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Announcements

HW4 due on Friday, May 3

Midterm:
» This Friday, in class, closed books, no cheat sheet
= Some practice midterms on the course website

>,

= Midterm has four parts:
« SQL
 Relational Algebra
 Entity-Relationship Diagrams (ER)

* Functional Dependencies w
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Inference
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An Interesting Observation

If all these FDs are true: Name - Color

Category = Dept
Color, Dept = Price

Then this FD is also true: Name, Category - Price

April 24, 2024

Proof: (see last lecture)

Functional Dependencies



Discussion

Two ways to infer new FDs:

= Armstrong axioms

* The closure operator

April 24, 2024 Functional Dependencies




Armstrong’s Axioms
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Armstrong’s Axioms

Reflexivity: fYc XthenX->Y

Augmentation: ifX -YthenXZ -YZ

Transitivity: fX—->YandY > ZthenX - Z
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Armstrong’s Axioms

Reflexivity: fYc XthenX->Y
a trivial FD

Augmentation: ifX -YthenXZ -YZ

Transitivity: fX—->YandY > ZthenX - Z
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Using Armstrong’s Axioms

Reflexivity: fYc XthenX Y
Augmentation: ifX ->YthenXZ -YZ
Transitivity: fX->YandY - ZthenX - Z

1. Name - Color

2. Category = Dept :> Name, Category - Price
3. Color, Dept - Price
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Using Armstrong’s Axioms

Reflexivity: fYc XthenX Y
Augmentation: ifX ->YthenXZ -YZ
Transitivity: fX->YandY - ZthenX - Z

1. Name - Color

2. Category = Dept :> Name, Category - Price
3. Color, Dept - Price

4. Name, Category - Color, Category (Augmentation of 1)
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Using Armstrong’s Axioms

Reflexivity: fYc XthenX Y
Augmentation: ifX ->YthenXZ -YZ
Transitivity: fX->YandY - ZthenX - Z

1. Name - Color

2. Category = Dept :> Name, Category - Price
3. Color, Dept - Price

4. Name, Category - Color, Category (Augmentation of 1)
5. Color, Category - Color, Dept (Augmentation of 2)
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Using Armstrong’s Axioms

Reflexivity: fYc XthenX Y
Augmentation: ifX ->YthenXZ -YZ
Transitivity: fX->YandY - ZthenX - Z

1. Name - Color

2. Category = Dept :> Name, Category - Price
3. Color, Dept - Price

4. Name, Category - Color, Category (Augmentation of 1)
5. Color, Category - Color, Dept (Augmentation of 2)
6. Color, Category - Price (Transitivity 5 and 3)
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Using Armstrong’s Axioms

Reflexivity: fYc XthenX Y
Augmentation: ifX ->YthenXZ -YZ
Transitivity: fX->YandY - ZthenX - Z

1. Name - Color

2. Category = Dept :> Name, Category - Price
3. Color, Dept - Price

4. Name, Category - Color, Category (Augmentation of 1)
5. Color, Category - Color, Dept (Augmentation of 2)
6. Color, Category - Price (Transitivity 5 and 3)
7.

Name, Category - Price (Transitivity 4 and 6)

April 24, 2024 Functional Dependencies



Discussion

= Armstrong’s Axioms were introduced in the 70s,
shortly after Codd’s relational model

* They are widely known today

» But they are cumbersome to use for inference

= [nstead, the efficient inference method uses the
closure operator: next.
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The Closure Operator

April 24, 2024



The Closure of a set X

Fix a set of Functional Dependencies

The closure X* of a

set of attributes X

IS the set of attributes A
such that X — A.
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The Closure of a set X

Fix a set of Functional Dependencies

The closure X* of a

set of attributes X

IS the set of attributes A
such that X — A.

April 24, 2024

Closure (X) :
Repeat:
find a FD Y>> A
such that YEX and AZX
X:=XUA
Until “no more change”
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The Closure of a set X

Fix a set of Functional Dependencies

The closure X* of a

set of attributes X

IS the set of attributes A
such that X — A.

