b

sessionl)
NumberOfsession
Date
a1 | experimentio
Setwp.
- 7 [serupin
ation Trial
¢ Setuphame
r(
Ldalo SetupType
[sessionid [[oeke
NumberOfTrial Pcsabuien
2 [setupin P
FK3 | subjectin SetupCondition
start
Duration
NMarker
Setupharker
Record edMovicFie
Note
Trial_has_Timecourse Trial_has_Trajectory
i | veislip 1 |Tiald
X2 | rimecoursein 2 |Trajectoryio
Timecourse Traectory
7 | Timecourseln Pk | Tesjectoryin
Frequency Frequency
segmentiD Segmenti0
KindOfData KindofData
Neeames Markerld
) P NFrames
LT

[

Bors=] """ Olenna

Gendry

N

e
TN

W ’
“Renyis L Eia
N A/ jrvion w
¥
Cersél
Podrick,
s, KeyeShae
JofireMargaeran
Myroella Gregor
2 Bronn
Meryn
iyn

f;/

0

BT~

]

‘-.;E!!m‘
<

¥,
iy

g
-l

e

Worker 3 Worker 3

(a) Traditional parallel query plan

Al

HyperCube

Shuffe
BT —

gCube shuffle-based parallel

Introduction to Data Management

BCNF Decomposition

Paul G. Allen School of Computer Science and Engineering

April 24, 2024

BCNF Decomposition

University of Washington, Seattle

Announcements

HW4 due on Friday, May 3

Midterm:
» This Friday, in class, closed books, no cheat sheet
= Some practice midterms on the course website

>,

= Midterm has four parts:
« SQL
 Relational Algebra
 Entity-Relationship Diagrams (ER)

* Functional Dependencies w

April 24, 2024 Functional Dependencies

Inference

April 24, 2024 Functional Dependencies

An Interesting Observation

If all these FDs are true: Name - Color

Category = Dept
Color, Dept = Price

Then this FD is also true: Name, Category - Price

April 24, 2024

Proof: (see last lecture)

Functional Dependencies

Discussion

Two ways to infer new FDs:

= Armstrong axioms

* The closure operator

April 24, 2024 Functional Dependencies

Armstrong’s Axioms

April 24, 2024

Armstrong’s Axioms

Reflexivity: fYc XthenX->Y

Augmentation: ifX -YthenXZ -YZ

Transitivity: fX—->YandY > ZthenX - Z

April 24, 2024 Functional Dependencies

Armstrong’s Axioms

Reflexivity: fYc XthenX->Y
a trivial FD

Augmentation: ifX -YthenXZ -YZ

Transitivity: fX—->YandY > ZthenX - Z

April 24, 2024 Functional Dependencies

Using Armstrong’s Axioms

Reflexivity: fYc XthenX Y
Augmentation: ifX ->YthenXZ -YZ
Transitivity: fX->YandY - ZthenX - Z

1. Name - Color

2. Category = Dept :> Name, Category - Price
3. Color, Dept - Price

April 24, 2024 Functional Dependencies

Using Armstrong’s Axioms

Reflexivity: fYc XthenX Y
Augmentation: ifX ->YthenXZ -YZ
Transitivity: fX->YandY - ZthenX - Z

1. Name - Color

2. Category = Dept :> Name, Category - Price
3. Color, Dept - Price

4. Name, Category - Color, Category (Augmentation of 1)

April 24, 2024 Functional Dependencies

Using Armstrong’s Axioms

Reflexivity: fYc XthenX Y
Augmentation: ifX ->YthenXZ -YZ
Transitivity: fX->YandY - ZthenX - Z

1. Name - Color

2. Category = Dept :> Name, Category - Price
3. Color, Dept - Price

4. Name, Category - Color, Category (Augmentation of 1)
5. Color, Category - Color, Dept (Augmentation of 2)

April 24, 2024 Functional Dependencies

Using Armstrong’s Axioms

Reflexivity: fYc XthenX Y
Augmentation: ifX ->YthenXZ -YZ
Transitivity: fX->YandY - ZthenX - Z

