2024 Serializability



Locks in Action

T1 12

L1(A), READ(A, 1)
t:=t+100
WRITE(A, t),U1(A)
L2(A), READ(A, s)
S :=8*2
WRITE(A,s),U2(A)

May 2, 2024 Serializability



Locks in Action

May 2, 2024

T1

12

L1(A), READ(A, 1)
t:= t+100
WRITE(A, t),U1(A)

L2(A), READ(A, s)
S :=8*2
WRITE(A,s),U2(A)
L2(B), READ(B,s)
S :=8*2
WRITE(B,s),U2(B)

Serializability



Locks in Action

May 2, 2024

T1

12

L1(A), READ(A, t)
t:= t+100
WRITE(A, t),U1(A)

L1(B)
READ(B, t)

t:= t+100
WRITE(B,1),U1(B)

L2(A), READ(A, s)
S :=8*2
WRITE(A,s),U2(A)
L2(B), READ(B,s)
S :=8*2
WRITE(B,s),U2(B)

Serializability



Locks in Action
T1

May 3, 2024

12

L1(A), READ(A, t)
t:= t+100
WRITE(A, t),U1(A)

L1(B)
READ(B, t)

t:= t+100
WRITE(B,1),U1(B)

L2(A), READ(A, s)
S :=8*2
WRITE(A,s),U2(A)
L2(B), READ(B,s)
S :=8*2
WRITE(B,s),U2(B)

This is a non-serializable schedule

Serializability



Locks in Action

May 3, 2024

T1

12

L1(A), READ(A, t)
t:= t+100
WRITE(A, t),U1(A)

L1(B)
READ(B, t)

t:= t+100
WRITE(B,1),U1(B)

S :=8*2

S :=8*2

Serializability

L2(A), READ(A, s)

WRITE(A,s),U2(A)
L2(B), READ(B,s)

WRITE(B,s),U2(B)

This is a non-serializable schedule

Solution: 2PL



2PL

May 2, 2024 Serializability



Two-Phase Locking

The 2PL rule:

In every TXN, all locks must come before any unlock

time

May 2, 2024



Two-Phase Locking

T1

L1(A)
READ(A, t)
t:= t+100
WRITE(A, 1)
U1(A)

L1(B)
READ(B, t)
t:= t+100
WRITE(B,t)
U1(B)

May 2, 2024

Serializability



Two-Phase Locking

T1

L1(A)
READ(A, t)
t:= t+100
WRITE(A, 1)
U1(A)

L1(B)
READ(B, t)
t:= t+100
WRITE(B,t)
U1(B)

May 2, 2024

T1

L1(A)
READ(A, t)
t:= t+100
WRITE(A, 1)
L1(B)

U1(A)
READ(B, t)
t:= t+100
WRITE(B,t)
U1(B)

Serializability




Two-Phase Locking

T1

L1(A)
READ(A, t)
t:= t+100
WRITE(A, t)
U1(A)

L1(B)
READ(B, t)
t:= t+100
WRITE(B,1)
U1(B)

May 2, 2024

T1

L1(A)
READ(A, t)
t:= t+100
WRITE(A, t)
L1(B)
U1(A)
READ(B, t)
t:= t+100
WRITE(B,1)
U1(B)

Serializability

T1

L1(A)

L1(B)
READ(A, t)
t:= t+100
WRITE(A, t)
U1(A)
READ(B, t)
t:= t+100
WRITE(B,1)
U1(B)




Example with Multiple Transactions

T1 12 T3 T4

Growing
phase

Shrinking |
phase

Equivalent to each transaction executing entirely
the moment it enters shrinking phase

May 2, 2024




Two-Phase Locking

May 2, 2024

T1

12

L1(A), L1(B)
READ(A, t)

t:= t+100
WRITE(A, t),U1(A)

READ(B, t)
t:= t+100
WRITE(B,1),U1(B)

L2(A), READ(A, s)
S :=8*2
WRITE(A,s)
L2(B)...

