lation
dividusl

b

sessioniD

NumberOfsession

Date
K1 [Experimentin

Trial

7% |Idalio

K1 [sessioniD
NumberOfTrial
K2 [setupin
#K3 [Subjectid

ouration
NMiarker
Setupharker
Record edMovichie
Hote

Trial_has_Timecourse

Trial_has_Trajectory

i [rrstin
K2 [rimecoursein

[T NIy
K2 | TrajectoryiD

Timecourse

Trajectory

Px | Timecoursel

K [TesjectoryiD

Frequency
SegmentiD

N

Frequency
Segmentid

Worker 3 Worker 3

s o

'MelisandiThéon

(a) Traditional parallel query plan

o ¢ A P
5y o Renlyam
NVANPZ WAL Tyrion (C
) X g HyperCube w3
73 i Cersél > Shuffle b Ll
e ; Podrick H —
e Kevsroe H [s]
Walton JoffreMargascion
Myroella Gregor
a1 ~Tho"Gienna >4l kv
2 Bronn
Meryn
Gendry iyn

gCube shuffle-based parallel

Introduction to Data Managemen

Transactions

Paul G. Allen School of Computer Science and Engineering

University of Washington, Seattle

Announcement

= Midterm is almost graded, to be released today
« Scores appear highly correlated with attendance

* Final exam will be comprehensive:
* Includes this material plus what we cover in 2" half

» HW4 dues on Friday

April 29, 2024 Serializability

Terminology

Two types of query workloads:

We focused
» Online Analytical Processing (OLAP)

« SELECT-FROM-WHERE are complex
 No INSERT/UPDATE/DELTE, or very few
* For data visualization (eg Tableau), or interactive SQL

» Online Transaction Processing (OLTP):
 Lots of INSERT/UPDATE/DELETE
« SELECT-FROM-WHERE are very simple

» Used in Java/Python apps
lectures

April 29, 2024 Serializability

Applications and Databases

Almost every app uses some database

» General purpose language (Java, Python)

= App issues SQL commands to RDBMS

» Usually, multiple apps (users) access same DB

April 29, 2024 Serializability

Simple Banking App in Python

» Manage user accounts:
« Names
e Balances

= Allow users to:
 Inquire balance
» Deposit cash/check
« Withdraw cash
* Transfer money

April 29, 2024 Serializability

Simple Banking App in Python

>3 aCCll Usr | Balance

CREATE TABLE Acc (Alice 300
Usr TEXT PRIMARY KEY,
Balance INT) ;

Bob 600
Carol 400

April 29, 2024 Serializability

Simple Banking App in Python

> aCCll Usr | Balance

CREATE TABLE Acc (Alice 300

Usr TEXT PRIMARY KEY,
Balance INT); Bob 600
Carol 400

Python*

import sqglite3
con = sqglite3.connect ("/Users/suciu/temp/bank.db",
autocommit=True)

cur = con.cursor ()

res = cur.execute ("SELECT * FROM acc")
answ = res.fetchall ()

print ("The answer 1s: ", answ)

* Documentation here https://docs.python.org/3/library/sqglite3.html

April 29, 2024 Serializability

https://docs.python.org/3/library/sqlite3.html

Simple Banking App in Python

> aCCll Usr | Balance

CREATE TABLE Acc (Alice 300

Usr TEXT PRIMARY KEY,
Balance INT); Bob 600
Carol 400

Python*

import sqglite3
con = sglite3.connect ("/Users/suciu/temp/bank.db",
autocommit=True)

SQL query
sent to DBMS

cur = con.cursor ()

res = cur.execute ("SELECT * FROM acc")
answ = res.fetchall ()

print ("The answer 1s: ", answ)

* Documentation here https://docs.python.org/3/library/sqglite3.html

April 29, 2024 Serializability

https://docs.python.org/3/library/sqlite3.html

DEMO:
lec16_txn_demo create table.sql
lec16_txn_demo_simple_ 1.py

April 29, 2024

Terminology: Client/Server

= Client:
* The program running the application
 In our example: a python program running on laptop
* In general: a big program on laptop or in the cloud