1. Name - Color

2. Category = Dept :> Name, Category - Price
3. Color, Dept - Price

4. Name, Category - Color, Category (Augmentation of 1)
5. Color, Category - Color, Dept (Augmentation of 2)
6. Color, Category - Price (Transitivity 5 and 3)

April 24, 2024 Functional Dependencies

Using Armstrong’s Axioms

Reflexivity: fYc XthenX Y
Augmentation: ifX ->YthenXZ -YZ
Transitivity: fX->YandY - ZthenX - Z

1. Name - Color

2. Category = Dept :> Name, Category - Price
3. Color, Dept - Price

4. Name, Category - Color, Category (Augmentation of 1)
5. Color, Category - Color, Dept (Augmentation of 2)
6. Color, Category - Price (Transitivity 5 and 3)
7.

Name, Category - Price (Transitivity 4 and 6)

April 24, 2024 Functional Dependencies

Discussion

= Armstrong’s Axioms were introduced in the 70s,
shortly after Codd’s relational model

* They are widely known today

» But they are cumbersome to use for inference

= [nstead, the efficient inference method uses the
closure operator: next.

April 24, 2024 Functional Dependencies

The Closure Operator

April 24, 2024

The Closure of a set X

Fix a set of Functional Dependencies

The closure X* of a

set of attributes X

IS the set of attributes A
such that X — A.

April 24, 2024 Functional Dependencies

The Closure of a set X

Fix a set of Functional Dependencies

The closure X* of a

set of attributes X

IS the set of attributes A
such that X — A.

April 24, 2024

Closure (X) :
Repeat:
find a FD Y>> A
such that YEX and AZX
X:=XUA
Until “no more change”

Functional Dependencies

The Closure of a set X

Fix a set of Functional Dependencies

The closure X* of a

set of attributes X

IS the set of attributes A
such that X — A.

Name - Color
Category - Dept
Color, Dept = Price

April 24, 2024

Closure (X) :
Repeat:
find a FD Y>> A
such that YEX and AZX
X:=XUA
Until “no more change”

{Name, Category}* =

Functional Dependencies

The Closure of a set X

Fix a set of Functional Dependencies

The closure X* of a

set of attributes X

IS the set of attributes A
such that X — A.

Name - Color
Category - Dept
Color, Dept = Price

April 24, 2024

Closure (X) :
Repeat:
find a FD Y>> A
such that YEX and AZX
X:=XUA
Until “no more change”

{Name, Category}* =
= {Name, Category, }

Functional Dependencies

The Closure of a set X

Fix a set of Functional Dependencies

The closure X* of a

set of attributes X

IS the set of attributes A
such that X — A.

Name - Color
Category - Dept
Color, Dept = Price

April 24, 2024

Closure (X) :
Repeat:
find a FD Y>> A
such that YEX and AZX
X:=XUA
Until “no more change”

{Name, Category}*=
= {Name, Category, Color, }

Functional Dependencies

The Closure of a set X

Fix a set of Functional Dependencies

The closure X* of a

set of attributes X

IS the set of attributes A
such that X — A.

Name - Color
Category - Dept
Color, Dept = Price

April 24, 2024

Closure (X) :
Repeat:
find a FD Y—>A
such that YEX and AZX
X=XUA
Until “no more change”

{Name, Category}*=
= {Name, Category, Color, Dept, }

Functional Dependencies

The Closure of a set X

Fix a set of Functional Dependencies

The closure X* of a

set of attributes X

IS the set of attributes A
such that X — A.

Name - Color
Category - Dept
Color, Dept = Price

April 24, 2024

Closure (X) :
Repeat:
find a FD Y—>A
such that YEX and AZX
X=XUA
Until “no more change”

{Name, Category}™ =
= {Name, Category, Color, Dept, Price}

Functional Dependencies

The Closure of a set X

Fix a set of Functional Dependencies

The closure X* of a

set of attributes X

IS the set of attributes A
such that X — A.