Name - Color
Category - Dept
Color, Dept = Price

April 24, 2024

Closure (X) :
Repeat:
find a FD Y>> A
such that YEX and AZX
X:=XUA
Until “no more change”

{Name, Category}* =

Functional Dependencies




The Closure of a set X

Fix a set of Functional Dependencies

The closure X* of a

set of attributes X

IS the set of attributes A
such that X — A.

Name - Color
Category - Dept
Color, Dept = Price

April 24, 2024

Closure (X) :
Repeat:
find a FD Y>> A
such that YEX and AZX
X:=XUA
Until “no more change”

{Name, Category}* =
= {Name, Category, }
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The Closure of a set X

Fix a set of Functional Dependencies

The closure X* of a

set of attributes X

IS the set of attributes A
such that X — A.

Name - Color
Category - Dept
Color, Dept = Price

April 24, 2024

Closure (X) :
Repeat:
find a FD Y>> A
such that YEX and AZX
X:=XUA
Until “no more change”

{Name, Category}*=
= {Name, Category, Color, }
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The Closure of a set X

Fix a set of Functional Dependencies

The closure X* of a

set of attributes X

IS the set of attributes A
such that X — A.

Name - Color
Category - Dept
Color, Dept = Price

April 24, 2024

Closure (X) :
Repeat:
find a FD Y—>A
such that YEX and AZX
X=XUA
Until “no more change”

{Name, Category}*=
= {Name, Category, Color, Dept, }
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The Closure of a set X

Fix a set of Functional Dependencies

The closure X* of a

set of attributes X

IS the set of attributes A
such that X — A.

Name - Color
Category - Dept
Color, Dept = Price

April 24, 2024

Closure (X) :
Repeat:
find a FD Y—>A
such that YEX and AZX
X=XUA
Until “no more change”

{Name, Category}™ =
= {Name, Category, Color, Dept, Price}
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The Closure of a set X

Fix a set of Functional Dependencies

The closure X* of a

set of attributes X

IS the set of attributes A
such that X — A.

Name - Color
Category - Dept
Color, Dept = Price

April 24, 2024

Closure (X) :
Repeat:
find a FD Y—>A
such that YEX and AZX
X=XUA
Until “no more change”

{Name, Category}™ =
= {Name, Category, Color, Dept, Price}

{Color}*=
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The Closure of a set X

Fix a set of Functional Dependencies

The closure X* of a

set of attributes X

IS the set of attributes A
such that X — A.

Name - Color
Category - Dept
Color, Dept = Price

April 24, 2024

Closure (X) :
Repeat:
find a FD Y—>A
such that YEX and AZX
X=XUA
Until “no more change”

{Name, Category}™ =
= {Name, Category, Color, Dept, Price}

{Color}*= {Color}

Functional Dependencies




Discussion so Far

» Goal is to detect/remove anomalies

» Anomalies are caused by unwanted FDs
E.g. UID = Name, City; but UID not a key

* Next : Keys
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Keys
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Keys and Superkeys

= Fix a relation R(A4, ...,A,) and a set of FDs

» A super-key is a set X such that X —» A; for every
attribute A;
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Keys and Superkeys

= Fix a relation R(A4, ...,A,) and a set of FDs

» A super-key is a set X such that X —» A; for every

attribpute A;
1 Equivalently:

Xt =A; .. A,
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Keys and Superkeys

= Fix a relation R(A4, ...,A,) and a set of FDs

» A super-key is a set X such that X —» A; for every

attribpute A;
1 Equivalently:

Xt =A; .. A,

* A key is a minimal super-key X
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Keys and Superkeys

= Fix a relation R(A4, ...,A,) and a set of FDs

» A super-key is a set X such that X —» A; for every

attribpute A;
1 Equivalently:

Xt =A; .. A,

* A key is a minimal super-key X

In other words,
no super-key Y ¢ X

exists

April 24, 2024 BCNF Decomposition



Example: Find the Keys

mmmm_

Fred 206-555-9999 Seattle UID = Name City
234 Fred 206-555-8888 Seattle
987 Joe 415-555-7777 SF

UID* = UID, Name, City
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Example: Find the Keys
mmmm_