" Server:
* The database management system
 In our example it is Sqlite on laptop
* In general: any RDBMS, on remote server or in cloud

April 29, 2024 Serializability

Parameterized Query

Give every user a 4% interest

res
dalnsw

= cur.execute ("SELECT * FROM acc")

for row

usr
bal

res.fetchall ()
in answ:
= row|[0]
= row[1l]

= 1int (bal)
= b*0.04

.execute ("UPDATE acc
SET balance=?
WHERE usr=?",
[b+1, usr])

April 29, 2024

Serializability

Parameterized Query

Give every user a 4% interest

Read data

res
dalnsw

= cur.execute ("SELECT * FROM acc")

for row

usr
bal

res.fetchall ()
in answ:
= row|[0]
= row[1l]

= 1int (bal)
= b*0.04

.execute ("UPDATE acc
SET balance=?
WHERE usr=?",
[b+1, usr])

April 29, 2024

Serializability

Parameterized Query

Give every user a 4% interest

res
dalnsw

= cur.execute ("SELECT * FROM acc")

for row

usr
bal

= 1int (bal)
= b*0.04

res.fetchall ()
in answ:
= row|[0O]
= row|[1l]

.execute ("UPDATE acc
SET balance="?
WHERE usr=°?",
[b+1, usr])

Parameterized query

April 29, 2024

Serializability

DEMO:
lec16_txn_demo_simple 2.py

April 29, 2024

Simple Banking App in Python

Our application should:
» Read a username
* Repeat:

e Read a command
 Execute that command

= The command can be:
« Check the balance
* Deposit money
* Withdraw money
* Transfer between accounts

April 29, 2024 Serializability

Simple Banking App in Python

Read a username, check if exists:

usr = input ("Enter the user name: ")
res = cur.execute ("SELECT *
FROM acc
WHERE usr=?",
[usr])
1f res.fetchone() i1s None: We check
print ("Wrong user. Exit") ﬂmtmeusa'
, exists
ex1t ()

April 29, 2024 Serializability

Simple Banking App in Python

A simple loop for executing commants:

April 29, 2024

while True:

cmd input ()

1if cmd == “Db”:
elif cmd == “d”:
elif cmd == “w
elif cmd == “t”:
elif cmd == Y“q

.

.

check balance
deposit
withdraw
transfer

ex1it ()

Serializability

Simple Banking App in Python

Check balance

res = cur.execute ("SELECT balance
FROM acc
WHERE usr=?",
[usr])
row = res.fetchone /)
b = row[0O]
print (“Balance 1is”,

b)

April 29, 2024 Serializability

Fetch one
row/tuple
from output

First element
of the tuple

Simple Banking App in Python

Deposit
Read the balance b as before
amount = input () # amount to be deposited
a = int (amount)
bl = b+a # the new balance

cur.execute ("UPDATE acc
SET balance = ?
WHERE usr=?",
[bl,usr])

April 29, 2024

Serializability

Simple Banking App in Python

Withdraw

Read the balance b as before

THE BANK DISPENSES MONEY HERE!
i
bl = b-a # the new balance
cur.execute ("UPDATE acc
SET balance = ?
WHERE usr=?",
[bl,usr])

amount = input () # amount to be withdrawn
a = 1nt (amount)
#

April 29, 2024 Serializability

Simple Banking App in Python

Withdraw

a:

#

#

bl =

b-a # the new balance
cur.execute ("UPDATE acc

Read the balance b as before

amount = input () # amount to be withdrawn
int (amount)

THE BANK DISPENSES MONEY HERE!

SET balance = ?
WHERE usr=?",

[bl,usr])

We need to check
if there is enough

money!