Name - Color
Category - Dept
Color, Dept = Price

April 24, 2024

Closure (X) :
Repeat:
find a FD Y—>A
such that YEX and AZX
X=XUA
Until “no more change”

{Name, Category}™ =
= {Name, Category, Color, Dept, Price}

{Color}*=

Functional Dependencies

The Closure of a set X

Fix a set of Functional Dependencies

The closure X* of a

set of attributes X

IS the set of attributes A
such that X — A.

Name - Color
Category - Dept
Color, Dept = Price

April 24, 2024

Closure (X) :
Repeat:
find a FD Y—>A
such that YEX and AZX
X=XUA
Until “no more change”

{Name, Category}™ =
= {Name, Category, Color, Dept, Price}

{Color}*= {Color}

Functional Dependencies

Discussion so Far

» Goal is to detect/remove anomalies

» Anomalies are caused by unwanted FDs
E.g. UID = Name, City; but UID not a key

* Next : Keys

April 24, 2024 Functional Dependencies

Keys

April 24, 2024 Functional Dependencies

Keys and Superkeys

= Fix a relation R(A4, ...,A,) and a set of FDs

» A super-key is a set X such that X —» A; for every
attribute A;

April 24, 2024 BCNF Decomposition

Keys and Superkeys

= Fix a relation R(A4, ...,A,) and a set of FDs

» A super-key is a set X such that X —» A; for every

attribpute A;
1 Equivalently:

Xt =A; .. A,

April 24, 2024 BCNF Decomposition

Keys and Superkeys

= Fix a relation R(A4, ...,A,) and a set of FDs

» A super-key is a set X such that X —» A; for every

attribpute A;
1 Equivalently:

Xt =A; .. A,

* A key is a minimal super-key X

April 24, 2024 BCNF Decomposition

Keys and Superkeys

= Fix a relation R(A4, ...,A,) and a set of FDs

» A super-key is a set X such that X —» A; for every

attribpute A;
1 Equivalently:

Xt =A; .. A,

* A key is a minimal super-key X

In other words,
no super-key Y ¢ X

exists

April 24, 2024 BCNF Decomposition

Example: Find the Keys

mmmm_

Fred 206-555-9999 Seattle UID = Name City
234 Fred 206-555-8888 Seattle
987 Joe 415-555-7777 SF

UID* = UID, Name, City

April 24, 2024 BCNF Decomposition

Example: Find the Keys
mmmm_

Fred 206-555-9999 Seattle
234 Fred 206-555-8888 Seattle
987 Joe 415-555-7777 SF

UID - Name, City

_ Not a key:
UID* = UID, Name, City

April 24, 2024 BCNF Decomposition

Example: Find the Keys
mmmm_

Fred 206-555-9999 Seattle
234 Fred 206-555-8888 Seattle
987 Joe 415-555-7777 SF

UID - Name, City

_ Not a key:
UID* = UID, Name, City

(UID, Phone)* = ??

April 24, 2024 BCNF Decomposition

Example: Find the Keys
mmmm_

Fred 206-555-9999 Seattle
234 Fred 206-555-8888 Seattle
987 Joe 415-555-7777 SF

UID - Name, City

_ Not a key:
UID* = UID, Name, City

(UID, Phone)* = UID, Name, Phone, City

April 24, 2024 BCNF Decomposition

Example: Find the Keys

mmmm_

Fred 206-555-9999 Seattle UID = Name City
234 Fred 206-555-8888 Seattle
987 Joe 415-555-7777 SF

_ Not a key:
UID* = UID, Name, City

(UID, Phone)* = UID, Name, Phone, City (&)

April 24, 2024 BCNF Decomposition

Example: Find the Keys

mmmm_

Fred 206-555-9999 Seattle
234 Fred 206-555-8888 Seattle
987 Joe 415-555-7777 SF

UID* = UID, Name, City

(UID, Phone)* = UID, Name, Phone, City

UID - Name, City

Not a key:
missing Phone

(UID, Name, Phone)* = ??