Fred 206-555-9999 Seattle
234 Fred 206-555-8888 Seattle
987 Joe 415-555-7777 SF

UID - Name, City

_ Not a key:
UID* = UID, Name, City
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Example: Find the Keys
mmmm_

Fred 206-555-9999 Seattle
234 Fred 206-555-8888 Seattle
987 Joe 415-555-7777 SF

UID - Name, City

_ Not a key:
UID* = UID, Name, City

(UID, Phone)* = ??
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Example: Find the Keys
mmmm_

Fred 206-555-9999 Seattle
234 Fred 206-555-8888 Seattle
987 Joe 415-555-7777 SF

UID - Name, City

_ Not a key:
UID* = UID, Name, City

(UID, Phone)* = UID, Name, Phone, City
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Example: Find the Keys

mmmm_

Fred 206-555-9999 Seattle UID = Name City
234 Fred 206-555-8888 Seattle
987 Joe 415-555-7777 SF

_ Not a key:
UID* = UID, Name, City

(UID, Phone)* = UID, Name, Phone, City (&)
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Example: Find the Keys

mmmm_

Fred 206-555-9999 Seattle
234 Fred 206-555-8888 Seattle
987 Joe 415-555-7777 SF

UID* = UID, Name, City

(UID, Phone)* = UID, Name, Phone, City

UID - Name, City

Not a key:
missing Phone

(UID, Name, Phone)* = ??

BCNF Decomposition

©
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Example: Find the Keys

mmmm_

Fred 206-555-9999 Seattle
234 Fred 206-555-8888 Seattle
987 Joe 415-555-7777 SF

UID* = UID, Name, City

(UID, Phone)* = UID, Name, Phone, City

UID - Name, City

Not a key:
missing Phone

©

(UID, Name, Phone)* = UID, Name, Phone, City

BCNF Decomposition
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Example: Find the Keys

mmmm_

Fred 206-555-9999 Seattle
234 Fred 206-555-8888 Seattle
987 Joe 415-555-7777 SF

UID* = UID, Name, City

(UID, Phone)* = UID, Name, Phone, City

UID - Name, City

Not a key:

missing Phone

©

(UID, Name, Phone)* = UID, Name, Phone, City@

BCNF Decomposition
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Example: Find the Keys

mmmm_

Fred 206-555-9999 Seattle UID = Name City
234 Fred 206-555-8888 Seattle
987 Joe 415-555-7777 SF

Not a key:

UID* = UID, Name, City missing Phone

(UID, Phone)* = UID, Name, Phone, City (&)

(UID, Name, Phone)* = UID, Name, Phone, City@

Phone* = Phone
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Example: Find the Keys

mmmm_

Fred 206-555-9999 Seattle UID = Name City
234 Fred 206-555-8888 Seattle
987 Joe 415-555-7777 SF

Not a key:

UID* = UID, Name, City missing Phone

(UID, Phone)* = UID, Name, Phone, City (&)

(UID, Name, Phone)* = UID, Name, Phone, City@

Phonet = Phone Not a (Super-)Key
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Example: Find the Keys

Compute X*, for larger and larger Name = Color
sets X, until X*= [all-attributes] Category - Dept
Color, Dept - Price
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Example: Find the Keys

Compute X*, for larger and larger Name = Color
sets X, until X*= [all-attributes] Category - Dept
Color, Dept - Price

Sets X
Name* = Name, Color; of size 1
Color* = Color;

April 24, 2024 BCNF Decomposition




Example: Find the Keys

Compute X*, for larger and larger Name = Color
sets X, until X*= [all-attributes] Category - Dept
Color, Dept - Price

Sets X
Name* = Name, Color; Category* = Category, Dept;
Color* = Color; Dept* = Dept
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Example: Find the Keys

Compute X*, for larger and larger Name = Color
sets X, until X*= [all-attributes] Category - Dept
Color, Dept - Price

Sets X
Name* = Name, Color; Category* = Category, Dept; of size 1
Color* = Color; Dept* = Dept
(Name, Color)* = Name, Color; Sets X

of size 2
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Example: Find the Keys

