b

$estionlD
NumberOfsession
Date
1 | oxperimeatio
Py —_—
e [senpio I =7
[= S
g o [Senphame | A e
sarpType et
F11 [sessonid > [oee L]
NumberOfTrial Reiclation E
Filter %
#a [sabjectin setupCondton d =
st
NMarker >i!I ‘Worker 3 Worker 3
SetupMarker M, Y X ok
Recort edMovieFile viciTa i
et HII . | (a) Traditional parallel query plan
Triahas_Timecoursa Trial_has_Trajectory = N A " e
s N e 74 | — [—
; B = T o
....... ector X 2 »
Fi2 [rimecouwsen 2 [Tjectonyo Zi o o : [GIE] shme v X
¢ { ‘ol ! Podric o3 ¢ | BLJ—— s |
oras, KeyiShae’ 5
Timecourse Trajectory = c . ol e —
PX | Timece o LLRRT L] b= e
pune cjectary o G
B B it K7
Frequency frequency . Brom
Segmentid SegmentiD Menyn,
KindOfDats KindOfData Gendry yn
Nerames Markertd
g NFrames iCube shuffle-based parallel
LT

Introduction to Data Management

Transactions: Serializability

Paul G. Allen School of Computer Science and Engineering
University of Washington, Seattle

May 1, 2024 Serializability

Announcements

= Midterm is graded and released

» HW3 is almost graded

* HW4 is due on Friday

May 1, 2024 Serializability

Recap: Applications and Databases

Almost every app uses some database

» General purpose language (Java, Python)

= App issues SQL commands to RDBMS

» Usually, multiple apps (users) access same DB

May 1, 2024 Serializability

Recap: SQL in a Programming Language

Al Usr | Balance _

Alice 300
Bob 600
Carol 400
bl = b+a # the new balance

cur.execute ("UPDATE acc
SET balance = ?
WHERE usr=?",
[bl,usr])

May 1, 2024 Serializability

Recap: Single User

* The database is accessed by a single user:

Application

.
 ——
e

» RDBMS on same laptop, or a server, or the cloud

Database

May 1, 2024 Serializability

Recap: Client-Server

» Multiple users access the database concurrently

Application

®
®

May 1, 2024 Serializability

Transactions

May 1, 2024

Transactions

= A transaction is a set of read and writes to the
database that execute all or nothing

BEGIN TRANSACTION BEGIN TRANSACTION
...S50L Statements ...S50L Statements
COMMIT ROLLBACK

Entire txn is executed No part of txn is executed

May 1, 2024 Serializability

Transactions

» Prevent all concurrency control conflicts

» Easy to use in app: group statements in txns

» \What property does a TXN satisfy?

 Informally: “TXNs have ACID properties”

* Formally: “execution of TXNs must be serializable”

May 1, 2024 Serializability

ACID

May 1, 2024 Serializability

Transactions are ACID

= Atomic

= Consistent

= |[solated

= Durable

May 1, 2024 Serializability

» A set of operations is atomic if either all its
operations happen, or none happens

Update account1

System
crashed

here
Update account2

Recovery manager (not discussed in this class)

May 1, 2024 Serializability

Assume TXN is “correct” (this is app specific)

» [f TXN starts with the DB in a consistent state,
it must end leaving the DB in a consistent state

It is a consequence of Atomicity and Isolation

May 1, 2024 Serializability

|solated

= The effect of the transaction on the database is as
iIf it were running alone on the database

May 1, 2024

TXN1:

Update account1

Update account2

Concurrency Control Manager

TXN2:

Update account1

Update account2

Interleaved
actions
should not
interfere

Serializability

» Data should be stored persistently on disk, always
In a consistent state

May 1, 2024 Serializability

Discussion

» ACID properties: popular job interview question

= “A” and “I" matter
« Atomicity: recover from crashes
* |[solation: concurrency control

= ACID is informal.

Will discuss the formal property next

May 1, 2024 Serializability

Serializability

May 1, 2024

Problem Definition

» The RDBMs runs several TXNs: T1, T2, T3, ...

