

Introduction to Data Management BCNF Decomposition

Paul G. Allen School of Computer Science and Engineering University of Washington, Seattle

Announcements

HW4 due on Friday, May 3rd

Midterm:

- This Friday, in class, closed books, no cheat sheet
- Some practice midterms on the course website

- SQL
 - Relational Algebra
 - Entity-Relationship Diagrams (ER)
 - Functional Dependencies

longest

Inference

An Interesting Observation

If all these FDs are true:

Name → Color
Category → Dept
Color, Dept → Price

Then this FD is also true:

Name, Category → Price

Proof: (see last lecture)

Discussion

Two ways to infer new FDs:

Armstrong axioms

The closure operator

Armstrong's Axioms

Armstrong's Axioms

Reflexivity: if $Y \subseteq X$ then $X \to Y$

Augmentation: if $X \rightarrow Y$ then $XZ \rightarrow YZ$

Transitivity: if $X \to Y$ and $Y \to Z$ then $X \to Z$

Armstrong's Axioms

Reflexivity: if
$$Y \subseteq X$$
 then $X \to Y$

Called a trivial FD

Augmentation: if $X \rightarrow Y$ then $XZ \rightarrow YZ$

Transitivity: if $X \to Y$ and $Y \to Z$ then $X \to Z$

Reflexivity: if $Y \subseteq X$ then $X \to Y$

Augmentation: if $X \rightarrow Y$ then $XZ \rightarrow YZ$

Transitivity: if $X \to Y$ and $Y \to Z$ then $X \to Z$

- 1. Name → Color
- 2. Category → Dept
- 3. Color, Dept → Price

Reflexivity: if $Y \subseteq X$ then $X \to Y$

Augmentation: if $X \rightarrow Y$ then $XZ \rightarrow YZ$

Transitivity: if $X \to Y$ and $Y \to Z$ then $X \to Z$

- 1. Name → Color
- 2. Category → Dept
- 3. Color, Dept → Price

Name, Category → Price

4. Name, Category → Color, Category (Augmentation of 1)

Reflexivity: if $Y \subseteq X$ then $X \to Y$

Augmentation: if $X \rightarrow Y$ then $XZ \rightarrow YZ$

Transitivity: if $X \to Y$ and $Y \to Z$ then $X \to Z$

- 1. Name → Color
- 2. Category → Dept
- 3. Color, Dept → Price

- 4. Name, Category → Color, Category (Augmentation of 1)
- 5. Color, Category → Color, Dept (Augmentation of 2)

Reflexivity: if $Y \subseteq X$ then $X \to Y$

Augmentation: if $X \rightarrow Y$ then $XZ \rightarrow YZ$

Transitivity: if $X \to Y$ and $Y \to Z$ then $X \to Z$

- 1. Name → Color
- 2. Category → Dept
- 3. Color, Dept → Price

- 4. Name, Category → Color, Category (Augmentation of 1)
- 5. Color, Category → Color, Dept (Augmentation of 2)
- 6. Color, Category → Price (Transitivity 5 and 3)

Reflexivity: if $Y \subseteq X$ then $X \to Y$ Augmentation: if $X \to Y$ then $XZ \to YZ$

Augmentation: if $X \to Y$ then $XZ \to YZ$ Transitivity: if $X \to Y$ and $Y \to Z$ then $X \to Z$

- 1. Name → Color
- 2. Category → Dept
- 3. Color, Dept → Price

- 4. Name, Category → Color, Category (Augmentation of 1)
- 5. Color, Category → Color, Dept (Augmentation of 2)
- 6. Color, Category → Price (Transitivity 5 and 3)
- 7. Name, Category → Price (Transitivity 4 and 6)

Discussion

 Armstrong's Axioms were introduced in the 70s, shortly after Codd's relational model

- They are widely known today
- But they are cumbersome to use for inference
- Instead, the efficient inference method uses the closure operator: next.