BCNF Decomposition

©

April 24, 2024

Example: Find the Keys

mmmm_

Fred 206-555-9999 Seattle
234 Fred 206-555-8888 Seattle
987 Joe 415-555-7777 SF

UID* = UID, Name, City

(UID, Phone)* = UID, Name, Phone, City

UID - Name, City

Not a key:
missing Phone

©

(UID, Name, Phone)* = UID, Name, Phone, City

BCNF Decomposition

April 24, 2024

Example: Find the Keys

mmmm_

Fred 206-555-9999 Seattle
234 Fred 206-555-8888 Seattle
987 Joe 415-555-7777 SF

UID* = UID, Name, City

(UID, Phone)* = UID, Name, Phone, City

UID - Name, City

Not a key:

missing Phone

©

(UID, Name, Phone)* = UID, Name, Phone, City@

BCNF Decomposition

April 24, 2024

Example: Find the Keys

mmmm_

Fred 206-555-9999 Seattle UID = Name City
234 Fred 206-555-8888 Seattle
987 Joe 415-555-7777 SF

Not a key:

UID* = UID, Name, City missing Phone

(UID, Phone)* = UID, Name, Phone, City (&)

(UID, Name, Phone)* = UID, Name, Phone, City@

Phone* = Phone

April 24, 2024 BCNF Decomposition

Example: Find the Keys

mmmm_

Fred 206-555-9999 Seattle UID = Name City
234 Fred 206-555-8888 Seattle
987 Joe 415-555-7777 SF

Not a key:

UID* = UID, Name, City missing Phone

(UID, Phone)* = UID, Name, Phone, City (&)

(UID, Name, Phone)* = UID, Name, Phone, City@

Phonet = Phone Not a (Super-)Key

April 24, 2024 BCNF Decomposition 40

Example: Find the Keys

Compute X*, for larger and larger Name = Color
sets X, until X*= [all-attributes] Category - Dept
Color, Dept - Price

April 24, 2024 BCNF Decomposition

Example: Find the Keys

Compute X*, for larger and larger Name = Color
sets X, until X*= [all-attributes] Category - Dept
Color, Dept - Price

Sets X
Name* = Name, Color; of size 1
Color* = Color;

April 24, 2024 BCNF Decomposition

Example: Find the Keys

Compute X*, for larger and larger Name = Color
sets X, until X*= [all-attributes] Category - Dept
Color, Dept - Price

Sets X
Name* = Name, Color; Category* = Category, Dept;
Color* = Color; Dept* = Dept

April 24, 2024 BCNF Decomposition

Example: Find the Keys

Compute X*, for larger and larger Name = Color
sets X, until X*= [all-attributes] Category - Dept
Color, Dept - Price

Sets X
Name* = Name, Color; Category* = Category, Dept; of size 1
Color* = Color; Dept* = Dept
(Name, Color)* = Name, Color; Sets X

of size 2

April 24, 2024 BCNF Decomposition

Example: Find the Keys

Compute X*, for larger and larger Name = Color
sets X, until X*= [all-attributes] Category - Dept
Color, Dept - Price

Sets X
Name* = Name, Color; Category* = Category, Dept; of size 1
Color* = Color; Dept* = Dept
(Name, Color)* = Name, Color; Sets X
(Name, Category)* = Name, Color, Category, Dept, Price; of size 2

April 24, 2024 BCNF Decomposition

Example: Find the Keys

Compute X*, for larger and larger Name = Color
sets X, until X*= [all-attributes] Category - Dept
Color, Dept - Price

Sets X
Name* = Name, Color; Category* = Category, Dept; of size 1
Color* = Color; Dept* = Dept
(Name, Color)* = Name, Color; Sets X
(Name, Category)* = Name, Color, Category, Dept, Price; of size 2

// no need to try (Name, Category, Dept)* why?

April 24, 2024 BCNF Decomposition

Example: Find the Keys

Compute X*, for larger and larger

sets X, until X*= [all-attributes]

Name = Color
Category - Dept
Color, Dept - Price

Name* = Name, Color; Category* = Category, Dept;

Color* = Color; Dept* = Dept

(Name, Color)* = Name, Color;

(Name, Category)* = Name, Color, Category, Dept, Price;
// no need to try (Name, Category, Dept)* why?
(Name, Dept)* = and so on until we find all keys

April 24, 2024 BCNF Decomposition

Sets X
of size 1

Sets X

of size 2

Example: Find the Keys

Compute X*, for larger and larger

sets X, until X*= [all-attributes]

Name = Color
Category - Dept
Color, Dept - Price

Name* = Name, Color; Category* = Category, Dept;

Color* = Color; Dept* = Dept

(Name, Color)* = Name, Color;

(Name, Category)* = Name, Color, Category, Dept, Price;
// no need to try (Name, Category, Dept)* why?
(Name, Dept)* = and so on until we find all keys

A quicker way: any key X must contain Name (why?) and Category (why?)