= |t could run T1 to completion before starting T2,
then run T2 to completion before starting T3,
then run T3...

May 1, 2024 Serializability

Problem Definition

» The RDBMs runs several TXNs: T1, T2, T3, ...

= |t could run T1 to completion before starting T2,
then run T2 to completion before starting T3,
then run T3...

But this has poor performance M

May 1, 2024 Serializability

Problem Definition

» The RDBMs runs several TXNs: T1, T2, T3, ...

= |t could run T1 to completion before starting T2,
then run T2 to completion before starting T3,
then run T3...

But this has poor performance M

* Instead: interleave commands from multiple TXNs

When is the interleaving "safe™?

May 1, 2024 Serializability

Transaction Modeling

For describing TXNs, we use a simple data model:

» Database = a set of “elements”
= TXN = a sequence of Reads/Writes of elements

= An element could be:

 Arecord, or
* A disk block, or

May 1, 2024 Serializability

T1

READ(A, t)
t:= t+100
WRITE(A, t)
READ(B, t)
t:= t+100
WRITE(B,1)

May 1, 2024

Serializability

T1

READ(A, t)
t:= t+100
WRITE(A, t)
READ(B, t)
t:= t+100
WRITE(B,1)

May 1, 2024

A,B are
elements
in the DB

Serializability

T1

A,B are
READ(A, t) elements
t = 1t+100 in the DB
WRITE(A,)
READ(B,)
t:=t+100 tis a local
WRITE(B,1) variable

in the app

May 1, 2024 Serializability

T1

READ(A, t)
t:= t+100
WRITE(A, t)
READ(B, t)
t:= t+100
WRITE(B,1)

May 1, 2024

A,B are
elements
in the DB

tis a local
variable
in the app

Serializability

T2

READ(A, s)
S :=8%2
WRITE(A,s)
READ(B,s)
S :=8%2
WRITE(B,s)

* An interleaving of READ/WRITEs from different
TXNs is called a schedule

» Definition: a serial schedule is a schedule where
all operations of transactions come before those of
the next transaction

» Definition: a serializable schedule is a schedule
that is equivalent to a serial schedule

May 1, 2024 Serializability

A Schedule

time

May 1, 2024

T1 T2
READ(A, 1)
READ(A, s)
S :=8*2
t:=t+100
WRITE(A, 1)
WRITE(A,s)
READ(B,s)
S :=8*2
READ(B, t)
WRITE(B,s)
t:=t+100
WRITE(B,1)

Serializability

A Serial Schedule

time

May 1, 2024

T1 T2

READ(A, 1)

t:=t+100

WRITE(A, 1)

READ(B, t)

t:=t+100

WRITE(B,1)
READ(A, s)
S :=8*2
WRITE(A,s)
READ(B,s)
S :=8*2
WRITE(B,s)

Serializability

A Serial Schedule

time

May 1, 2024

T1 T2

READ(A, 1)

t:=t+100

WRITE(A, 1)

READ(B, t)

t:=t+100

WRITE(B,1)
READ(A, s)
S :=8*2
WRITE(A,s)
READ(B,s)
S :=8*2
WRITE(B,s)

Serializability

A Serial Schedule

time

May 1, 2024

T1 T2

READ(A, 1)

t:=t+100

WRITE(A, 1)

READ(B, t)

t:=t+100

WRITE(B,1)
READ(A, s)
S :=8*2
WRITE(A,s)
READ(B,s)
S :=8*2
WRITE(B,s)

Serializability

A Serial Schedule

time

May 1, 2024

A =204
B =204

T1 T2

READ(A, 1)

t:=t+100

WRITE(A, 1)

READ(B, t)

t:=t+100

WRITE(B,1)
READ(A, s)
S :=8*2
WRITE(A,s)
READ(B,s)
S :=8*2
WRITE(B,s)