April 29, 2024

Serializability

Simple Banking App in Python

Withdraw

Read the balance b as before
amount = input () # amount to be withdrawn
a = int (amount)

i
THE BANK DISPENSES MONEY HERE!
i
bl = b-a # the new balance
cur.execute ("UPDATE acc
SET balance = ?
WHERE user=?7",
[bl,usr])

if a>b: # error: overdraft!
exit ()

April 29, 2024 Serializability

Simple Banking App in Python

Transfer

April 29, 2024

Read the balance b as before

amount = input () # amount to be transferred
a = 1int (amount)
if a>b: # error: overdraft!
exit ()
usrt = input () # to whom to transfer
Read the balance bt of usrt
bl = b-a
btl = bt+a

cur.execute ("UPDATE acc
SET balance = ?
WHERE user=?",
[bl,usr])
cur.execute ("UPDATE acc
SET balance = ?
WHERE user=?",
[btl,usrt])

Serializability

DEMO:
lec16_txn_demo.py
single user

April 29, 2024 Serializability

Discussion so Far

» The users Alice, Bob, ... don’t need to know SQL,
but interact with the app;

* The app usually has a nice User Interface (Ul)

» The database is persistent: it retains the data for a
long period of time

April 29, 2024 Serializability

Concurrency

April 29, 2024

Single-Server

* The database is accessed by a single user:

Application

.
 ——
e

» RDBMS on same laptop, or a server, or the cloud

Database

Transactions: Serializability

Client-Server or Two-Tier Architecture

» Multiple users access the database concurrently

Application

Transactions: Serializability

DEMO:
lec16_txn_demo.py
multiple users

lec16_txn_demo txn no.sql

April 29, 2024

What We Have Seen

How Alice and Bob colluded to steal $100 (simplified, using only SQL)

Current balance of Alice is $100:

—— Alice withdraws $100
b =SELECT balance

FROM acc
WHERE user = ‘Alice’;
-— Is b >= 100? Yes:

—— Dispense money

UPDATE acc SET balance=b-100
WHERE user = ‘Alice’

April 29, 2024

time

——- Bob impersonates Alice
-— and also withdraws $100

b =SELECT balance

FROM acc
WHERE user = ‘Alice’;
—— Is b >= 100? Yes:

—— Dispense money
UPDATE acc SET balance=b-100

WHERE user = ‘Alice’

Serializability

Discussion

= Users Alice, Bob, ... can access the same
database concurrently

* This may lead to the database being inconsistent,
which is a big problem

April 29, 2024 Serializability

Consistency

April 29, 2024

Database Consistency

= Consistency: a property that should always hold
« Every account balance is =0

« The sum of all balances is constant,
or changes exactly by the amount deposited/withdrawn

= |[f we write the application correctly, we expect the
database to remain consistent

» But (without transactions!) things can go wrong
during concurrency. Next.

April 29, 2024 Serializability

Conflicts Between
Concurrent Operations

April 29, 2024

Common Concurrency Conflicts

» Lost Update

= Dirty/Inconsistent Read

» Unrepeatable Read

= Phantom Read

These have popular names, but all sorts of other
conflicts can happen. Let's see these.

April 29, 2024 Serializability

Dirty/Inconsistent Read

A inconsistent read happens when
data is read "during" a write

Manager wants to
balance project budgets

time

Transactions: Serializability

+ Dirty/Inconsistent Read
* Unrepeatable Read
* Lost Update

CEO wants to check
company balance

Dirty/Inconsistent Read

A inconsistent read happens when
data is read "during" a write

Manager wants to
balance project budgets

-$10mil from project A

time

+$7mil to project B

+$3mil to project C

Transactions: Serializability

+ Dirty/Inconsistent Read
* Unrepeatable Read
* Lost Update

CEO wants to check
company balance

SELECT SUM(money) ...

Dirty/Inconsistent Read

A inconsistent read happens when
data is read "during" a write

Manager wants to
balance project budgets

time

+$7mil to project B

+$3mil to project C

Transactions: Serializability

+ Dirty/Inconsistent Read
* Unrepeatable Read
* Lost Update

S
-$10mil from projeth\

CEO wants to check
company balance

ELECT SUM

v/

(money) ...

Dirty/Inconsistent Read

A inconsistent read happens when
data is read "during" a write

Manager wants to
balance project budgets

time

+$7mil to project B

+$3mil to project C
<_

+ Dirty/Inconsistent Read
* Unrepeatable Read
* Lost Update

CEO wants to check
company balance

LECT SUM(money) ...