READ(B,s)
S :=8%2
WRITE(B,s),U2(B

Serializability




Two-Phase Locking

Theorem: If all TXNs follow 2PL, then schedule is conflict-serializable

May 2, 2024




Two-Phase Locking

Theorem: If all TXNs follow 2PL, then schedule is conflict-serializable

Proof. Suppose precedence graph has a cycle

May 2, 2024




Two-Phase Locking

Theorem: If all TXNs follow 2PL, then schedule is conflict-serializable

Proof. Suppose precedence graph has a cycle

_Ry(A)... L W,(A). .

time

May 2, 2024




Two-Phase Locking

Theorem: If all TXNs follow 2PL, then schedule is conflict-serializable

Proof. Suppose precedence graph has a cycle

Edge due to element A

_Ry(A)... . W,(A)...

time

May 2, 2024




Two-Phase Locking

Theorem: If all TXNs follow 2PL, then schedule is conflict-serializable

Proof. Suppose precedence graph has a cycle

Edge due to element A

T1 must release lock
before T2 can get the lock

W Ry(A)..U(A)...L(A)...W,(A)...

time

May 2, 2024




Two-Phase Locking

Theorem: If all TXNs follow 2PL, then schedule is conflict-serializable

Proof. Suppose precedence graph has a cycle

Edge due to element A

time

May 2, 2024




Two-Phase Locking

Theorem: If all TXNs follow 2PL, then schedule is conflict-serializable

Proof. Suppose precedence graph has a cycle

U (A)...Ly(A)...

time

May 2, 2024




Two-Phase Locking

Theorem: If all TXNs follow 2PL, then schedule is conflict-serializable

Proof. Suppose precedence graph has a cycle

U (A)...Ly(A)...

time

May 2, 2024




Two-Phase Locking

Theorem: If all TXNs follow 2PL, then schedule is conflict-serializable

Proof. Suppose precedence graph has a cycle

T2 releases lock on B

_ Edge due to
after locking A

element B

U (A)...L,(A)...U,(B)...

time

May 2, 2024




Two-Phase Locking

Theorem: If all TXNs follow 2PL, then schedule is conflict-serializable

Proof. Suppose precedence graph has a cycle

T2 releases lock on B

_ Edge due to
after locking A

element B

U (A)...L,(A)...U,(B)...

time

May 2, 2024




Two-Phase Locking

Theorem: If all TXNs follow 2PL, then schedule is conflict-serializable

Proof. Suppose precedence graph has a cycle

Comes after U,(B)

U (A)...L,(A)...U,(B)...L4(B)

time

May 2, 2024




Two-Phase Locking

Theorem: If all TXNs follow 2PL, then schedule is conflict-serializable

Proof. Suppose precedence graph has a cycle

U (A)...L,(A)...U,(B)...Ly(B)...Us(C)...

. >
time

May 2, 2024




Two-Phase Locking

Theorem: If all TXNs follow 2PL, then schedule is conflict-serializable

Proof. Suppose precedence graph has a cycle

U (A)...Ly(A)...Uy(B)...Ls(B)...Us(C)...L((C)...

. >
time

May 2, 2024




Two-Phase Locking

Theorem: If all TXNs follow 2PL, then schedule is conflict-serializable

Proof. Suppose precedence graph has a cycle

U (A)...Ly(A)...Uy(B)...Ls(B)...Us(C)...L{(C)...U (A)...

. >
time

May 2, 2024




Two-Phase Locking

Theorem: If all TXNs follow 2PL, then schedule is conflict-serializable

Proof. Suppose precedence graph has a cycle

Contradiction!

U (A)...Ly(A)...Uy(B)...Ls(B)...Us(C)...L{(C)...U,(A)...

. >
time

May 2, 2024




Two-Phase Locking

Theorem: If all TXNs follow 2PL, then schedule is conflict-serializable

Proof. Suppose precedence graph has a cycle

Precedence graph cannot have a cycle.
Schedule is conflict serializable.

