
1

RA and ER Diagrams

April 15, 2024

Introduction to Data Management

RA and ER



Announcements

§HW3 due on Friday

§Midterm on Friday, 4/26 in class
• Closed books, no cheat sheet (you won’t need it)
• Some practice midterms on the course website

April 15, 2024 RA and ER 2



Recap: Relational Algebra

§SQL: declarative language; we say what

§RA: an algebra for saying how

§Optimizer converts SQL to RA

April 15, 2024 RA and ER 3



Recap: Relational Algebra

1. Selection σ!"#$%&%"#(S)

2. Projection Π'&&()(S)

3. Join R ⋈* S = σ*(R	×S)

4. Union ∪

5. Set difference − 

§Rename ρ

April 15, 2024 RA and ER 4



Recap: Relational Algebra

1. Selection σ!"#$%&%"#(S)

2. Projection Π'&&()(S)

3. Join R ⋈* S = σ*(R	×S)

4. Union ∪

5. Set difference − 

§Rename ρ

April 15, 2024 RA and ER 5

Monotone

Non-monotone

Monotone, but doesn’t do anything



April 15, 2024 RA and ER 6

Query Plans



April 15, 2024 RA and ER 7

Relational Algebra Plan, or Query Plan

Payroll

UserID Car

123 Charger

567 Civic

567 Pinto

RegistUserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

SELECT P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
  and P.Job = ‘TA’;



April 15, 2024 RA and ER 8

Relational Algebra Plan, or Query Plan

Payroll

UserID Car

123 Charger

567 Civic

567 Pinto

RegistUserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

SELECT P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
  and P.Job = ‘TA’;

Π!"#$(σ%&'(!)*!(Payroll ⋈ Regist))



April 15, 2024 RA and ER 9

Relational Algebra Plan, or Query Plan

Payroll

UserID Car

123 Charger

567 Civic

567 Pinto

RegistUserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

SELECT P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
  and P.Job = ‘TA’;

Payroll Regist

⋈

σ!"#$‘&'’

Π)*+,

Π!"#$(σ%&'(!)*!(Payroll ⋈ Regist))

We write it as

a query plan



April 15, 2024 RA and ER 10

Relational Algebra Plan, or Query Plan

Payroll

UserID Car

123 Charger

567 Civic

567 Pinto

RegistUserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

SELECT P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
  and P.Job = ‘TA’;

Payroll Regist

⋈

σ!"#$‘&'’

Π)*+,

Π!"#$(σ%&'(!)*!(Payroll ⋈ Regist))

Data
flows
this
way

We write it as

a query plan



April 15, 2024 RA and ER 11

Query Plan: Attribute Names

Payroll

Regist

⋈-.,/01$-23

σ!"#$‘&'’

Π)*+,

Managing attribute names
correctly is tedious

ρ-23,5*/

Rename
UserID to Uid
to distinguish
from Payroll

Better: use aliases,
much like in SQL

Payroll P Regist R

⋈6.-.,/01$8.-.,/01

σ6.!"#$‘&'’

Π6.)*+,

Now it’s
clear which

UserID



April 15, 2024 RA and ER 12

Query Plan: Execution Order
SELECT P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
  and P.Job = ‘TA’;

We say what we want,
not how to get it



April 15, 2024 RA and ER 13

Query Plan: Execution Order
SELECT P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
  and P.Job = ‘TA’;

We say what we want,
not how to get it

Payroll P Regist R

⋈6.-.,/01$8.-.,/01

σ6.!"#$‘&'’

Π6.)*+,One way
how to get it



April 15, 2024 RA and ER 14

Query Plan: Execution Order
SELECT P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
  and P.Job = ‘TA’;

We say what we want,
not how to get it

Payroll P Regist R

⋈6.-.,/01$8.-.,/01

σ6.!"#$‘&'’

Π6.)*+,One way
how to get it

Payroll P Regist R

⋈6.-.,/01$8.-.,/01

σ6.!"#$‘&'’

Π6.)*+,

Another way
how to get it



April 15, 2024 RA and ER 15

Query Plan: Execution Order
SELECT P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
  and P.Job = ‘TA’;

We say what we want,
not how to get it

Payroll P Regist R

⋈6.-.,/01$8.-.,/01

σ6.!"#$‘&'’

Π6.)*+,One way
how to get it

Payroll P Regist R

⋈6.-.,/01$8.-.,/01

σ6.!"#$‘&'’

Π6.)*+,

Another way
how to get it

Which one
is more

efficient?



