

# Introduction to Data Management Design Theory

Paul G. Allen School of Computer Science and Engineering University of Washington, Seattle

RA and ER

HW3 due on Friday

- Midterm on Friday, 4/26 in class
  - Closed books, no cheat sheet (you won't need it)
  - Some practice midterms on the course website

#### Recap: Entity Sets





Person

RA and ER

#### **Recap: Attributes**



#### **Recap: Relationships**



#### Recap: Inheritance



Discuss each concept in ER in more detail

Map ER to SQL

Database constraints

## ER Diagrams: Building Blocks

#### These are all the components we will learn about



# **Entity Sets**

# **Entity Set**

- Entity set is the same as a class
- An entity is the same as an object
- An attribute is the same as a field of a class



# Entity Set

- Entity set is the same as a class
- An entity is the same as an object
- An attribute is the same as a field of a class



# Entity Set

- Entity set is the same as a class
- An entity is the same as an object
- An attribute is the same as a field of a class



## Entity Set to SQL

Entity set is the same as a class

name

Person

- An entity is the same as an object
- An attribute is the same as a field of a class

UID

How do we represent in SQL?



address

# Entity Set to SQL

- Entity set is the same as a class
- An entity is the same as an object
- An attribute is the same as a field of a class



A relationship relates entities from two entity sets



#### A subset of the cross product: $R \subseteq A \times B$

A relationship relates entities from two entity sets





A relationship relates entities from two entity sets



A relationship relates entities from two entity sets



RA and ER

- A relationship relates entities from two entity sets
- A relationship can have attributes too!



- A relationship relates entities from two entity sets
- A relationship can have attributes too!



- A relationship relates entities from two entity sets
- A relationship can have attributes too!



RA and ER

- One-to-one
- Many-to-one
- Many-to-many



























## **Multiplicity Constraints**

- One-to-one
- Many-to-one
- Many-to-many



- Each company manufactures at most 20 products
- OK in ER, but most SQL systems don't support



(a complicated name for something very simple)

- Regular arrow: at most one
- Rounded arrow: exactly one



Regular arrow: at most one

Rounded arrow: exactly one



Regular arrow: at most one

Rounded arrow: exactly one





- Regular arrow: at most one
- Rounded arrow: exactly one










So far we saw binary relationships: they connect two entity sets

Also possible: multi-way relationships: they connect three or more entity sets



### R is a subset of the cross product: $R \subseteq A \times B \times C$









#### Purchase

| PID           | CID         | BID         |
|---------------|-------------|-------------|
| 0035 (soap)   | 345 (Dial)  | 555 (Alice) |
| 0035 (soap)   | 345 (Dial)  | 666 (Bob)   |
| 0041 (lotion) | 123 (Nivea) | 555 (Alice) |
|               |             |             |



| CREATE | TABLE | Product    | (          |
|--------|-------|------------|------------|
| PID    | INT   | PRIMARY KE | EY,);      |
| CREATE | TABLE | Company    | (          |
| CID    | INT   | PRIMARY KE | EY,);      |
| CREATE | TABLE | Buyer (    |            |
| BID    | INT   | PRIMARY KE | EY,);      |
|        |       |            |            |
| CREATE | TABLE | Purchase   | (          |
| PID    | INT   | REFERENCES | S Product, |
| CID    | INT   | REFERENCES | S Company, |
| BID    | INT   | REFERENCES | S Buyer,   |
| •••    | );    |            |            |

#### Purchase

| PID           | CID         | BID         |
|---------------|-------------|-------------|
| 0035 (soap)   | 345 (Dial)  | 555 (Alice) |
| 0035 (soap)   | 345 (Dial)  | 666 (Bob)   |
| 0041 (lotion) | 123 (Nivea) | 555 (Alice) |
|               |             |             |



#### Purchase

| PID           | CID         | BID         |
|---------------|-------------|-------------|
| 0035 (soap)   | 345 (Dial)  | 555 (Alice) |
| 0035 (soap)   | 345 (Dial)  | 666 (Bob)   |
| 0041 (lotion) | 123 (Nivea) | 555 (Alice) |
|               |             |             |

Arrow means: a buyer always buys a product from the same company



### Purchase

| PID           | CID         | BID         |
|---------------|-------------|-------------|
| 0035 (soap)   | 345 (Dial)  | 555 (Alice) |
| 0035 (soap)   | 345 (Dial)  | 666 (Bob)   |
| 0041 (lotion) | 123 (Nivea) | 555 (Alice) |
|               |             |             |