Compute X*, for larger and larger Name = Color
sets X, until X*= [all-attributes] Category - Dept
Color, Dept - Price

Sets X
Name* = Name, Color; Category* = Category, Dept; of size 1
Color* = Color; Dept* = Dept
(Name, Color)* = Name, Color; Sets X
(Name, Category)* = Name, Color, Category, Dept, Price; of size 2
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Example: Find the Keys

Compute X*, for larger and larger Name = Color
sets X, until X*= [all-attributes] Category - Dept
Color, Dept - Price

Sets X
Name* = Name, Color; Category* = Category, Dept; of size 1
Color* = Color; Dept* = Dept
(Name, Color)* = Name, Color; Sets X
(Name, Category)* = Name, Color, Category, Dept, Price; of size 2

// no need to try (Name, Category, Dept)*  why?
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Example: Find the Keys

Compute X*, for larger and larger

sets X, until X*= [all-attributes]

Name = Color
Category - Dept
Color, Dept - Price

Name* = Name, Color; Category* = Category, Dept;

Color* = Color; Dept* = Dept

(Name, Color)* = Name, Color;

(Name, Category)* = Name, Color, Category, Dept, Price;
// no need to try (Name, Category, Dept)*  why?
(Name, Dept)* = ... ... and so on until we find all keys

April 24, 2024 BCNF Decomposition

Sets X
of size 1

Sets X

of size 2




Example: Find the Keys

Compute X*, for larger and larger

sets X, until X*= [all-attributes]

Name = Color
Category - Dept
Color, Dept - Price

Name* = Name, Color; Category* = Category, Dept;

Color* = Color; Dept* = Dept

(Name, Color)* = Name, Color;

(Name, Category)* = Name, Color, Category, Dept, Price;
// no need to try (Name, Category, Dept)*  why?
(Name, Dept)* = ... ... and so on until we find all keys

A quicker way: any key X must contain Name (why?) and Category (why?)

April 24, 2024 BCNF Decomposition

Sets X
of size 1

Sets X

of size 2




Keys are Not Unique

R(A,B,C)
Don’t confuse with

A-> B,C AB->C
B->AC

A*=B+*=ABC A*=A,B*=B

(AB)*=ABC
Ais a key
B is a key AB is a key

In SQL
we must choose

either Aor B

as primary key

April 24, 2024 BCNF Decomposition



Discussion

= Qur redundancies come this FD:

UID - Name, City

* The problem is that UID is not a key.

» Boyce-Codd Normal Form captures this intuition.

» Next: BCNF
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BCNF
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BCNF

= Fix a relation R(A4, ..., A,,) and a set of FDs

R is in Boyce-Codd Normal Form (BCNF), if every

FD X — Y is either from a superkey X or is trivial: Y € X

» Equivalently: for every set X,
either X* = X or X* = [all—attributes]
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Normalization

Algorithm BCNF R(A4,...,A})

Findset Xs.t. X € Xt c{A,, .., A}

=
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Normalization

Algorithm BCNF R(A4,...,A})
Findset Xs.t. X € Xt c{A,, .., A}

If not found then return R(A4, ..., A) // already in BCNF

=
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Normalization

Algorithm BCNF R(A4,...,A})
Findset Xs.t. X € Xt c{A,, .., A}

If not found then return R(A4, ..., A) // already in BCNF
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Normalization

Algorithm BCNF R(A4,...,A})
Findset Xs.t. X € Xt c{A,, .., A}

If not found then return R(A4, ..., A) // already in BCNF

(A, .., Ay} — X¥
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Normalization

Algorithm BCNF R(A4,...,A})
Findset Xs.t. X € Xt c{A,, .., A}

If not found then return R(A4, ..., A) // already in BCNF
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Normalization

Algorithm BCNF R(A4,...,A})
Findset Xs.t. X € Xt c{A,, .., A}

If not found then return R(A4, ..., A) // already in BCNF
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Normalization

Algorithm BCNF R(A4,...,A})
Findset Xs.t. X € Xt c{A,, .., A}

If not found then return R(A4, ..., A) // already in BCNF
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Normalization