April 24, 2024 BCNF Decomposition

Sets X
of size 1

Sets X

of size 2

Keys are Not Unique

R(A,B,C)
Don’t confuse with

A-> B,C AB->C
B->AC

A*=B+*=ABC A*=A,B*=B

(AB)*=ABC
Ais a key
B is a key AB is a key

In SQL
we must choose

either Aor B

as primary key

April 24, 2024 BCNF Decomposition

Discussion

= Qur redundancies come this FD:

UID - Name, City

* The problem is that UID is not a key.

» Boyce-Codd Normal Form captures this intuition.

» Next: BCNF

April 24, 2024 BCNF Decomposition

BCNF

April 24, 2024 Functional Dependencies

BCNF

= Fix a relation R(A4, ..., A,,) and a set of FDs

R is in Boyce-Codd Normal Form (BCNF), if every

FD X — Y is either from a superkey X or is trivial: Y € X

» Equivalently: for every set X,
either X* = X or X* = [all—attributes]

April 24, 2024 BCNF Decomposition

Normalization

Algorithm BCNF R(A4,...,A})

Findset Xs.t. X € Xt c{A,, .., A}

=

April 24, 2024 BCNF Decomposition

Normalization

Algorithm BCNF R(A4,...,A})
Findset Xs.t. X € Xt c{A,, .., A}

If not found then return R(A4, ..., A) // already in BCNF

=

April 24, 2024 BCNF Decomposition

Normalization

Algorithm BCNF R(A4,...,A})
Findset Xs.t. X € Xt c{A,, .., A}

If not found then return R(A4, ..., A) // already in BCNF

April 24, 2024 BCNF Decomposition

Normalization

Algorithm BCNF R(A4,...,A})
Findset Xs.t. X € Xt c{A,, .., A}

If not found then return R(A4, ..., A) // already in BCNF

(A, .., Ay} — X¥

April 24, 2024 BCNF Decomposition

Normalization

Algorithm BCNF R(A4,...,A})
Findset Xs.t. X € Xt c{A,, .., A}

If not found then return R(A4, ..., A) // already in BCNF

April 24, 2024 BCNF Decomposition

Normalization

Algorithm BCNF R(A4,...,A})
Findset Xs.t. X € Xt c{A,, .., A}

If not found then return R(A4, ..., A) // already in BCNF

April 24, 2024 BCNF Decomposition

Normalization

Algorithm BCNF R(A4,...,A})
Findset Xs.t. X € Xt c{A,, .., A}

If not found then return R(A4, ..., A) // already in BCNF

April 24, 2024 BCNF Decomposition

Normalization

Algorithm BCNF R(A4,...,A})
Findset Xs.t. X € Xt c{A,, .., A}

If not found then return R(A4, ..., Ap)

// already in BCNF

Decompose: R(A4, ...,A;) = R;(XT) @ R,({Aq, ..., Ay} — X1)

April 24, 2024 BCNF Decomposition

Normalization

Algorithm BCNF R(A4,...,A})

Findset Xs.t. X € Xt c{A,, .., A}

If not found then return R(A4, ..., A) // already in BCNF

Decompose: R(A4, ...,A;) = R;(XT) @ R,({Aq, ..., Ay} — X1)
Call recursively BCNF on R, (X*)
Call recursively BCNF on R,({A4, ..., A} — X™)

R4 R

April 24, 2024 BCNF Decomposition

Example: Decompose in BCNF

EIMIE_
Fred 206-555-9999 Seattle UID = Name City
234 Fred 206-555-8888 Seattle
987 Joe 415-555-7777 SF
Ry R,