Arrow means: a buyer always buys a product from the same company

456 (Dove)





0035 (soap)

RA and ER

555 (Alice)



#### Purchase

| PID           | CID         | BID         |
|---------------|-------------|-------------|
| 0035 (soap)   | 345 (Dial)  | 555 (Alice) |
| 0035 (soap)   | 345 (Dial)  | 666 (Bob)   |
| 0041 (lotion) | 123 (Nivea) | 555 (Alice) |
|               |             |             |

What does this mean?

|               |             |            | CRE | EATE TABLE Product (           |
|---------------|-------------|------------|-----|--------------------------------|
| Product       | Com         |            |     | PID INT PRIMARY KEY,);         |
| FIGUUCI       |             | ipany      | CRE | EATE TABLE Company (           |
|               |             |            |     | CID INT PRIMARY KEY,);         |
|               |             |            | CRE | <b>EATE TABLE</b> Buyer (      |
| Pu            | rchase      |            |     | BID INT PRIMARY KEY,);         |
|               |             |            | CRE | EATE TABLE Purchase (          |
|               |             |            |     | PID INT REFERENCES Product,    |
| E             | Buver       |            |     | CID INT REFERENCES Company,    |
|               |             |            |     | BID INT REFERENCES Buyer,      |
|               |             |            |     | UNIQUE (BID, PID),             |
| Purchase      |             |            |     | UNIQUE (BID, CID),             |
|               |             |            |     | · · · ) ;                      |
| PID           | CID         | BID        |     | What does this mean?           |
| 0035 (soap)   | 345 (Dial)  | 555 (Alice | e)  | We read each arrow separately: |
| 0035 (soap)   | 345 (Dial)  | 666 (Bob)  | )   |                                |
| 0041 (lotion) | 123 (Nivea) | 555 (Alice | e)  |                                |
|               |             |            |     |                                |

| Product       | ! Com       | npany      | CRE | <pre>ATE TABLE Product (   PID INT PRIMARY KEY,); ATE TABLE Company (   CID INT PRIMARY KEY,); ATE TABLE Buyer (   BID INT PRIMARY KEY,);</pre>                   |
|---------------|-------------|------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Purchase      | Buyer       |            | CRE | ATE TABLE Purchase (<br>PID INT REFERENCES Product,<br>CID INT REFERENCES Company,<br>BID INT REFERENCES Buyer,<br>UNIQUE (BID, PID),<br>UNIQUE (BID, CID),<br>); |
| PID           | CID         | BID        |     | What does this mean?                                                                                                                                              |
| 0035 (soap)   | 345 (Dial)  | 555 (Alice | 2)  | We read each arrow separately:                                                                                                                                    |
| 0035 (soap)   | 345 (Dial)  | 666 (Bob)  |     |                                                                                                                                                                   |
| 0041 (lotion) | 123 (Nivea) | 555 (Alice | )   | <br>and every buyer buys at most                                                                                                                                  |
|               |             |            |     | one product from each company                                                                                                                                     |

|                |             |             | CREATE TABLE Product (             |
|----------------|-------------|-------------|------------------------------------|
| Product        |             | anany       | PID INT PRIMARY KEY,);             |
| TTOUUCI        |             | ipany       | <b>CREATE TABLE</b> Company (      |
|                |             | <b>↑</b>    | CID INT PRIMARY KEY,);             |
|                |             |             | <b>CREATE TABLE</b> Buyer (        |
| Pu             | rchase      |             | BID INT PRIMARY KEY,);             |
|                | TCHASE      |             |                                    |
|                |             |             | <b>CREATE TABLE</b> Purchase (     |
| _              |             |             | PID INT REFERENCES Product,        |
|                | Buver       |             | CID INT REFERENCES Company,        |
|                |             |             | BID INT REFERENCES Buyer,          |
|                |             |             | UNIQUE (BID, PID),                 |
| Developer      |             |             | UNIQUE (BID, CID),                 |
| Purchase       |             |             | );                                 |
| PID            | CID         | BID         | What does this mean?               |
| 0035 (soap)    | 345 (Dial)  | 555 (Alice) | e) We read each arrow separately   |
| 0035 (soap)    | 345 (Dial)  | 666 (Bob)   | ))                                 |
| 0041 (lotion)  | 123 (Nivea) | 555 (Alice) | e)<br>and every buver buys at most |
| 06 (soft soap) | 345 (Dial)  | 555 (Alice  | e) one product from each compar    |

