
1

Transactions



Announcement

§Midterm is almost graded, to be released today
• Scores appear highly correlated with attendance

§ Final exam will be comprehensive:
• Includes this material plus what we cover in 2nd half

§HW4 dues on Friday

April 29, 2024 Serializability 2



Terminology

Two types of query workloads:

§Online Analytical Processing (OLAP)
• SELECT-FROM-WHERE are complex
• No INSERT/UPDATE/DELTE, or very few
• For data visualization (eg Tableau), or interactive SQL

§Online Transaction Processing (OLTP):
• Lots of INSERT/UPDATE/DELETE
• SELECT-FROM-WHERE are very simple
• Used in Java/Python apps

April 29, 2024 Serializability 3

Next few
lectures

We focused
on these



Applications and Databases

Almost every app uses some database

§General purpose language (Java, Python) 

§App issues SQL commands to RDBMS

§Usually, multiple apps (users) access same DB

April 29, 2024 Serializability 4



Simple Banking App in Python

§Manage user accounts:
• Names
• Balances
• …

§Allow users to:
• Inquire balance
• Deposit cash/check
• Withdraw cash
• Transfer money

April 29, 2024 Serializability 5



April 29, 2024 Serializability 6

Simple Banking App in Python

CREATE TABLE Acc (
   Usr TEXT PRIMARY KEY,
   Balance INT);

SQL Usr Balance
Alice 300
Bob 600
Carol 400

Acc



April 29, 2024 Serializability 7

Simple Banking App in Python

CREATE TABLE Acc (
   Usr TEXT PRIMARY KEY,
   Balance INT);

import sqlite3
con = sqlite3.connect("/Users/suciu/temp/bank.db",
                      autocommit=True)

cur = con.cursor()
res = cur.execute("SELECT * FROM acc")
answ = res.fetchall()
print("The answer is: ", answ)

* Documentation here https://docs.python.org/3/library/sqlite3.html 

SQL

Python*

Usr Balance
Alice 300
Bob 600
Carol 400

Acc

https://docs.python.org/3/library/sqlite3.html


April 29, 2024 Serializability 8

Simple Banking App in Python

CREATE TABLE Acc (
   Usr TEXT PRIMARY KEY,
   Balance INT);

import sqlite3
con = sqlite3.connect("/Users/suciu/temp/bank.db",
                      autocommit=True)

cur = con.cursor()
res = cur.execute("SELECT * FROM acc")
answ = res.fetchall()
print("The answer is: ", answ)

* Documentation here https://docs.python.org/3/library/sqlite3.html 

SQL

Python*

Usr Balance
Alice 300
Bob 600
Carol 400

Acc

SQL query
sent to DBMS

https://docs.python.org/3/library/sqlite3.html


April 29, 2024 Serializability 9

DEMO: 
 lec16_txn_demo_create_table.sql
 lec16_txn_demo_simple_1.py



Terminology: Client/Server

§Client: 
• The program running the application
• In our example: a python program running on laptop
• In general: a big program on laptop or in the cloud

§Server:
• The database management system
• In our example it is Sqlite on laptop
• In general: any RDBMS, on remote server or in cloud

April 29, 2024 Serializability 10



April 29, 2024 Serializability 11

Parameterized Query

res = cur.execute("SELECT * FROM acc")
answ = res.fetchall()
for row in answ:
    usr = row[0]
    bal = row[1]
    b = int(bal)
    i = b*0.04
    cur.execute("UPDATE acc 
       SET balance=?
                 WHERE usr=?",
                 [b+i, usr])

Give every user a 4% interest



April 29, 2024 Serializability 12

Parameterized Query

res = cur.execute("SELECT * FROM acc")
answ = res.fetchall()
for row in answ:
    usr = row[0]
    bal = row[1]
    b = int(bal)
    i = b*0.04
    cur.execute("UPDATE acc 
       SET balance=?
                 WHERE usr=?",
                 [b+i, usr])