Serializability

The Other Serial Schedule

time

A=104
B =104

May 1, 2024

T1 T2
READ(A, s)
S :=8*2
WRITE(A,s)
READ(B,s)
S :=8*2
WRITE(B,s)

READ(A, 1)

t:=t+100

WRITE(A, 1)

READ(B, t)

t:=t+100

WRITE(B,1)

Serializability

A Serializable Schedule

T1 T2

READ(A, 1)

t:=t+100

WRITE(A, 1)
READ(A, s)
S :=8*2
WRITE(A,s)

READ(B, t)

t:=t+100

WRITE(B,1)
READ(B,s)
S :=8*2
WRITE(B,s)

May 1, 2024 Serializability

A Serializable Schedule

T1 T2

READ(A, 1)

t:=t+100

WRITE(A, 1)
READ(A, s)
S :=8*2
WRITE(A,s)

READ(B, t)

t:=t+100

WRITE(B,1)
READ(B,s)
S :=8*2
WRITE(B,s)

May 1, 2024 Serializability

A Serializable Schedule

T1 T2

READ(A, 1)

t:=t+100

WRITE(A, 1)
READ(A, s)
S :=8*2
WRITE(A,s)

READ(B, t)

t:=t+100

WRITE(B,1)
READ(B,s)
S :=8*2
WRITE(B,s)

May 1, 2024 Serializability

A Serializable Schedule

T1 T2

READ(A, 1)

t:=t+100

WRITE(A, 1)
READ(A, s)
S :=8*2
WRITE(A,s)

READ(B, t)

t:=t+100

WRITE(B,1)
READ(B,s)
S :=8*2
WRITE(B,s)

May 1, 2024 Serializability

A Serializable Schedule

T1 T2
READ(A, 1)
t:=t+100
WRITE(A, 1)
READ(A, s)
S =82
WRITE(A,s)
READ(B, t)
t:=t+100
WRITE(B,1)
READ(B,s)
This is NOT a serial schedule S = 8*2
It is a serializable schedule. WRITE(B,s)

May 1, 2024 Serializability

A Non-Serializable Schedule

May 1, 2024

T1 T2

READ(A, 1)

t:=t+100

WRITE(A, 1)
READ(A, s)
S :=8*2
WRITE(A,s)
READ(B,s)
S :=8*2
WRITE(B,s)

READ(B, t)

t:=t+100

WRITE(B,1)

Serializability

A Non-Serializable Schedule

May 1, 2024

T1 T2

READ(A, 1)

t:=t+100

WRITE(A, 1)
READ(A, s)
S :=8*2
WRITE(A,s)
READ(B,s)
S :=8*2
WRITE(B,s)

READ(B, t)

t:=t+100

WRITE(B,1)

Serializability

A Non-Serializable Schedule

May 1, 2024

T1 T2

READ(A, 1)

t:=t+100

WRITE(A, 1)
READ(A, s)
S :=8*2
WRITE(A,s)
READ(B,s)
S :=8*2
WRITE(B,s)

READ(B, t)

t:=t+100

WRITE(B,1)

Serializability

A Non-Serializable Schedule

May 1, 2024

T1 T2

READ(A, 1)

t:=t+100

WRITE(A, 1)
READ(A, s)
S :=8*2
WRITE(A,s)
READ(B,s)
S :=8*2
WRITE(B,s)

READ(B, t)

t:=t+100

WRITE(B,1)

Serializability

A Non-Serializable Schedule

May 1, 2024

T1 T2

READ(A, 1)

t:=t+100

WRITE(A, 1)
READ(A, s)
S :=8*2
WRITE(A,s)
READ(B,s)
S :=8*2
WRITE(B,s)

READ(B, t)

t:=t+100

WRITE(B,t) impossible!

Serializability

Discussion

= |f the schedule is serial, then nothing can go wrong

s Same for a serializable schedule

= Concurrency Control Manager of the RDBMs must
ensure that the schedule is serializable

How do we check that a schedule is serializable?