The Closure Operator

Fix a set of Functional Dependencies

Fix a set of Functional Dependencies

```
Closure(X):

Repeat:

find a FD Y \rightarrow A

such that Y \subseteq X and A \nsubseteq X

X \coloneqq X \cup A

Until "no more change"
```

Fix a set of Functional Dependencies

The closure X^+ of a set of attributes X is the set of attributes A such that $X \to A$.

```
Closure (X):

Repeat:

find a FD Y \rightarrow A

such that Y \subseteq X and A \nsubseteq X

X \coloneqq X \cup A

Until "no more change"
```

Name → Color
Category → Dept
Color, Dept → Price

{Name, Category}+=

Fix a set of Functional Dependencies

```
Closure(X):

Repeat:

find a FD Y \rightarrow A

such that Y \subseteq X and A \nsubseteq X

X \coloneqq X \cup A

Until "no more change"
```

```
Name → Color
Category → Dept
Color, Dept → Price
```

```
{Name, Category}<sup>+</sup>=
= {Name, Category,
```

Fix a set of Functional Dependencies

```
Closure(X):

Repeat:

find a FD Y \rightarrow A

such that Y \subseteq X and A \nsubseteq X

X \coloneqq X \cup A

Until "no more change"
```

```
Name → Color
Category → Dept
Color, Dept → Price
```

```
{Name, Category}<sup>+</sup>=
= {Name, Category, Color, }
```

Fix a set of Functional Dependencies

```
Closure(X):

Repeat:

find a FD Y \to A

such that Y \subseteq X and A \nsubseteq X

X \coloneqq X \cup A

Until "no more change"
```

```
Name → Color
Category → Dept
Color, Dept → Price
```

```
{Name, Category}<sup>+</sup>=
= {Name, Category, Color, Dept, }
```

Fix a set of Functional Dependencies

```
Closure(X):

Repeat:

find a FD Y \rightarrow A

such that Y \subseteq X and A \nsubseteq X

X \coloneqq X \cup A

Until "no more change"
```

```
Name → Color
Category → Dept
Color, Dept → Price
```

```
{Name, Category}<sup>+</sup>=
= {Name, Category, Color, Dept, Price}
```

Fix a set of Functional Dependencies

The closure X^+ of a set of attributes X is the set of attributes A such that $X \to A$.

```
Closure(X):

Repeat:

find a FD Y \rightarrow A

such that Y \subseteq X and A \nsubseteq X

X \coloneqq X \cup A

Until "no more change"
```

Name → Color
Category → Dept
Color, Dept → Price

```
{Name, Category}<sup>+</sup>=
= {Name, Category, Color, Dept, Price}
```

$$\{Color\}^+ =$$

Fix a set of Functional Dependencies

The closure X^+ of a set of attributes X is the set of attributes A such that $X \to A$.

```
Closure(X):

Repeat:

find a FD Y \rightarrow A

such that Y \subseteq X and A \nsubseteq X

X \coloneqq X \cup A

Until "no more change"
```

Name → Color
Category → Dept
Color, Dept → Price

```
{Name, Category}<sup>+</sup>=
= {Name, Category, Color, Dept, Price}
```

$${Color}^+ = {Color}$$

Discussion so Far

Goal is to detect/remove anomalies

■ Anomalies are caused by unwanted FDs
 E.g. UID → Name, City; but UID not a key

Next : Keys

Keys

■ Fix a relation $R(A_1, ..., A_n)$ and a set of FDs

■ A super-key is a set X such that X → A_i for every attribute A_i

27

■ Fix a relation $R(A_1, ..., A_n)$ and a set of FDs

■ A super-key is a set X such that $X \to A_i$ for every attribute A_i

Equivalently: $X^+ = A_1 ... A_n$

28

■ Fix a relation $R(A_1, ..., A_n)$ and a set of FDs

■ A super-key is a set X such that $X \to A_i$ for every attribute A_i

Equivalently: $X^+ = A_1 ... A_n$

29

A key is a minimal super-key X

■ Fix a relation $R(A_1, ..., A_n)$ and a set of FDs

■ A super-key is a set X such that $X \to A_i$ for every attribute A_i

Equivalently: $X^+ = A_1 ... A_n$

A key is a minimal super-key X

In other words, no super-key Y ⊊ X exists

30

UID	Name	Phone	City
234	Fred	206-555-9999	Seattle
234	Fred	206-555-8888	Seattle
987	Joe	415-555-7777	SF