Give every user a 4% interest
Read data



April 29, 2024 Serializability 13

Parameterized Query

res = cur.execute("SELECT * FROM acc")
answ = res.fetchall()
for row in answ:
    usr = row[0]
    bal = row[1]
    b = int(bal)
    i = b*0.04
    cur.execute("UPDATE acc 
       SET balance=?
                 WHERE usr=?",
                 [b+i, usr])

Give every user a 4% interest

Parameterized query



April 29, 2024 Serializability 14

DEMO: 
 lec16_txn_demo_simple_2.py



Simple Banking App in Python

Our application should:
§Read a username
§Repeat:

• Read a command
• Execute that command

§ The command can be:
• Check the balance
• Deposit money
• Withdraw money
• Transfer between accounts

April 29, 2024 Serializability 15



April 29, 2024 Serializability 16

Simple Banking App in Python

usr = input("Enter the user name: ")

res = cur.execute("SELECT *
                   FROM acc
                   WHERE usr=?",
                  [usr])
if res.fetchone() is None:
    print("Wrong user. Exit")
    exit()

Read a username, check if exists:

We check
that the user

exists



April 29, 2024 Serializability 17

Simple Banking App in Python

while True:
   cmd = input()
   if cmd == “b”: ... check balance
   elif cmd == “d”: ... deposit
   elif cmd == “w”:  ... withdraw
   elif cmd == “t”: ... transfer
   elif cmd == “q”: exit()

A simple loop for executing commants:



April 29, 2024 Serializability 18

Simple Banking App in Python

res = cur.execute("SELECT balance 
                   FROM acc
                   WHERE usr=?",
                  [usr])
row = res.fetchone()
b = row[0]
print(“Balance is”, b)

Check balance

Fetch one
row/tuple

from output

First element
of the tuple



April 29, 2024 Serializability 19

Simple Banking App in Python

... Read the balance b as before
amount = input() # amount to be deposited
a = int(amount)
b1 = b+a    # the new balance
cur.execute("UPDATE acc
             SET balance = ? 
             WHERE usr=?",
             [b1,usr])

Deposit



April 29, 2024 Serializability 20

Simple Banking App in Python

Withdraw

... Read the balance b as before
amount = input() # amount to be withdrawn
a = int(amount)
#
# THE BANK DISPENSES MONEY HERE!
#
b1 = b-a    # the new balance
cur.execute("UPDATE acc
             SET balance = ? 
             WHERE usr=?",
             [b1,usr])



April 29, 2024 Serializability 21

Simple Banking App in Python

... Read the balance b as before
amount = input() # amount to be withdrawn
a = int(amount)
#
# THE BANK DISPENSES MONEY HERE!
#
b1 = b-a    # the new balance
cur.execute("UPDATE acc
             SET balance = ? 
             WHERE usr=?",
             [b1,usr])

Withdraw

We need to check
if there is enough

money!



April 29, 2024 Serializability 22

Simple Banking App in Python

... Read the balance b as before
amount = input() # amount to be withdrawn
a = int(amount)
if a>b:    # error: overdraft!
   exit()
#
# THE BANK DISPENSES MONEY HERE!
#
b1 = b-a    # the new balance
cur.execute("UPDATE acc
             SET balance = ? 
             WHERE user=?",
             [b1,usr])

Withdraw

Better now



April 29, 2024 Serializability 23

Simple Banking App in Python
... Read the balance b as before
amount = input() # amount to be transferred
a = int(amount)
if a>b:    # error: overdraft!
   exit()
usrt = input()  # to whom to transfer
... Read the balance bt of usrt
b1 = b-a
bt1 = bt+a
cur.execute("UPDATE acc
             SET balance = ? 
             WHERE user=?",
             [b1,usr]) 
cur.execute("UPDATE acc
             SET balance = ? 
             WHERE user=?",
             [bt1,usrt])

Transfer



April 29, 2024 Serializability 24

DEMO: 
 lec16_txn_demo.py
 single user



Discussion so Far

§ The users Alice, Bob, … don’t need to know SQL, 
but interact with the app;