May 1, 2024 Serializability

Conflict Serializability

May 1, 2024

We further simplify the model:

= A transaction is a sequence of reads and writes

= \We ignhore operations between reads and writes

May 1, 2024 Serializability

T1

READ(A, t)
t:= t+100
WRITE(A, t)
READ(B, t)
t:= t+100
WRITE(B,1)

May 1, 2024

R(A)
I W(A)
R(B)
W(B)
Also: R1(A), W1(A), R1(B), W1(B)

Serializability

*T1then T2

R1(A)’ W‘l(A)’ R1(B)v W1(B)’ RZ(A)’ WZ(A)’ RZ(B)’ WZ(B)

R(A)
W(A)
R(B)
g wp)
- R(A)
W(A)
R(B)
W(B)

May 1, 2024 Serializability

* T2 then T1

RZ(A)’ WZ(A)’ RZ(B)v WZ(B)’ R'](A)’ VV‘l(A)’ R1(B)’ W1(B)

R(A)
W(A)
R(B)
W(B)

R(A)

W(A)

R(B)

W(B)

May 1, 2024 Serializability

= Serializable to T1 then T2

R1(A)’ W‘l(A)’ RZ(A)v WZ(A)’ R'](B)’ VV‘l(B)’ RZ(B)’ WZ(B)

R(A)
W(A)
R(A)
w(a)
R(B)
W(B)
R(B)
W(B)

May 1, 2024 Serializability

= Not serializable

R1(A)’ W‘l(A)’ RZ(A)v WZ(A)’ RZ(B)’ WZ(B)’ R1(B)’ W1(B)

R(A)

W(A)
R(A)
W(A)
R(B)
W(B)

R(B)

W(B)

May 1, 2024 Serializability

* To check if a schedule is serializable, try swapping
operations until it becomes serial:

. R(A), W,(B),...| =mmmp | W(B),R(A), ...

» But we only swap if the new schedule is equivalent

= A pair is in conflict if it cannot be swapped

May 1, 2024 Serializability

Conflicts

1. Any pair of ops of the same TXN are in conflict
2. Ri(X), Wi(X) forms a read-write conflict

3. Wi(X), Ri(X) forms a write-read conflict

4. Wi(X), W;(X) forms a write-write conflict

May 1, 2024 Serializability

Conflict Serializable Schedule

A schedule is conflict serializable if it can be
transformed into a serial schedule by a series of
swappings of adjacent non-conflicting actions

May 1, 2024 Serializability

Conflict Serializable Schedule Example

R(A)
W(A)
R(A)
w(a)
R(B)
W(B)
R(B)
W(B)

May 1, 2024 Serializability

Conflict Serializable Schedule Example

R(A)
W(A)
R(A)
R(B)
w(A)
W(B)
R(B)
W(B)

May 1, 2024 Serializability

Conflict Serializable Schedule Example

May 1, 2024

R(A)
W(A)
R(B)
R(A)
w(A)
W(B)
R(B)
W(B)

Serializability

Conflict Serializable Schedule Example

R(A)

W(A)
R(B)
W(B)

May 1, 2024 Serializability

Conflict Serializable Schedule Example

R(A)

W(A)

R(B)

W(B)
R(A)
w(A)
R(B)
W(B)

May 1, 2024 Serializability

Non Conflict Serializable Schedule Example

R(A)

W(A)
R(A)
w(a)
R(B)
W(B)

R(B)

W(B)

May 1, 2024 Serializability

Non Conflict Serializable Schedule Example

May 1, 2024

R(A)

W(A)
R(A)
W(A)
R(B)

R(B)
W(B) x Conflict rule broken!