Contradiction!

U (A)...Ly(A)...Uy(B)...Ls(B)...Us(C)...L((C)...U, (A)...

. >
time

May 2, 2024




Discussion

» Computers use locks in many places

= |[n databases, we need locks with the 2PL rule to
guarantee conflict serializability

» However, 2PL fails to guarantee "recoverability”

May 2, 2024




Strict 2PL




Rollback/Recovery

= [f a TXN issues Rollback,
then all its updates need to be undone

= |[f another TXN read those dirty values,
then the system must abort that TXN as well

= But if the other TXN has already committed,
then big problem!

May 2, 2024




May 2, 2024

T1 T2

L1(A),L1(B),READ(A, t)
t:= t+100

WRITE(A, t),

READ(B, t)

t:= t+100

WRITE(B,1), U1(A),U1(B)

Serializability



May 2, 2024

T1

T2

L1(A),L1(B),READ(A, t)
t:= t+100

WRITE(A, t),

READ(B, t)

t:= t+100

WRITE(B,1), U1(A),U1(B)

L2(A), READ(A, s)
S =82
WRITE(A,s),U2(A)
L2(B), READ(B,s)
S =82
WRITE(B,s),U2(B)

Serializability



T1

T2

L1(A),L1(B),READ(A, t)
t:= t+100

WRITE(A, t),

READ(B, t)

t:= t+100

WRITE(B,1), U1(A),U1(B)

L2(A), READ(A, s)
S =82
WRITE(A,s),U2(A)
L2(B), READ(B,s)
S =82
WRITE(B,s),U2(B)

COMMIT Takes the $$$
and leaves

May 2, 2024

Serializability



T1

T2

L1(A),L1(B),READ(A, t)
t:= t+100

WRITE(A, t),

READ(B, t)

t:= t+100

WRITE(B,1), U1(A),U1(B)

ROLLBACK

L2(A), READ(A, s)
S =82
WRITE(A,s),U2(A)
L2(B), READ(B,s)
S =82
WRITE(B,s),U2(B)

COMMIT Takes the $$$
and leaves

May 2, 2024

Serializability



Undo the

writes to
A and B

T1

T2

L1(A),L1(B),READ(A, t)
t:= t+100

WRITE(A, t),

READ(B, t)

t:= t+100

WRITE(B,1), U1(A),U1(B)

ROLLBACK

L2(A), READ(A, s)
S =82

WRITE(A,s),U2(A)
L2(B), READ(B,s)
S:=s*2

WRITE(B,s),U2(B)
COMMIT Takes the $$$

and leaves

May 2, 2024

Serializability



Undo the

writes to
A and B

T1

T2

L1(A),L1(B),READ(A, t)
t:= t+100

WRITE(A, t),

READ(B, t)

t:= t+100

WRITE(B,1), U1(A),U1(B)

ROLLBACK

L2(A), READ(A, s)
S :=8*2

WRITE(A,s),U2(A) All these

reads were
L2(B), READ(B,s) “dirty reads”
S 1= 8%2

WRITE(B,s),U2(B)
COMMIT Takes the $$%

and leaves

May 3, 2024

Serializability



Undo the

writes to
A and B

May 3, 2024

T1

T2

L1(A),L1(B),READ(A, t)
t:= t+100

WRITE(A, t),

READ(B, t)

t:= t+100

WRITE(B,1), U1(A),U1(B)

ROLLBACK

Unrecovarable
schedule

L2(A), READ(A, s)
S =82

WRITE(A,s),U2(A)
L2(B), READ(B,s)
S =82

WRITE(B,s),U2(B)
COMMIT

All these
reads were
“dirty reads”

Takes the $$%

and leaves

Serializability




Strict Two Phase Locking

The Strict 2PL rule is:

All locks are released at Commit/Rollback time

time

May 2, 2024



Example Strict 2PL

T1

T2

L1(A), READ(A, t)
t:= t+100

WRITE(A, t),
L1(B),READ(B, 1)
t:=t+100

WRITE(B,1)
ROLLBACK,U1(A),U1(B)

May 2, 2024

L2(A)...