April 24, 2024 BCNF Decomposition

Example: Decompose in BCNF

MMEE_

Fred 206-555-9999 Seattle UID = Name City
234 Fred 206-555-8888 Seattle
987 Joe 415-555-7777 SF

Find set X s.t. X ¢ X* ¢ {UID, Name, Phone, City}

April 24, 2024 BCNF Decomposition

Example: Decompose in BCNF

MMEE_

Fred 206-555-9999 Seattle UID = Name City
234 Fred 206-555-8888 Seattle
987 Joe 415-555-7777 SF

Find set X s.t. X ¢ X* ¢ {UID, Name, Phone, City}

X =UID, X* = {UID,Name, City}

R4 R

April 24, 2024 BCNF Decomposition

Example: Decompose in BCNF

mmmm_

Fred 206-555-9999 Seattle UID = Name City
234 Fred 206-555-8888 Seattle
987 Joe 415-555-7777 SF

Find set X s.t. X ¢ X* ¢ {UID, Name, Phone, City}

X =UID, X* = {UID,Name, City}

R4 R

Xt —X (A, .., Ay} — X¥

UD | Name | City uD_|Phone__

234 Fred Seattle 234 206-555-9999

April 24, 2024 BCNF Decomposition

Example: Decompose in BCNF

Name = Color
Category - Dept
Color, Dept - Price

R(Name, Color, Category, Dept, Price)

April 24, 2024 BCNF Decomposition

Example: Decompose in BCNF

Name = Color
Category - Dept
Color, Dept - Price

R(Name, Color, Category, Dept, Price)

X = Name
X* = {Name, Color}

April 24, 2024 BCNF Decomposition

Example: Decompose in BCNF

Name = Color
Category - Dept
Color, Dept - Price

R(Name, Color, Category, Dept, Price)

X* = {Name, Colo

R,(Name, Color) R,(Name,Category,Dept,Price)

April 24, 2024 BCNF Decomposition

Example: Decompose in BCNF

R(Name, Color, Category, Dept, Price)

X* = {Name, Colo

Name = Color
Category - Dept
Color, Dept - Price

R,(Name, Color)

R,(Name,Category,Dept,Price)

BCNF because:
Name+ = Name, Color

Color* = Color

April 24, 2024

BCNF Decomposition

Example: Decompose in BCNF

Name - Color

R(Name, Color, Category, Dept, Price) girce)rgoDr}égeDelfrtice

X* = {Name, Colo

R,(Name, Color) R,(Name,Category,Dept,Price)

BCNF because:
Name+ = Name, Color

Color* = Color

X = Category
X* = {Category, Dept}

April 24, 2024 BCNF Decomposition

Example: Decompose in BCNF

Name - Color

R(Name, Color, Category, Dept, Price) ggrce)rgoDr}égeDelfrtice

X* = {Name, Colo

R,(Name, Color) R,(Name,Category,Dept,Price)

BCNF because:
Name+ = Name, Color

Color* = Color

= Category
X* = {Category, Degt}

R;(Category, Dept) R,(Name, Category, Price)

BCNF

April 24, 2024 BCNF Decomposition

Example: Decompose in BCNF

Name - Color

R(Name, Color, Category, Dept, Price) gg;‘gg%ﬁ;giﬂce

X* = {Name, Colo

R,(Name, Color) R,(Name,Category,Dept,Price)

BCNF because:
Name+ = Name, Color

Color* = Color

= Category
X* = {Category, Degt}

R;(Category, Dept) R,(Name, Category, Price)

BCNF BCNF
Name,Category is a key because:
(Name,Category)*=...,Price

April 24, 2024 BCNF Decomposition

Example: Decompose in BCNF

R(Name, Color, Category, Dept, Price)

X* = {Name, Colo

Name = Color
Category - Dept
Color, Dept - Price

R,(Name, Color)

R,(Name,Category,Dept,Price)

BCNF because:
Name+ = Name, Color

Color* = Color

Final Decomposition

R;(Cateqgory, Dept)

BCNF BCNF

BCNF Decomposition

= Category
X* = {Category, De

R,(Name, Cateqory, Price)