April 15, 2024 RA and ER 16

Query Plan: Execution Order
SELECT P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
  and P.Job = ‘TA’;

We say what we want,
not how to get it

Payroll P Regist R

⋈6.-.,/01$8.-.,/01

σ6.!"#$‘&'’

Π6.)*+,One way
how to get it

Payroll P Regist R

⋈6.-.,/01$8.-.,/01

σ6.!"#$‘&'’

Π6.)*+,

Another way
how to get it

Which one
is more

efficient?

Most likely
this one, and

optimizer choose
this



Discussion

§Database system converts a SQL query to a 
Relational Algebra Plan

April 15, 2024 RA and ER 17



Discussion

§Database system converts a SQL query to a 
Relational Algebra Plan

§ Then it optimizes the plan by exploring equivalent 
plans, using simple algebraic identities:
 R ⋈ S = S ⋈ R
 R ⋈ S ⋈ T = R ⋈ S ⋈ T 
 σ* R ⋈ S = σ* R ⋈ S
 … many others*

April 15, 2024 RA and ER 18

*over 500 rules in SQL Server



Discussion

§Database system converts a SQL query to a 
Relational Algebra Plan

§ Then it optimizes the plan by exploring equivalent 
plans, using simple algebraic identities:
 R ⋈ S = S ⋈ R
 R ⋈ S ⋈ T = R ⋈ S ⋈ T 
 σ* R ⋈ S = σ* R ⋈ S
 … many others*

§Next: how to convert SQL to RA plan

April 15, 2024 RA and ER 19

*over 500 rules in SQL Server



April 15, 2024 RA and ER 20

Simple SQL to RA



April 15, 2024 RA and ER 21

SQL to RA
Single SELECT-FROM-WHERE query:

SELECT attrs
FROM T1,T2,...,Tn
WHERE condition;

T!

⋈

σ"#$%&'&#$

Π('')*

T+

T,

⋈

. . .

T$

⋈



April 15, 2024 RA and ER 22

SQL to RA
Single SELECT-FROM-WHERE query:

SELECT attrs
FROM T1,T2,...,Tn
WHERE condition;

T!

⋈

σ"#$%&'&#$

Π('')*

T+

T,

⋈

. . .

T$

⋈

Next: to convert group-by
we need to extend RA



Extended Relational Algebra

§Duplicate elimination δ

§Group-by aggregate γ'&&(0,'&&(2,…,'440,…

April 15, 2024 RA and ER 23



April 15, 2024 RA and ER 24

Duplicate Elimination

𝛿(T)

Eliminates duplicates
from the bag T

SELECT DISTINCT *
FROM T;



April 15, 2024 RA and ER 25

Duplicate Elimination

𝛿(T)

Eliminates duplicates
from the bag T

𝛿 R =

SELECT DISTINCT *
FROM T; R A B

1 10

2 10

2 10

2 20

1 10



April 15, 2024 RA and ER 26

Duplicate Elimination

𝛿(T)

Eliminates duplicates
from the bag T

𝛿 R =

SELECT DISTINCT *
FROM T; R A B

1 10

2 10

2 10

2 20

1 10

A B
1 10

2 10

2 20



April 15, 2024 RA and ER 27

GroupBy-Aggregate

𝛾!""#$,!""#&,…,!(($,…(T)

Group-by, then aggregate

SELECT attr1,...,agg1,...
FROM T
GROUP BY attr1,...;



April 15, 2024 RA and ER 28

GroupBy-Aggregate

𝛾!""#$,!""#&,…,!(($,…(T)

γ234,678 96:6;< →9 R =

SELECT attr1,...,agg1,...
FROM T
GROUP BY attr1,...;

Payroll

UserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Group-by, then aggregate



April 15, 2024 RA and ER 29

GroupBy-Aggregate

𝛾!""#$,!""#&,…,!(($,…(T)

γ234,678 96:6;< →9 R =

SELECT attr1,...,agg1,...
FROM T
GROUP BY attr1,...;

Payroll

UserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Job S

TA 55000

Prof 95000

Group-by, then aggregate



April 15, 2024 RA and ER 30

GroupBy-Aggregate

No need for a HAVING operator!

Payroll

UserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Find all jobs where the
average salary of employees
earning over 55000
is < 70000



April 15, 2024 RA and ER 31

GroupBy-Aggregate

No need for a HAVING operator!

SELECT Job
FROM Payroll
WHERE Salary > 55000
GROUP BY Job
HAVING avg(Salary)<70000;

Payroll

UserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Find all jobs where the
average salary of employees
earning over 55000
is < 70000



April 15, 2024 RA and ER 32

GroupBy-Aggregate

No need for a HAVING operator!

