
1

Relational Algebra

April 12, 2024

Introduction to Data Management

Relational Algebra

Announcements

§HW3 due next Friday

§Midterm on Friday, 4/26 in class
• Closed books, no cheat sheet (you won’t need it)
• Some practice midterms on the course website

April 12, 2024 Subqueries 2

April 12, 2024 Subqueries 3

Quantifiers

Recap: Predicates on Subqueries

§EXISTS / NOT EXISTS
§ IN / NOT IN
§ANY / ALL

The are “equivalent” meaning that a query that you
can write using one, you can also write using the
others

April 12, 2024 Subqueries 4

April 12, 2024 SQL Review 5

Quantifiers
Find people who drive only cars made after 2017
SELECT P.*
FROM Payroll P
WHERE 2017 <
 ALL(SELECT R.Year
 FROM Regist R
 WHERE P.UserID = R.UserID);

April 12, 2024 SQL Review 6

Quantifiers
Find people who drive only cars made after 2017
SELECT P.*
FROM Payroll P
WHERE 2017 <
 ALL(SELECT R.Year
 FROM Regist R
 WHERE P.UserID = R.UserID);

SELECT P.*
FROM Payroll P
WHERE NOT EXISTS
 (SELECT *
 FROM Regist R
 WHERE P.UserID = R.UserID
 and R.Year <= 2017);

April 12, 2024 SQL Review 7

Quantifiers
Find people who drive only cars made after 2017
SELECT P.*
FROM Payroll P
WHERE 2017 <
 ALL(SELECT R.Year
 FROM Regist R
 WHERE P.UserID = R.UserID);

SELECT P.*
FROM Payroll P
WHERE P.UserID NOT IN
 (SELECT R.UserID
 FROM Regist R
 WHERE R.Year <= 2017);

SELECT P.*
FROM Payroll P
WHERE NOT EXISTS
 (SELECT *
 FROM Regist R
 WHERE P.UserID = R.UserID
 and R.Year <= 2017);

April 12, 2024 SQL Review 8

Quantifiers
Find people who drive only cars made after 2017
SELECT P.*
FROM Payroll P
WHERE 2017 <
 ALL(SELECT R.Year
 FROM Regist R
 WHERE P.UserID = R.UserID);

SELECT P.*
FROM Payroll P
WHERE P.UserID NOT IN
 (SELECT R.UserID
 FROM Regist R
 WHERE R.Year <= 2017);

All these
compute the
same thing

SELECT P.*
FROM Payroll P
WHERE NOT EXISTS
 (SELECT *
 FROM Regist R
 WHERE P.UserID = R.UserID
 and R.Year <= 2017);

Discussion

§SQL can express naturally queries that represent
existential quantifiers

§ To write a query that uses a universal quantifier,
use DeMorgan’s laws (next few slides)

April 12, 2024 Subqueries 9

Quantifiers

There are two types of quantifiers:
§ Exists (∃𝑥,…) there is at least 1 that satisfies predicate
§ Forall: (∀𝑥,…) all elements satisfy the predicate

April 12, 2024 Subqueries 10

Quantifiers

There are two types of quantifiers:
§ Exists (∃𝑥,…) there is at least 1 that satisfies predicate
§ Forall: (∀𝑥,…) all elements satisfy the predicate

SQL makes it easy to write exists

April 12, 2024 Subqueries 11

Quantifiers

There are two types of quantifiers:
§ Exists (∃𝑥,…) there is at least 1 that satisfies predicate
§ Forall: (∀𝑥,…) all elements satisfy the predicate

SQL makes it easy to write exists
To write forall, use double negation

 predicate holds forall elements
 if and only if
 not (exists element where not(predicate) holds)

April 12, 2024 Subqueries 12

April 12, 2024 Subqueries 13

How to Write FORALL in SQL

Find person P drives only cars made after 2017

April 12, 2024 Subqueries 14

How to Write FORALL in SQL

Find person P drives only cars made after 2017

Negate: find the other persons
Find person P drives some car made on or before 2017

April 12, 2024 Subqueries 15

How to Write FORALL in SQL

Find person P drives only cars made after 2017

Negate: find the other persons
Find person P drives some car made on or before 2017

SELECT P.*
FROM Payroll P
WHERE EXISTS
 (SELECT R.Year
 FROM Regist R
 WHERE P.UserID = R.UserID
 and R.Year <= 2017);

April 12, 2024 Subqueries 16

How to Write FORALL in SQL

Find person P drives only cars made after 2017

Negate: find the other persons
Find person P drives some car made on or before 2017

SELECT P.*
FROM Payroll P
WHERE EXISTS
 (SELECT R.Year
 FROM Regist R
 WHERE P.UserID = R.UserID
 and R.Year <= 2017);