### Multiplicity constraints:

- Many-many: separate table
- Many-one: no separate table
- Multiplicity constraints: only in ER
- Referential integrity: foreign key NOT NULL
- Multi-way relationships: foreign key to each

## Subclassing

### Subclassing

Entity set may be a subclass of another entity set



### Subclassing

- Entity set may be a subclass of another entity set
- Inherits attributes of superclass



April 17, 2024

RA and ER

Each entity set becomes a relation



Each entity set becomes a relation



| Product    |          |       |  |  |
|------------|----------|-------|--|--|
| <u>pid</u> | name     | price |  |  |
| 012        | Lego     | 99    |  |  |
| 123        | M&M      | 5     |  |  |
| 234        | Computer | 2999  |  |  |
| 345        | Ball     | 15    |  |  |
| 456        | Skittles | 3     |  |  |
| 567        | M&M toy  | 49    |  |  |





| Product    |          |       |  |  |
|------------|----------|-------|--|--|
| <u>pid</u> | name     | price |  |  |
| 012        | Lego     | 99    |  |  |
| 123        | M&M      | 5     |  |  |
| 234        | Computer | 2999  |  |  |
| 345        | Ball     | 15    |  |  |
| 456        | Skittles | 3     |  |  |
| 567        | M&M toy  | 49    |  |  |

| Тоу        |     |
|------------|-----|
| <u>pid</u> | age |
| 012        | 8   |
| 345        | 2   |
| 567        | 3   |



| Product    |          |       |
|------------|----------|-------|
| <u>pid</u> | name     | price |
| 012        | Lego     | 99    |
| 123        | M&M      | 5     |
| 234        | Computer | 2999  |
| 345        | Ball     | 15    |
| 456        | Skittles | 3     |
| 567        | M&M toy  | 49    |

| Тоу        |     |
|------------|-----|
| <u>pid</u> | age |
| 012        | 8   |
| 345        | 2   |
| 567        | 3   |

| Candy      |        |
|------------|--------|
| <u>pid</u> | isChoc |
| 123        | yes    |
| 456        | no     |
| 567        | no     |

Each entity set becomes a relation



CREATE TABLE Product (
 pid INT PRIMARY KEY,
 name TEXT,
 price FLOAT);

CREATE TABLE Toy (
 pid INT PRIMARY KEY
 REFERENCES Product,
 age INT);

CREATE TABLE Candy ( pid INT PRIMARY KEY REFERENCES Product, isChocolate INT);

- Entity set may be a subclass of another entity set
  - Inherits all the attributes of the superclass

- Some DBMSs support inheritance
  - However, we will simply represent inheritance using foreign keys and joins with the subclass and superclass







- The key of Team is (tname, uname) together
  - tname is not enough e.g. "Huskies" could be UCONN or UW



- The key of Team is (tname, uname) together
  - tname is not enough e.g. "Huskies" could be UCONN or UW
- The weak entity set and its relationship to the other (entity set's) key are both depicted with double-outlines



## **Database Constraints**

- A constraint is an assertion that must always hold on the data
- Defining constraints is part of conceptual design
- SQL supports several constraints:
  - Keys and Foreign Keys
  - Attribute-level constraints
  - Tuple-level constraints
  - General assertions

## Keys and Foreign Keys





## Keys and Foreign Keys





What does system check when...

- What does system ...we insert a Product?
  - ...we delete a Product?

## Keys and Foreign Keys






April 17, 2024



April 17, 2024



#### Attribute- and Tuple-level Constraints



What happens when we insert a User?

#### **Global Assertions**



| CREATE ASSERTIO | N myAssert CHECK |
|-----------------|------------------|
| (NOT EXISTS     | (                |
| SELECT          | Makes.PID        |
| FROM            | Makes            |
| GROUP BY        | Make.PID         |
| HAVING          | COUNT(*) > 20)   |
| );              |                  |

Expensive.

Very few systems support it

What you should know:

- Design simple ER diagrams
- Convert (correctly!) ER diagrams to SQL
- Database constraints in SQL:
  - PK/FK
  - Attribute and tuple-level constraints