SELECT Job
FROM Payroll
WHERE Salary > 55000
GROUP BY Job
HAVING avg(Salary)<70000;

Payroll

UserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Find all jobs where the
average salary of employees
earning over 55000
is < 70000

σ-./0000’

Π2#3

γ2#3,(56 -(7()8 →-

Payroll

σ-(7()8:;;000



April 15, 2024 RA and ER 33

GroupBy-Aggregate

No need for a HAVING operator!

SELECT Job
FROM Payroll
WHERE Salary > 55000
GROUP BY Job
HAVING avg(Salary)<70000;

Payroll

UserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Find all jobs where the
average salary of employees
earning over 55000
is < 70000 WHERE

σ-./0000’

Π2#3

γ2#3,(56 -(7()8 →-

Payroll

σ-(7()8:;;000



April 15, 2024 RA and ER 34

GroupBy-Aggregate

No need for a HAVING operator!

SELECT Job
FROM Payroll
WHERE Salary > 55000
GROUP BY Job
HAVING avg(Salary)<70000;

Payroll

UserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Find all jobs where the
average salary of employees
earning over 55000
is < 70000

HAVING

WHERE

σ-./0000’

Π2#3

γ2#3,(56 -(7()8 →-

Payroll

σ-(7()8:;;000



Discussion

The Greek alphabet soup:

§ 𝜎, Π, 𝛿, 𝛾

§ They are standard RA symbols, get used to them

Next: converting nested SQL queries to RA 

April 15, 2024 RA and ER 35



April 15, 2024 RA and ER 36

Nested SQL to RA



Nested Queries to RA

§RA is an algebra: has no nested expressions

§We cannot write EXISTS or NOT EXISTS in 𝜎

§ First unnest SQL query, then convert to RA

April 15, 2024 RA and ER 37



April 15, 2024 RA and ER 38

A Simple Case: the WITH Clause
WITH Cardrivers AS
  (SELECT DISTINCT P.*
   FROM Payroll P, Regist R
   WHERE P.UserId=R.UserID)
SELECT avg(Salary)
FROM Cardrivers;



April 15, 2024 RA and ER 39

A Simple Case: the WITH Clause
WITH Cardrivers AS
  (SELECT DISTINCT P.*
   FROM Payroll P, Regist R
   WHERE P.UserId=R.UserID)
SELECT avg(Salary)
FROM Cardrivers;

Payroll P Regist R

⋈<.>*?)@ABC.>*?)@A

Π<.∗

γ(56(<.-(7()8)

𝛿



April 15, 2024 RA and ER 40

A Simple Case: the WITH Clause
WITH Cardrivers AS
  (SELECT DISTINCT P.*
   FROM Payroll P, Regist R
   WHERE P.UserId=R.UserID)
SELECT avg(Salary)
FROM Cardrivers;

Computes
Cardrivers

Payroll P Regist R

⋈<.>*?)@ABC.>*?)@A

Π<.∗

γ(56(<.-(7()8)

𝛿



April 15, 2024 RA and ER 41

A Simple Case: the WITH Clause
WITH Cardrivers AS
  (SELECT DISTINCT P.*
   FROM Payroll P, Regist R
   WHERE P.UserId=R.UserID)
SELECT avg(Salary)
FROM Cardrivers;

Payroll P Regist R

⋈<.>*?)@ABC.>*?)@A

Π<.∗

γ(56(<.-(7()8)

Computes
Cardrivers

Does the rest

𝛿



April 15, 2024 RA and ER 42

A Simple Case: a Monotone Query
SELECT P.UserID, P.Name
FROM Payroll P
WHERE exists
      (SELECT *
       FROM Regist R
       WHERE P.UserID = R.UserID);



April 15, 2024 RA and ER 43

A Simple Case: a Monotone Query
SELECT P.UserID, P.Name
FROM Payroll P
WHERE exists
      (SELECT *
       FROM Regist R
       WHERE P.UserID = R.UserID);

SELECT DISTINCT P.UserID, P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID;

First
unnest



April 15, 2024 RA and ER 44

A Simple Case: a Monotone Query
SELECT P.UserID, P.Name
FROM Payroll P
WHERE exists
      (SELECT *
       FROM Regist R
       WHERE P.UserID = R.UserID);

SELECT DISTINCT P.UserID, P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID;

First
unnest

Payroll P Regist R

⋈<.>*?)@ABC.>*?)@A

Π<.>*?)@A,	<.H(I?