UID → Name, City

UID+ = UID, Name, City

UID	Name	Phone	City
234	Fred	206-555-9999	Seattle
234	Fred	206-555-8888	Seattle
987	Joe	415-555-7777	SF

UID → Name, City

UID+ = UID, Name, City

Not a key: missing Phone

UID	Name	Phone	City
234	Fred	206-555-9999	Seattle
234	Fred	206-555-8888	Seattle
987	Joe	415-555-7777	SF

UID → Name, City

UID+ = UID, Name, City

Not a key: missing Phone

(UID, Phone)
$$^{+}$$
 = ??

UID	Name	Phone	City
234	Fred	206-555-9999	Seattle
234	Fred	206-555-8888	Seattle
987	Joe	415-555-7777	SF

UID → Name, City

UID+ = UID, Name, City

Not a key: missing Phone

(UID, Phone)+ = UID, Name, Phone, City

UID	Name	Phone	City
234	Fred	206-555-9999	Seattle
234	Fred	206-555-8888	Seattle
987	Joe	415-555-7777	SF

UID → Name, City

35

UID+ = UID, Name, City

Not a key: missing Phone

(UID, Phone)+ = UID, Name, Phone, City

Key

UID	Name	Phone	City
234	Fred	206-555-9999	Seattle
234	Fred	206-555-8888	Seattle
987	Joe	415-555-7777	SF

UID → Name, City

UID+ = UID, Name, City

Not a key: missing Phone

(UID, Phone)+ = UID, Name, Phone, City

(UID, Name, Phone) $^+$ = ??

UID	Name	Phone	City
234	Fred	206-555-9999	Seattle
234	Fred	206-555-8888	Seattle
987	Joe	415-555-7777	SF

UID → Name, City

37

UID+ = UID, Name, City

Not a key: missing Phone

(UID, Phone)+ = UID, Name, Phone, City

(UID, Name, Phone)+ = UID, Name, Phone, City

UID	Name	Phone	City
234	Fred	206-555-9999	Seattle
234	Fred	206-555-8888	Seattle
987	Joe	415-555-7777	SF

UID → Name, City

UID+ = UID, Name, City

Not a key: missing Phone

(UID, Phone)+ = UID, Name, Phone, City

Key

(UID, Name, Phone)+ = UID, Name, Phone, City-

Super-Key

UID	Name	Phone	City
234	Fred	206-555-9999	Seattle
234	Fred	206-555-8888	Seattle
987	Joe	415-555-7777	SF

UID → Name, City

UID+ = UID, Name, City

Not a key: missing Phone

(UID, Phone)+ = UID, Name, Phone, City

Key

(UID, Name, Phone)+ = UID, Name, Phone, City

Super-Key

39

Phone⁺ = Phone

UID	Name	Phone	City
234	Fred	206-555-9999	Seattle
234	Fred	206-555-8888	Seattle
987	Joe	415-555-7777	SF

UID → Name, City

UID+ = UID, Name, City

Not a key: missing Phone

(UID, Phone)+ = UID, Name, Phone, City

Key

(UID, Name, Phone)+ = UID, Name, Phone, City

Super-Key

Phone⁺ = Phone

Not a (Super-)Key

Compute X⁺, for larger and larger sets X, until X⁺= [all-attributes]

Name → Color
Category → Dept
Color, Dept → Price

Compute X⁺, for larger and larger sets X, until X⁺= [all-attributes]

Name⁺ = Name, Color; Color⁺ = Color; Name → Color
Category → Dept
Color, Dept → Price

Compute X⁺, for larger and larger sets X, until X⁺= [all-attributes]

Name → Color
Category → Dept
Color, Dept → Price

```
Name<sup>+</sup> = Name, Color;
Color<sup>+</sup> = Color;
```