... READ(A, s) ‘@

S :=8*2

WRITE(A,s)

L2(B), READ(B,s)

S :=8*2

WRITE(B,s)
COMMIT,U2(A),U2(B)

Serializability



Example Strict 2PL

T1

T2

L1(A), READ(A, t)
t:= t+100
WRITE(A, t)
L1(B), READ(B, t)

t:=t+100
WRITE(B,1)
COMMIT,U1(A),U1(B)

L2(C), READ(C, s)
S :=8"2
WRITE(C,s)
L2(B),

...READ(B,s)
S :=8*2
WRITE(B,s)

Interleaving
is possible;

it depends on
the conflicts

May 2, 2024

Serializability



Strict Two Phase Locking

= |f all TXN follow the Strict 2PL rule, then any
schedule is conflict serializable and recoverable

= All RDBMS that use locking implement Strict 2PL.:

 When TXN wants to read or write, RDBMs inserts a
Lock statement (unless TXN already has that lock)

« When TXN commits or rolls back, RDBMs inserts all
Unlock statements

» Locking (even Strict 2PL) can lead to deadlocks.

May 2, 2024 Locks




Deadlocks

May 2, 2024



2PL Deadlocks

L(A) L(B) L(C) L(D)
L(B) blocked...
L(C) blocked...
L(D) blocked...
L(A) blocked...

May 2, 2024




2PL Deadlocks

L(A) L(B) L(C) L(D)
L(B) blocked...
L(C) blocked...
L(D) blocked...
L(A) blocked...

Can’t make progress since locking
phase is not complete for any TXN!

May 2, 2024



2PL Deadlocks

L(A) L(B) L(C) L(D)
L(B) blocked...
L(C) blocked...
L(D) blocked...
L(A) blocked...

Checking for deadlock:

» Construct the WAITS-FOR graph

» Check if it has a cycle

Checking for a cycle is fast (see CSE373), but it is very
slow compared to the simple R/W operations

May 2, 2024




2PL Deadlocks

L(A) L(B) L(C) L(D)
L(B) blocked...

L(C) blocked...
L(D) blocked...
L(A) blocked...

If the DBMS finds a cycle:
 We rollback TXNs

* (Hopefully) make progress
* Notice: the app must always check if TXN was aborted

May 2, 2024



2PL Deadlocks

L(A) L(B) L(C) L(D)
L(B) blocked...
L(C) blocked...
L(D) blocked...
L(A) blocked...

May 2, 2024




2PL Deadlocks

L(A) L(B) L(C) L(D)
L(B) blocked...
L(C) blocked...
L(D) blocked...
L(A) blocked...
Abort, U(D)

May 2, 2024




2PL Deadlocks

L(A) L(B) L(C) L(D)
L(B) blocked...
L(C) blocked...
L(D) blocked...
L(A) blocked...
Abort, U(D)
L(D)

May 2, 2024




2PL Deadlocks

L(A) L(B) L(C) L(D)
L(B) blocked...
L(C) blocked...
L(D) blocked...
L(A) blocked...
Abort, U(D)
L(D)
(do operations)

May 2, 2024




2PL Deadlocks

L(A) L(B) L(C) L(D)
L(B) blocked...
L(C) blocked...
L(D) blocked...
L(A) blocked...
Abort, U(D)
L(D)
(do operations)
Commit, U(C), U(D)
L(C)

May 2, 2024




Discussion

» Supporting transactions usually incurs a high cost

» Performance is measured in TXN/sec (TPS)
« 1,000-10,000 is OK
« 10,000-100,000 is GREAT
* 100,000-1,000,000 research papers only...

= For higher TPS: NoSQL databases
* Distributed
 Single operation TXN (no transfer from ACC1 to ACC2!)
« Only for apps that can tolerate concurrency annomalies

May 2, 2024