W(B)

Serializability

Serializable vs Conflict Serializable

Conflict serializability ignores what TXN does between the R’s and the W’s.
It assumes the worst / most complicated updates to the data

May 1, 2024 Serializability

Serializable vs Conflict Serializable

Conflict serializability ignores what TXN does between the R’s and the W’s.
It assumes the worst / most complicated updates to the data

Not serializable nor conflict serializable

A€A+100 { RIA)
W(A)

R(A)
— ACA*2

wa)

R(B) — B<B*2

wB) |

R(B)
B<B+100 W(B)

May 1, 2024 Serializability

Serializable vs Conflict Serializable

Conflict serializability ignores what TXN does between the R’s and the W’s.
It assumes the worst / most complicated updates to the data

Serializable (because 100+2 = 2+100)
But not conflict serializable, because it assumes the worst

A€A+100 { RIA)
W(A)

R(A)
— A<CA+2

wAa)

R(B) — B<B+2

we)

R(B)
B<B+100 W(B)

May 1, 2024 Serializability

Discussion

» Most RDBMs enforce conflict-serializability

* Next: how to test for conflict-serializability

May 1, 2024 Serializability

The Precedence Graph

May 1, 2024

Testing for Conflict Serializability

Fix a schedule

» Definition. The precedence graph has one node
for every TXN in the schedule, and one edge for
every pair of conflicting ops

*» Theorem. The schedule is conflict-serializable iff
the precedence graph has no cycles

May 1, 2024 Serializability

Example 1

ro(A); r1(B); wo(A); r3(A); wy(B); wa(A); ra(B); wy(B)

May 1, 2024

Example 1

ro(A); r1(B); wo(A); r3(A); wy(B); wa(A); ra(B); wy(B)

Nodes: @ @ @

Example 1

W, (A); r3(A); wy(B); ws(A); rx(B); wy(B)

(A][1,(B)
_— ——

W, (A); r3(A); wy(B); ws(A); rx(B); wy(B)

ro(A) || 14(B)

W, (A); r3(A); wy(B); ws(A); rx(B); wy(B)

r)(A)

r{(B)

No edge because
no conflict (A != B)

W, (A); r3(A); wy(B); ws(A); rx(B); wy(B)

May 1, 2024

rp(A) || Wa(A)

); r3(A); wq(B); w3(A); ra(B); wy(B)

r)(A)

Wy (A)

No edge because
same txn (2)

); r3(A); wq(B); w3(A); ra(B); wy(B)

May 1, 2024

ry(A) || ra(A) | 7

| 13(A)] wq(B); ws(A); ra(B); wy(B)

w;(B); W(A); 1,(B); w,(B)

ry(A) || Wa(A) | 7

| 11(B); wx(A); r3(A); wq(B); ws(A);

r)(A)

W3(A)

Edge! Conflict from
T2t0 T3

Edges: <:> <:>

| r1(B); wy(A); r3(A); wq(B);

W3(A); 1a(B); wy(B)

May 1, 2024

r)(A)

W3(A)

Edge! Conflict from
T2t0 T3

| r1(B); wy(A); r3(A); wq(B);

Edges: <:> <2>

W3(A); 1a(B); wy(B)

May 1, 2024

r(A) || 1a(B) |

| 11(B); wx(A); r3(A); wq(B); ws(A);

Edges: @ @ A @

And so on until compared every pair of actions...

May 1, 2024

Example 1

— T
ro(A); r1(B); wo(A); r3(A); wy(B); wa(A); ra(B); wy(B)

Edges: @ @ @

Repeating the same directed edge not necessary

May 1, 2024

Example 1

L T

ro(A); r1(B); wy(A); r3(A); wy(B); ws(A); ry(B); w,(B)
///'

))

This schedule is conflict-serializable

May 1, 2024

Example 2

ry(A); 1(B); wWo(A); ra(B); r3(A); wy(B); ws(A); wy(B)

May 1, 2024

Example 2

ry(A); 1(B); wWo(A); ra(B); r3(A); wy(B); ws(A); wy(B)

Example 2

— T

ry(A); 1(B); wWo(A); ra(B); r3(A); wy(B); ws(A); wy(B)

Example 2

— T

ry(A); 1(B); wWo(A); ra(B); r3(A); wy(B); ws(A); wy(B)

P N S

1 {2) (3)

This schedule is NOT conflict-serializable

May 1, 2024