Algorithm BCNF R(A4,...,A})
Findset Xs.t. X € Xt c{A,, .., A}

If not found then return R(A4, ..., Ap)

// already in BCNF

Decompose: R(A4, ...,A;) = R;(XT) @ R,({Aq, ..., Ay} — X1)
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Normalization

Algorithm BCNF R(A4,...,A})

Findset Xs.t. X € Xt c{A,, .., A}

If not found then return R(A4, ..., A) // already in BCNF

Decompose: R(A4, ...,A;) = R;(XT) @ R,({Aq, ..., Ay} — X1)
Call recursively BCNF on R, (X*)
Call recursively BCNF on R,({A4, ..., A} — X™)

R4 R
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Example: Decompose in BCNF

EIMIE_
Fred 206-555-9999 Seattle UID = Name City
234 Fred 206-555-8888 Seattle
987 Joe 415-555-7777 SF
Ry R,
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Example: Decompose in BCNF

MMEE_

Fred 206-555-9999 Seattle UID = Name City
234 Fred 206-555-8888 Seattle
987 Joe 415-555-7777 SF

Find set X s.t. X ¢ X* ¢ {UID, Name, Phone, City}
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Example: Decompose in BCNF

MMEE_

Fred 206-555-9999 Seattle UID = Name City
234 Fred 206-555-8888 Seattle
987 Joe 415-555-7777 SF

Find set X s.t. X ¢ X* ¢ {UID, Name, Phone, City}

X =UID, X* = {UID,Name, City}

R4 R
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Example: Decompose in BCNF

mmmm_

Fred 206-555-9999 Seattle UID = Name City
234 Fred 206-555-8888 Seattle
987 Joe 415-555-7777 SF

Find set X s.t. X ¢ X* ¢ {UID, Name, Phone, City}

X =UID, X* = {UID,Name, City}

R4 R

Xt —X (A, .., Ay} — X¥

UD | Name | City uD_|Phone__

234 Fred Seattle 234 206-555-9999
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Example: Decompose in BCNF

Name = Color
Category - Dept
Color, Dept - Price

R(Name, Color, Category, Dept, Price)
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Example: Decompose in BCNF

Name = Color
Category - Dept
Color, Dept - Price

R(Name, Color, Category, Dept, Price)

X = Name
X* = {Name, Color}
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Example: Decompose in BCNF

Name = Color
Category - Dept
Color, Dept - Price

R(Name, Color, Category, Dept, Price)

X* = {Name, Colo

R,(Name, Color) R,(Name,Category,Dept,Price)
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Example: Decompose in BCNF

R(Name, Color, Category, Dept, Price)

X* = {Name, Colo

Name = Color
Category - Dept
Color, Dept - Price

R,(Name, Color)

R,(Name,Category,Dept,Price)

BCNF because:
Name+ = Name, Color

Color* = Color

April 24, 2024
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Example: Decompose in BCNF

Name - Color

R(Name, Color, Category, Dept, Price) girce)rgoDr}égeDelfrtice

X* = {Name, Colo

R,(Name, Color) R,(Name,Category,Dept,Price)

BCNF because:
Name+ = Name, Color

Color* = Color

X = Category
X* = {Category, Dept}

April 24, 2024 BCNF Decomposition



Example: Decompose in BCNF

Name - Color

R(Name, Color, Category, Dept, Price) ggrce)rgoDr}égeDelfrtice

X* = {Name, Colo

R,(Name, Color) R,(Name,Category,Dept,Price)

BCNF because:
Name+ = Name, Color

Color* = Color

= Category
X* = {Category, Degt}

R;(Category, Dept) R,(Name, Category, Price)

BCNF
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Example: Decompose in BCNF

Name - Color

R(Name, Color, Category, Dept, Price) gg;‘gg%ﬁ;giﬂce

X* = {Name, Colo

R,(Name, Color) R,(Name,Category,Dept,Price)

BCNF because:
Name+ = Name, Color

Color* = Color

= Category
X* = {Category, Degt}

R;(Category, Dept) R,(Name, Category, Price)