SE
-$10mil from prOJect:\ V

Transactions: Serializability

-V

Dirty/Inconsistent Read

A inconsistent read happens when
data is read "during" a write

Manager wants to
balance project budgets

+ Dirty/Inconsistent Read
* Unrepeatable Read
* Lost Update

CEO wants to check
company balance

time

SELECT SUM(money) ...
-$10mil from projeth\ V

+$7mil to project B Database is
temporarily

inconsistent

+$3mil to project C

N -V

Transactions: Serializability

Unrepeatable Read

An unrepeatable read happens when
data read twice differs

Accountant wants to
check company assets

SELECT inventory
FROM Products
WHERE pid =1

time

SELECT inventory*price
Y FROM Products

WHERE pid =1 Might get a value that doesn’t
correspond to previous read!

Transactions: Serializability

 Dirty/Inconsistent Read
* Unrepeatable Read
* Lost Update

Warehouse updates

inventory levels

UPDATE Produ

cts

SET inventory =0

WHERE pid = 1

Aside: Phantom Read

A phantom read happens when

 Dirty/Inconsistent Read
* Unrepeatable Read
* Lost Update

a record is inserted/delete during reads

Accountant wants to
check company assets

SELECT *
FROM products
WHERE price < 10.00

time

Warehouse receives new
products

INSERT INTO Products
VALUES (‘nuts’, 10, 8.99)

SELECT *
Y FROM products Returns a “new” row that should
WHERE price < 20.00 have been in the last read!

Transactions: Serializability

Lost Update

A lost update happens
when a write "disappears"

User 1 wants to pool
money into account 1

time

Transactions: Serializability

 Dirty/Inconsistent Read
* Unrepeatable Read
* Lost Update

Account 1 =100, Account 2 =100

User 2 wants to pool money

into account 2

Lost Update

A lost update happens
when a write "disappears"

User 1 wants to pool
money into account 1

Set account 1 = 200

time

Set account2=0

Transactions: Serializability

 Dirty/Inconsistent Read
* Unrepeatable Read
* Lost Update

Account 1 =100, Account 2 =100

User 2 wants to pool money

into account 2

Lost Update

A lost update happens
when a write "disappears"

User 1 wants to pool
money into account 1

Set account 1 = 200

time

Set account2=0

Transactions: Serializability

 Dirty/Inconsistent Read
* Unrepeatable Read
* Lost Update

Account 1 =100, Account 2 =100

User 2 wants to pool money
into account 2

Set account 2 = 200

Set account1 =0

Lost Update

A lost update happens

 Dirty/Inconsistent Read
* Unrepeatable Read
* Lost Update

when a write "disappears"

Account 1 =100, Account 2 =100

money into account 1 into account 2

Set account 1 = 200

time

Set account2=0

' v/

At end: Account 1 =0, Account 2 = 200

Transactions: Serializability

User 1 wants to pool User 2 wants to pool money

Set account 2 = 200

Set account1 =0

Lost Update

A lost update happens

 Dirty/Inconsistent Read
* Unrepeatable Read
* Lost Update

when a write "disappears"

Account 1 =100, Account 2 =100

money into account 1 into account 2

Set account 1 = 200

time

Set account2=0

' X

At end: Account1 =0, Account2=0

Transactions: Serializability

User 1 wants to pool User 2 wants to pool money

Set account 2 = 200

Set account1 =0

Transactions

April 29, 2024

Transactions

= A transaction is a set of read and writes to the
database that execute all or nothing

BEGIN TRANSACTION BEGIN TRANSACTION
...S50L Statements ...S50L Statements
COMMIT ROLLBACK

Entire txn is executed No part of txn is executed

April 29, 2024 Serializability

Transactions

» Prevent all concurrency control conflicts

» Easy to use in app: group statements in txns

» Let's see how they work

April 29, 2024 Serializability

DEMO:
lec16_txn_demo txn yes.sql

April 29, 2024