SELECT P.*
FROM Payroll P
WHERE NOT EXISTS
 (SELECT R.Year
 FROM Regist R
 WHERE P.UserID = R.UserID
 and R.Year <= 2017);

Negate again:
find the other other persons

April 12, 2024 Subqueries 17

How to Write FORALL in SQL

Find person P drives only cars made after 2017

Negate: find the other persons
Find person P drives some car made on or before 2017

SELECT P.*
FROM Payroll P
WHERE EXISTS
 (SELECT R.Year
 FROM Regist R
 WHERE P.UserID = R.UserID
 and R.Year <= 2017);

Universal
quantifier Existential

quantifier

SELECT P.*
FROM Payroll P
WHERE NOT EXISTS
 (SELECT R.Year
 FROM Regist R
 WHERE P.UserID = R.UserID
 and R.Year <= 2017);

Negate again:
find the other other persons

Brief Review of Logic

§ Implication: AàB is same as: not(A) or B

April 12, 2024 Subqueries 18

Brief Review of Logic

§ Implication: AàB is same as: not(A) or B

§DeMorgan’s Laws:

April 12, 2024 Subqueries 19

not A	and	B = not A 	or	not B
not A	or	B = not A 	and	not(B)

Brief Review of Logic

§ Implication: AàB is same as: not(A) or B

§DeMorgan’s Laws:

April 12, 2024 Subqueries 20

not A	and	B = not A 	or	not B
not A	or	B = not A 	and	not(B)

not ∃x, P x = ∀x, not P x
not ∀x, P x = ∃x, not P x

Brief Review of Logic

§ Implication: AàB is same as: not(A) or B

§DeMorgan’s Laws:

§Consequences

April 12, 2024 Subqueries 21

not A	and	B = not A 	or	not B
not A	or	B = not A 	and	not(B)

not ∃x, P x = ∀x, not P x
not ∀x, P x = ∃x, not P x

A → B = not(A	and	not B)

Brief Review of Logic

§ Implication: AàB is same as: not(A) or B

§DeMorgan’s Laws:

§Consequences

April 12, 2024 Subqueries 22

not A	and	B = not A 	or	not B
not A	or	B = not A 	and	not(B)

not ∃x, P x = ∀x, not P x
not ∀x, P x = ∃x, not P x

∀x, A x → B x = not(∃x A x ∧ not(B x))A → B = not(A	and	not B)

April 12, 2024 Subqueries 23

Brief Review of First Order Logic

∃R ∈ Regist, (𝐏. UserID = R. UserID)	and	(R. Year ≤ 2017)

∀R ∈ Regist, (𝐏. UserID = R. UserID) ⇒ (R. Year > 2017)

Query: persons P that drive only cars made after 2017:

Negation: persons P that drive some car made on/before 2017:

Discussion

Writing universally quantified queries in SQL
requires creativity

§ Try using DeMorgan’s laws

§ Try using ALL

§ Try using aggregates, checking count=0

April 12, 2024 Relational Algebra 24

April 12, 2024 Subqueries 25

Relational Algebra

Motivation

§SQL is a declarative language:
we say what, we don’t say how

§ The query optimizer needs to convert the query
into some language that can be excecuted

§ That language is Relational Algebra

April 12, 2024 Relational Algebra 26

The Five Basic Relational Operators

1. Selection σ456789856(S)

2. Projection Π:99;<(S)

3. Join R ⋈= S = σ=(R	×S)

4. Union ∪

5. Set difference −

§Rename ρ

April 12, 2024 Relational Algebra 27

Let’s discuss them one by one

April 12, 2024 Relational Algebra 28

1. Selection

σ!"#$%&%"#(T)

Returns those tuples in T
that satisfy the condition:

SELECT *
FROM T
WHERE condition;

April 12, 2024 Relational Algebra 29

1. Selection

σ!"#$%&%"#(T)

Returns those tuples in T
that satisfy the condition:

Payroll

UserID Name Job Salary
123 Jack TA 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

σ!"#"$%&''(((Payroll =
SELECT *
FROM T
WHERE condition;

April 12, 2024 Relational Algebra 30

1. Selection

σ!"#$%&%"#(T)

Returns those tuples in T
that satisfy the condition:

Payroll

UserID Name Job Salary
123 Jack TA 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

σ!"#"$%&''(((Payroll =

UserID Name Job Salary
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

SELECT *
FROM T
WHERE condition;

April 12, 2024 Relational Algebra 31

1. Selection

Payroll

UserID Name Job Salary
123 Jack TA 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

σ!"#"$%&''((("*+	,-./!012 Payroll =

σ!"#$%&%"#(T)