BCNF BCNF
Name,Category is a key because:
(Name,Category)*=...,Price
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Example: Decompose in BCNF

R(Name, Color, Category, Dept, Price)

X* = {Name, Colo

Name = Color
Category - Dept
Color, Dept - Price

R,(Name, Color)

R,(Name,Category,Dept,Price)

BCNF because:
Name+ = Name, Color

Color* = Color

Final Decomposition

R;(Cateqgory, Dept)

BCNF BCNF

BCNF Decomposition

= Category
X* = {Category, De

R,(Name, Cateqory, Price)

Name,Category is a key because:
(Name,Category)*=...,Price
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Example: Decompose in BCNF

Name - Color

R(Name, Color, Category, Dept, Price) girce)?ODr}égeDelfrﬁce

We lost the FD

Color, Dept = Price

X* = {Name, Colo

R,(Name, Color) R,(Name,Category,Dept,Price)

BCNF because:
Name+ = Name, Color

Color* = Color

= Category
X* = {Category, De

R;(Cateqgory, Dept) R,(Name, Cateqory, Price)

BCNF BCNF
Name,Category is a key because:

Final Decomposition (Name,Category)*=...,Price
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Example: Decompose in BCNF

Name = Color
Category - Dept
Color, Dept - Price

R(Name, Color, Category, Dept, Price)

Decomposition
IS not unique
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Example: Decompose in BCNF

Name = Color
Category - Dept
Color, Dept - Price

R(Name, Color, Category, Dept, Price)

X = Color, Dept
X* = {Color, Dept, Price}

Decomposition
IS not unique
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Example: Decompose in BCNF

Name = Color
Category - Dept
Color, Dept - Price

R(Name, Color, Category, Dept, Price)

X = Color, Dep
X* = {Color, Dept,

R4(Color, Dept, Price) R,(Name, Category, Color, Dept)

BCNF

Decomposition
IS not unique
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Example: Decompose in BCNF

Name = Color
Category - Dept
Color, Dept - Price

R(Name, Color, Category, Dept, Price)

X = Color, Dep
X* = {Color, Dept,

R4(Color, Dept, Price) R,(Name, Category, Color, Dept)

X = Name

BCNF X* = {Name, Color}

Decomposition
IS not unique
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Example: Decompose in BCNF

Name = Color
Category - Dept
Color, Dept - Price

R(Name, Color, Category, Dept, Price)

X = Color, Dep

R4(Color, Dept, Price) R,(Name, Category, Color, Dept)

BCNF X* = {Name, Color}

R;(Name, Color) R,(Name, Category, Dept)

BCNF

Decomposition
IS not unique
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Example: Decompose in BCNF

Name = Color
Category - Dept
Color, Dept - Price

R(Name, Color, Category, Dept, Price)

X = Color, Dep

R4(Color, Dept, Price) R,(Name, Category, Color, Dept)

BCNF X* = {Name, Color}

R;(Name, Color) R,(Name, Category, Dept)

BCNF X = Category

X+ = {Category, Dept}
Decomposition
IS not unique
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Example: Decompose in BCNF

Name = Color
Category - Dept
Color, Dept - Price

R(Name, Color, Category, Dept, Price)

X = Color, Dep

R4(Color, Dept, Price) R,(Name, Category, Color, Dept)

BCNF

R;(Name, Color)

BCNF

!Decomppsition R<(Category, Dept) | | Re(Name, Category)
IS not unique BCNE BCNF
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Example: Decompose in BCNF

Name = Color
Category - Dept
Color, Dept - Price

All FDs are recovered

R,(Color, Dept, Price) R,(Name, Category, Color, Dept)

R(Name, Color, Category, Dept, Price)

BCNF

R;(Name, Color)

BCNF
Final decomposition

Pecomppsition R(Category, Dept) | | Rs(Name, Category)
IS not unique BCNE BCNF
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Discussion

* The BCNF decomposition eliminates all anomalies

* In general, we may not be able to recover all FDs

» The 39 Normal Form is another kind of
decomposition, which recovers all FDs, but does
not eliminate all anomalies

» We won't discuss 3NF: it is very similar to BCNF
but a lot more complicated
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