The convert
to RA

𝛿



April 15, 2024 RA and ER 45

A Simple Case: a Monotone Query
SELECT P.UserID, P.Name
FROM Payroll P
WHERE exists
      (SELECT *
       FROM Regist R
       WHERE P.UserID = R.UserID);

SELECT DISTINCT P.UserID, P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID;

First
unnest

Payroll P Regist R

⋈<.>*?)@ABC.>*?)@A

Π<.>*?)@A,	<.H(I?

The convert
to RA

𝛿 DISTINCT



April 15, 2024 RA and ER 46

A Difficult Case: a Non-Monotone Query
SELECT P.UserID
FROM Payroll P
WHERE not exists
      (SELECT *
       FROM Regist R
       WHERE P.UserID = R.UserID);



April 15, 2024 RA and ER 47

A Difficult Case: a Non-Monotone Query
SELECT P.UserID
FROM Payroll P
WHERE not exists
      (SELECT *
       FROM Regist R
       WHERE P.UserID = R.UserID);

Payroll P
Regist R

𝜎JKL(MNOPLP … )

Totally, totally
wrong!



April 15, 2024 RA and ER 48

A Difficult Case: a Non-Monotone Query
SELECT P.UserID
FROM Payroll P
WHERE not exists
      (SELECT *
       FROM Regist R
       WHERE P.UserID = R.UserID);

Payroll P
Regist R

𝜎JKL(MNOPLP … )

Totally, totally
wrong!

There are no
subqueries in RA.



April 15, 2024 RA and ER 49

A Difficult Case: a Non-Monotone Query
SELECT P.UserID
FROM Payroll P
WHERE not exists
      (SELECT *
       FROM Regist R
       WHERE P.UserID = R.UserID);

Payroll P
Regist R

𝜎JKL(MNOPLP … )

Totally, totally
wrong!

There are no
subqueries in RA.

Need to unnest,
but first need to de-correlate.



April 15, 2024 RA and ER 50

A Difficult Case: a Non-Monotone Query
SELECT P.UserID
FROM Payroll P
WHERE not exists
      (SELECT *
       FROM Regist R
       WHERE P.UserID = R.UserID);

SELECT P.UserID
FROM Payroll P
WHERE P.UserID not in
      (SELECT R.UserID
       FROM Regist R);

First
de-correlate



April 15, 2024 RA and ER 51

A Difficult Case: a Non-Monotone Query
SELECT P.UserID
FROM Payroll P
WHERE not exists
      (SELECT *
       FROM Regist R
       WHERE P.UserID = R.UserID);

SELECT P.UserID
FROM Payroll P
WHERE P.UserID not in
      (SELECT R.UserID
       FROM Regist R);

SELECT P.UserID
FROM Payroll P
   EXCEPT
SELECT R.UserID
FROM Regist R;

First
de-correlate

Then unnest
using set difference



April 15, 2024 RA and ER 52

A Difficult Case: a Non-Monotone Query
SELECT P.UserID
FROM Payroll P
WHERE not exists
      (SELECT *
       FROM Regist R
       WHERE P.UserID = R.UserID);

SELECT P.UserID
FROM Payroll P
WHERE P.UserID not in
      (SELECT R.UserID
       FROM Regist R);

SELECT P.UserID
FROM Payroll P
   EXCEPT
SELECT R.UserID
FROM Regist R;

Payroll P Regist R

Π<.>*?)@A ΠC.>*?)@A

−

First
de-correlate

Then unnest
using set difference

Finally,
rewrite to RA



Discussion

§SQL = declarative language; what we want
RA = an algebra; how to get it

§We write in SQL, optimizers generates RA

§Some language resemble RA more than SQL,
e.g. Spark

Next topic: how to design a database from scratch

April 15, 2024 RA and ER 53



April 15, 2024 RA and ER 54

Database Design



Database Design

§New application needs persistent database.

§ The database will persist for a long period of time. 
We need a good design from day 1.