§ The app usually has a nice User Interface (UI)

§ The database is persistent: it retains the data for a 
long period of time

April 29, 2024 Serializability 25



April 29, 2024 Serializability 26

Concurrency



Single-Server

§ The database is accessed by a single user:

§RDBMS on same laptop, or a server, or the cloud

Transactions: Serializability 27

Application

Database



Client-Server or Two-Tier Architecture

§Multiple users access the database concurrently

Transactions: Serializability 28

ODBC/JDBC

Application

Database

Application

. . .



April 29, 2024 Serializability 29

DEMO: 
 lec16_txn_demo.py
 multiple users

lec16_txn_demo_txn_no.sql



April 29, 2024 Serializability 30

What We Have Seen

-- Alice withdraws $100
b = SELECT balance
 FROM acc
 WHERE user = ‘Alice’;
-- Is b >= 100?  Yes:
-- Dispense money

UPDATE acc SET balance=b-100
WHERE user = ‘Alice’

How Alice and Bob colluded to steal $100 (simplified, using only SQL)
Current balance of Alice is $100:

-- Bob impersonates Alice
-- and also withdraws $100
b = SELECT balance
 FROM acc
 WHERE user = ‘Alice’;
-- Is b >= 100?  Yes:
-- Dispense money
UPDATE acc SET balance=b-100
WHERE user = ‘Alice’

time



Discussion

§Users Alice, Bob, … can access the same 
database concurrently

§ This may lead to the database being inconsistent, 
which is a big problem

April 29, 2024 Serializability 31



April 29, 2024 Serializability 32

Consistency



Database Consistency

§Consistency: a property that should always hold
• Every account balance is ≥0
• The sum of all balances is constant,

or changes exactly by the amount deposited/withdrawn

§ If we write the application correctly, we expect the 
database to remain consistent

§But (without transactions!) things can go wrong 
during concurrency.  Next.

April 29, 2024 Serializability 33



April 29, 2024 Serializability 34

Conflicts Between
Concurrent Operations



Common Concurrency Conflicts

§ Lost Update

§Dirty/Inconsistent Read

§Unrepeatable Read

§Phantom Read

These have popular names, but all sorts of other 
conflicts can happen.  Let’s see these.

April 29, 2024 Serializability 35



Transactions: Serializability 36

Dirty/Inconsistent Read

Manager wants to 
balance project budgets

CEO wants to check 
company balance

tim
e

• Dirty/Inconsistent Read
• Unrepeatable Read
• Lost UpdateA inconsistent read happens when

data is read "during" a write



Transactions: Serializability 37

Dirty/Inconsistent Read

-$10mil from project A

+$7mil to project B

+$3mil to project C

SELECT SUM(money) …

tim
e

• Dirty/Inconsistent Read
• Unrepeatable Read
• Lost Update

Manager wants to 
balance project budgets

CEO wants to check 
company balance

A inconsistent read happens when
data is read "during" a write



Transactions: Serializability 38

Dirty/Inconsistent Read

-$10mil from project A

+$7mil to project B

+$3mil to project C

SELECT SUM(money) …

tim
e

• Dirty/Inconsistent Read
• Unrepeatable Read
• Lost Update

Manager wants to 
balance project budgets

CEO wants to check 
company balance

A inconsistent read happens when
data is read "during" a write



Transactions: Serializability 39

Dirty/Inconsistent Read

-$10mil from project A

+$7mil to project B

+$3mil to project C

SELECT SUM(money) …

tim
e

• Dirty/Inconsistent Read
• Unrepeatable Read
• Lost Update

Manager wants to 
balance project budgets

CEO wants to check 
company balance

A inconsistent read happens when
data is read "during" a write



Transactions: Serializability 40

Dirty/Inconsistent Read

-$10mil from project A

+$7mil to project B

+$3mil to project C

SELECT SUM(money) …

tim
e

• Dirty/Inconsistent Read
• Unrepeatable Read
• Lost Update

Manager wants to 
balance project budgets

CEO wants to check 
company balance

Database is 
temporarily 
inconsistent

A inconsistent read happens when
data is read "during" a write



Transactions: Serializability 41

Unrepeatable Read

SELECT inventory
FROM Products
WHERE pid = 1

SELECT inventory*price
FROM Products
WHERE pid = 1

UPDATE Products
SET inventory = 0
WHERE pid = 1

Might get a value that doesn’t 
correspond to previous read!