Sets X of size 1

Compute X⁺, for larger and larger sets X, until X⁺= [all-attributes]

Name → Color
Category → Dept
Color, Dept → Price

```
Name<sup>+</sup> = Name, Color;
Color<sup>+</sup> = Color;
```

Category⁺ = Category, Dept; Dept⁺ = Dept


```
(Name, Color)<sup>+</sup> = Name, Color;
```


Compute X⁺, for larger and larger sets X, until X⁺= [all-attributes]

Name → Color
Category → Dept
Color, Dept → Price

```
Name<sup>+</sup> = Name, Color;
Color<sup>+</sup> = Color;
```

Category⁺ = Category, Dept; Dept⁺ = Dept Sets X of size 1

```
(Name, Color)<sup>+</sup> = Name, Color;
(Name, Category)<sup>+</sup> = Name, Color, Category, Dept, Price;
```

Sets X of size 2

Compute X⁺, for larger and larger sets X, until X⁺= [all-attributes]

Name → Color
Category → Dept
Color, Dept → Price

```
Name<sup>+</sup> = Name, Color; Category<sup>+</sup> = Category, Dept; Color<sup>+</sup> = Color; Dept<sup>+</sup> = Dept
```

Sets X of size 1

Sets X of size 2

Compute X⁺, for larger and larger sets X, until X⁺= [all-attributes]

Name → Color
Category → Dept
Color, Dept → Price

```
Name<sup>+</sup> = Name, Color; Category<sup>+</sup> = Category, Dept; Color<sup>+</sup> = Color; Dept<sup>+</sup> = Dept
```

Sets X of size 1

Sets X of size 2

Compute X⁺, for larger and larger sets X, until X⁺= [all-attributes]

Name → Color
Category → Dept
Color, Dept → Price

```
Name<sup>+</sup> = Name, Color; Category<sup>+</sup> = Category, Dept; Color<sup>+</sup> = Color; Dept<sup>+</sup> = Dept
```

Sets X of size 1

Sets X of size 2

48

A quicker way: any key X must contain Name (why?) and Category (why?)

Keys are Not Unique

R(A,B,C)

$$A \rightarrow B,C$$

 $B \rightarrow A,C$

$$A^+ = B^+ = ABC$$

A is a key B is a key

In SQL
we must choose
either A or B
as primary key

Don't confuse with

$$A,B \rightarrow C$$

$$A^+ = A$$
, $B^+ = B$
(AB)+=ABC

AB is a key

Discussion

• Our redundancies come this FD:

UID → Name, City

The problem is that UID is not a key.

Boyce-Codd Normal Form captures this intuition.

Next: BCNF

BCNF

BCNF

■ Fix a relation $R(A_1, ..., A_n)$ and a set of FDs

R is in Boyce-Codd Normal Form (BCNF), if every FD $X \rightarrow Y$ is either from a superkey X or is trivial: $Y \subseteq X$

Equivalently: for every set X, either X⁺ = X or X⁺ = [all-attributes]