§ Incorporate feedback from many stakeholders
• Programmers, business teams, analysts, data 

scientists, product managers, …

April 15, 2024 RA and ER 55



April 15, 2024 56

The Database Design Process

Conceptual Model

Relational Model
+ Schema
+ Constraints

To
da

y

RA and ER



RA and ER 57

The Database Design Process

Conceptual Model

Relational Model
+ Schema
+ Constraints

Conceptual Schema
+ Normalization

To
da

y
N

ex
t L

ec
tu

re
s

April 15, 2024



58

The Database Design Process

Conceptual Model

Relational Model
+ Schema
+ Constraints

Conceptual Schema
+ Normalization

Physical Schema
+ Partitioning
+ Indexing

To
da

y
La

te
r…

N
ex

t L
ec

tu
re

s

April 15, 2024 RA and ER



ER Diagrams

Entity-Relationship (ER) Diagrams

§A visual way to describe the schema of a database

§ Language independent: may implement in SQL, or 
some other data model

April 15, 2024 RA and ER 59



Example

Application to track the lifetime of products

§Keep information about Products: name, price, …

§Who manufactures them?  Company name, 
address, their workers, …

§Who buys them? Customers with their names, …

April 15, 2024 RA and ER 60



RA and ER 61

Example: designing the Entity Sets

Product

April 15, 2024



RA and ER 62

Example: designing the Entity Sets

Product Company

Worker

April 15, 2024



RA and ER 63

Example: designing the Entity Sets

Product Company

WorkerBuyer

April 15, 2024



RA and ER 64

Example: designing the Entity Sets

Product Company

WorkerBuyer

Should these be
different entity sets?

April 15, 2024



RA and ER 65

Example: designing the Entity Sets

Product Company

Person

Let’s keep things
simple for now

April 15, 2024



RA and ER 66

Example: adding Attributes

Product Company

Person

Next, let’s design
their attributes

April 15, 2024



RA and ER 67

Example: adding Attributes

Product Company

Person

Price

Name

PID

April 15, 2024



RA and ER 68

Example: adding Attributes

Product Company

Person

Price

Name
Name

CIDPID

April 15, 2024



RA and ER 69

Example: adding Attributes

Product Company

Person

Price

Name Ceo
Name

Address
CIDPID

Determine ALL
attributes that

your application
needs

April 15, 2024



RA and ER 70

Example: adding Attributes

Product Company

Person

Price

Name Ceo
Name

Address

address name UID

CIDPID

April 15, 2024



RA and ER 71

Example: adding Relationships

Product Company

Person

Price

Name Ceo
Name

Address

address name UID

CIDPID

Next, design the
relationships

April 15, 2024



RA and ER 72

Example: adding Relationships

Product Company

Person

Makes

Price

Name Ceo
Name

Address

address name UID

CIDPID

April 15, 2024



RA and ER 73

Example: adding Relationships

Product Company

Person Employs

Makes

Price

Name Ceo
Name

Address

address name UID

CIDPID

April 15, 2024



RA and ER 74

Example: adding Relationships

Product Company

Person EmploysBuys

Makes

Price

Name Ceo
Name

Address

address name UID

CIDPID

April 15, 2024



RA and ER 75

Example: Refining the Schema

Product Company

Person EmploysBuys

Makes

Price

Name Ceo
Name

Address

address name UID

CIDPID
Actually, we want separate

Buyers and Workers

April 15, 2024



RA and ER 76

Example: Refining the Schema

Product Company

Customer

EmploysBuys

Makes

Price

Name Ceo
Name

Address
CIDPID

Worker

April 15, 2024



RA and ER 77

Example: Refining the Schema

Product Company

Customer

EmploysBuys

Makes

Price

Name Ceo
Name

Address
CIDPID

Worker

name

UID

address

April 15, 2024

name

UID

address



RA and ER 78

Example: Refining the Schema

Product Company

Customer

EmploysBuys

Makes

Price

Name Ceo
Name

Address
CIDPID

Worker

name

UID

address

Unit

April 15, 2024

name

UID

address



RA and ER 79

Example: Refining the Schema

Product Company

Customer

EmploysBuys

Makes

Price

Name Ceo
Name

Address
CIDPID

Worker

name

UID

address

UnitRating

April 15, 2024

name

UID

address



RA and ER 80

Example: Refining the Schema

Product Company

Customer

EmploysBuys

Makes

Price

Name Ceo
Name

Address
CIDPID

Worker

name

UID

address

UnitRating

April 15, 2024

name

UID

address

Duplication



RA and ER 81

Example: Refining the Schema

Product Company

Customer

EmploysBuys

Makes

Price

Name Ceo
Name

Address
CIDPID

Worker
isA

Person

isA

name UIDaddress

UnitRating

April 15, 2024



Discussion

§ER diagram are easy to design,
yet rigorous enough to convert to SQL

§ Lots of ER diagram "dialects"
• Textbook use rectangles/diamonds/ovals
• Industry uses other standards 

§ In class we use the textbook version

Next lecture: E/R diagrams in detail

April 15, 2024 RA and ER 82