Name,Category is a key because:
(Name,Category)*=...,Price

April 24, 2024

Example: Decompose in BCNF

Name - Color

R(Name, Color, Category, Dept, Price) girce)?ODr}égeDelfrﬁce

We lost the FD

Color, Dept = Price

X* = {Name, Colo

R,(Name, Color) R,(Name,Category,Dept,Price)

BCNF because:
Name+ = Name, Color

Color* = Color

= Category
X* = {Category, De

R;(Cateqgory, Dept) R,(Name, Cateqory, Price)

BCNF BCNF
Name,Category is a key because:

Final Decomposition (Name,Category)*=...,Price

April 24, 2024 BCNF Decomposition

Example: Decompose in BCNF

Name = Color
Category - Dept
Color, Dept - Price

R(Name, Color, Category, Dept, Price)

Decomposition
IS not unique

April 24, 2024 BCNF Decomposition

Example: Decompose in BCNF

Name = Color
Category - Dept
Color, Dept - Price

R(Name, Color, Category, Dept, Price)

X = Color, Dept
X* = {Color, Dept, Price}

Decomposition
IS not unique

April 24, 2024 BCNF Decomposition

Example: Decompose in BCNF

Name = Color
Category - Dept
Color, Dept - Price

R(Name, Color, Category, Dept, Price)

X = Color, Dep
X* = {Color, Dept,

R4(Color, Dept, Price) R,(Name, Category, Color, Dept)

BCNF

Decomposition
IS not unique

April 24, 2024 BCNF Decomposition

Example: Decompose in BCNF

Name = Color
Category - Dept
Color, Dept - Price

R(Name, Color, Category, Dept, Price)

X = Color, Dep
X* = {Color, Dept,

R4(Color, Dept, Price) R,(Name, Category, Color, Dept)

X = Name

BCNF X* = {Name, Color}

Decomposition
IS not unique

April 24, 2024 BCNF Decomposition

Example: Decompose in BCNF

Name = Color
Category - Dept
Color, Dept - Price

R(Name, Color, Category, Dept, Price)

X = Color, Dep

R4(Color, Dept, Price) R,(Name, Category, Color, Dept)

BCNF X* = {Name, Color}

R;(Name, Color) R,(Name, Category, Dept)

BCNF

Decomposition
IS not unique

April 24, 2024 BCNF Decomposition

Example: Decompose in BCNF

Name = Color
Category - Dept
Color, Dept - Price

R(Name, Color, Category, Dept, Price)

X = Color, Dep

R4(Color, Dept, Price) R,(Name, Category, Color, Dept)

BCNF X* = {Name, Color}

R;(Name, Color) R,(Name, Category, Dept)

BCNF X = Category

X+ = {Category, Dept}
Decomposition
IS not unique

April 24, 2024 BCNF Decomposition

Example: Decompose in BCNF

Name = Color
Category - Dept
Color, Dept - Price

R(Name, Color, Category, Dept, Price)

X = Color, Dep

R4(Color, Dept, Price) R,(Name, Category, Color, Dept)

BCNF

R;(Name, Color)

BCNF

!Decomppsition R<(Category, Dept) | | Re(Name, Category)
IS not unique BCNE BCNF

April 24, 2024 BCNF Decomposition

Example: Decompose in BCNF

Name = Color
Category - Dept
Color, Dept - Price

All FDs are recovered

R,(Color, Dept, Price) R,(Name, Category, Color, Dept)

R(Name, Color, Category, Dept, Price)

BCNF

R;(Name, Color)

BCNF
Final decomposition

Pecomppsition R(Category, Dept) | | Rs(Name, Category)
IS not unique BCNE BCNF

April 24, 2024 BCNF Decomposition

Discussion

* The BCNF decomposition eliminates all anomalies

* In general, we may not be able to recover all FDs

» The 39 Normal Form is another kind of
decomposition, which recovers all FDs, but does
not eliminate all anomalies

» We won't discuss 3NF: it is very similar to BCNF
but a lot more complicated

April 24, 2024 BCNF Decomposition