Algorithm BCNF $R(A_1, ..., A_n)$

Find set X s.t. $X \subseteq X^+ \subseteq \{A_1, ..., A_n\}$

Algorithm BCNF $R(A_1, ..., A_n)$

Find set X s.t. $X \subsetneq X^+ \subsetneq \{A_1, ..., A_n\}$

If not found then return $R(A_1, ..., A_n)$ // already in BCNF

Algorithm BCNF $R(A_1, ..., A_n)$

Find set X s.t. $X \subseteq X^+ \subseteq \{A_1, ..., A_n\}$

If not found then return $R(A_1, ..., A_n)$ // already in BCNF

Algorithm BCNF $R(A_1, ..., A_n)$

Find set X s.t. $X \subseteq X^+ \subseteq \{A_1, ..., A_n\}$

If not found then return $R(A_1, ..., A_n)$ // already in BCNF

Algorithm BCNF $R(A_1, ..., A_n)$

Find set X s.t. $X \subseteq X^+ \subseteq \{A_1, ..., A_n\}$

If not found then return $R(A_1, ..., A_n)$ // already in BCNF

Algorithm BCNF $R(A_1, ..., A_n)$

Find set X s.t. $X \subseteq X^+ \subseteq \{A_1, ..., A_n\}$

If not found then return $R(A_1, ..., A_n)$ // already in BCNF

Algorithm BCNF $R(A_1, ..., A_n)$

Find set X s.t. $X \subseteq X^+ \subseteq \{A_1, ..., A_n\}$

If not found then return $R(A_1, ..., A_n)$ // already in BCNF

Algorithm BCNF $R(A_1, ..., A_n)$

Find set X s.t. $X \subseteq X^+ \subseteq \{A_1, ..., A_n\}$

If not found then return $R(A_1, ..., A_n)$ // already in BCNF

Decompose: $R(A_1, ..., A_n) = R_1(X^+) \bowtie R_2(\{A_1, ..., A_n\} - X^+)$

Algorithm BCNF $R(A_1, ..., A_n)$

Find set X s.t. $X \subseteq X^+ \subseteq \{A_1, ..., A_n\}$

If not found then return $R(A_1, ..., A_n)$ // already in BCNF

Decompose: $R(A_1, ..., A_n) = R_1(X^+) \bowtie R_2(\{A_1, ..., A_n\} - X^+)$

Call recursively BCNF on $R_1(X^+)$ Call recursively BCNF on $R_2(\{A_1, ..., A_n\} - X^+)$

UID	Name	Phone	City
234	Fred	206-555-9999	Seattle
234	Fred	206-555-8888	Seattle
987	Joe	415-555-7777	SF

UID → Name, City

UID	Name	Phone	City
234	Fred	206-555-9999	Seattle
234	Fred	206-555-8888	Seattle
987	Joe	415-555-7777	SF

UID → Name, City

Find set X s.t. $X \subseteq X^+ \subseteq \{UID, Name, Phone, City\}$

UID	Name	Phone	City
234	Fred	206-555-9999	Seattle
234	Fred	206-555-8888	Seattle
987	Joe	415-555-7777	SF

UID → Name, City

Find set X s.t. $X \subseteq X^+ \subseteq \{UID, Name, Phone, City\}$

$$X = UID, X^+ = \{UID, Name, City\}$$

UID	Name	Phone	City
234	Fred	206-555-9999	Seattle
234	Fred	206-555-8888	Seattle
987	Joe	415-555-7777	SF
			• • •

UID → Name, City

65

Find set X s.t. $X \subseteq X^+ \subseteq \{UID, Name, Phone, City\}$

$$X = UID, X^+ = \{UID, Name, City\}$$

R(Name, Color, Category, Dept, Price)

Name → Color
Category → Dept
Color, Dept → Price

R(Name, Color, Category, Dept, Price)

Name → Color
Category → Dept
Color, Dept → Price

```
X = Name

X^+ = \{Name, Color\}
```


BCNF because: Name+ = Name, Color Color+ = Color

Name → Color
Category → Dept
Color, Dept → Price

70

BCNF because: Name+ = Name, Color Color+ = Color

X = Category
X⁺ = {Category, Dept}

R(Name, Color, Category, Dept, Price)

Name → Color
Category → Dept
Color, Dept → Price

Decomposition is not unique

R(Name, Color, Category, Dept, Price)

Name → Color
Category → Dept
Color, Dept → Price

```
X = Color, Dept
X<sup>+</sup> = {Color, Dept, Price}
```

Decomposition is not unique

BCNF

Decomposition is not unique

Decomposition is not unique

Decomposition is not unique

Decomposition is not unique

April 24, 2024 BCNF Decomposition 82

Discussion

- The BCNF decomposition eliminates all anomalies
- In general, we may not be able to recover all FDs
- The 3rd Normal Form is another kind of decomposition, which recovers all FDs, but does not eliminate all anomalies

 We won't discuss 3NF: it is very similar to BCNF but a lot more complicated