tim
e

• Dirty/Inconsistent Read
• Unrepeatable Read
• Lost Update

Accountant wants to 
check company assets

Warehouse updates 
inventory levels

An unrepeatable read happens when
data read twice differs



Transactions: Serializability 42

Aside: Phantom Read

Accountant wants to 
check company assets

SELECT *
FROM products
WHERE price < 10.00

SELECT *
FROM products
WHERE price < 20.00

INSERT INTO Products
VALUES (‘nuts’, 10, 8.99)

Returns a “new” row that should 
have been in the last read!

tim
e

• Dirty/Inconsistent Read
• Unrepeatable Read
• Lost Update

Warehouse receives new 
products

A phantom read happens when
a record is inserted/delete during reads



Transactions: Serializability 43

Lost Update

User 1 wants to pool 
money into account 1

User 2 wants to pool money 
into account 2

Account 1 = 100, Account 2 = 100

tim
e

A lost update happens 
when a write "disappears"

• Dirty/Inconsistent Read
• Unrepeatable Read
• Lost Update



Transactions: Serializability 44

Lost Update

Set account 1 = 200

Set account 2 = 0

Account 1 = 100, Account 2 = 100

tim
e

• Dirty/Inconsistent Read
• Unrepeatable Read
• Lost Update

User 1 wants to pool 
money into account 1

User 2 wants to pool money 
into account 2

A lost update happens 
when a write "disappears"



Transactions: Serializability 45

Lost Update

Set account 2 = 200

Set account 1 = 200

Set account 2 = 0

Set account 1 = 0

Account 1 = 100, Account 2 = 100

tim
e

• Dirty/Inconsistent Read
• Unrepeatable Read
• Lost Update

User 1 wants to pool 
money into account 1

User 2 wants to pool money 
into account 2

A lost update happens 
when a write "disappears"



Transactions: Serializability 46

Lost Update

Set account 2 = 200

Set account 1 = 200

Set account 2 = 0

Set account 1 = 0

Account 1 = 100, Account 2 = 100

tim
e

At end: Account 1 = 0, Account 2 = 200 

• Dirty/Inconsistent Read
• Unrepeatable Read
• Lost Update

User 1 wants to pool 
money into account 1

User 2 wants to pool money 
into account 2

A lost update happens 
when a write "disappears"



Transactions: Serializability 47

Lost Update

User 1 wants to pool 
money into account 1

User 2 wants to pool money 
into account 2

Set account 2 = 200
Set account 1 = 200

Set account 2 = 0
Set account 1 = 0

Account 1 = 100, Account 2 = 100

tim
e

At end: Account 1 = 0, Account 2 = 0 

• Dirty/Inconsistent Read
• Unrepeatable Read
• Lost UpdateA lost update happens 

when a write "disappears"



April 29, 2024 Serializability 48

Transactions



Transactions

§A transaction is a set of read and writes to the 
database that execute all or nothing

April 29, 2024 Serializability 49

BEGIN TRANSACTION
  ...SQL Statements
COMMIT

BEGIN TRANSACTION
  ...SQL Statements
ROLLBACK

No part of txn is executedEntire txn is executed



Transactions

§Prevent all concurrency control conflicts

§Easy to use in app: group statements in txns

§ Let’s see how they work

April 29, 2024 Serializability 50



April 29, 2024 Serializability 51

DEMO: 
lec16_txn_demo_txn_yes.sql