Returns those tuples in T
that satisfy the condition:

SELECT *
FROM T
WHERE condition;

April 12, 2024 Relational Algebra 32

1. Selection

Payroll

UserID Name Job Salary
123 Jack TA 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

σ!"#"$%&''((("*+	,-./!012 Payroll =

UserID Name Job Salary
345 Allison TA 60000σ!"#$%&%"#(T)

Returns those tuples in T
that satisfy the condition:

SELECT *
FROM T
WHERE condition;

April 12, 2024 Relational Algebra 33

2. Projection

Π'&&()(T)

Returns all tuples in T keeping
only the attributes in the subscript:

SELECT attrs
FROM T;

April 12, 2024 Relational Algebra 34

2. Projection

Π'&&()(T)

Payroll

UserID Name Job Salary
123 Jack TA 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

Π3"45,7"#"$% Payroll =

Returns all tuples in T keeping
only the attributes in the subscript:

SELECT attrs
FROM T;

April 12, 2024 Relational Algebra 35

2. Projection

Π'&&()(T)

Payroll

UserID Name Job Salary
123 Jack TA 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

Π3"45,7"#"$% Payroll =

Returns all tuples in T keeping
only the attributes in the subscript:

SELECT attrs
FROM T;

Name Salary
Jack 50000
Allison 60000
Magda 90000
Dan 100000

April 12, 2024 Relational Algebra 36

2. Projection

Π'&&()(T)

Payroll

UserID Name Job Salary
123 Jack TA 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

Π,-. Payroll =

Returns all tuples in T keeping
only the attributes in the subscript:

SELECT attrs
FROM T;

April 12, 2024 Relational Algebra 37

2. Projection

Π'&&()(T)

Payroll

UserID Name Job Salary
123 Jack TA 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

Π,-. Payroll =

Returns all tuples in T keeping
only the attributes in the subscript:

SELECT attrs
FROM T;

Job
TA
TA
Prof
Prof

April 12, 2024 Relational Algebra 38

2. Projection

Π'&&()(T)

Payroll

UserID Name Job Salary
123 Jack TA 50000
345 Allison TA 60000
567 Magda Prof 90000
789 Dan Prof 100000

Π,-. Payroll =

Returns all tuples in T keeping
only the attributes in the subscript:

SELECT attrs
FROM T;

Job
TA
TA
Prof
Prof

RA can be defined
using bag semantics
or set semantics.
We always need to say
which one we mean.

Job
TA
Prof

April 12, 2024 Relational Algebra 39

3. Join

S ⋈* T

Join S and T using condition θ

SELECT *
FROM S,T
WHERE θ;

April 12, 2024 Relational Algebra 40

3. Join

S ⋈* T

Join S and T using condition θ

SELECT *
FROM S,T
WHERE θ;

Payroll

UserID Car

123 Charger

567 Civic

567 Pinto

RegistUserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Payroll ⋈8!5$9:/8!5$9: Regist =

April 12, 2024 Relational Algebra 41

3. Join

S ⋈* T

Join S and T using condition θ

SELECT *
FROM S,T
WHERE θ;

Payroll

UserID Car

123 Charger

567 Civic

567 Pinto

RegistUserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Payroll ⋈8!5$9:/8!5$9: Regist =

UserID Name Job Salary UserID Car

123 Jack TA 50000 123 Charger

567 Magda Prof 90000 567 Civic

567 Magda Prof 90000 567 Pinto

Many Variants of Join

§Eq-join: Payroll ⋈><?;@AB><?;@A Regist

§ Theta-join: Payroll ⋈><?;@AC><?;@A Regist

§Cartesian product: Payroll×Regist

§Natural Join: Payroll ⋈ Regist

April 12, 2024 Relational Algebra 42

Many Variants of Join

§Eq-join: Payroll ⋈><?;@AB><?;@A Regist

§ Theta-join: Payroll ⋈><?;@AC><?;@A Regist

§Cartesian product: Payroll×Regist

§Natural Join: Payroll ⋈ Regist

April 12, 2024 Relational Algebra 43

Only =

Any condition

Many Variants of Join

§Eq-join: Payroll ⋈><?;@AB><?;@A Regist

§ Theta-join: Payroll ⋈><?;@AC><?;@A Regist

§Cartesian product: Payroll×Regist

§Natural Join: Payroll ⋈ Regist

April 12, 2024 Relational Algebra 44

Next

Only =

Any condition

April 12, 2024 Relational Algebra 45

Cartesian Product / Cross Product

S×T

Cross product of S and T

SELECT *
FROM S,T

April 12, 2024 Relational Algebra 46

Cartesian Product / Cross Product

S×T

Cross product of S and T

SELECT *
FROM S,T Payroll

UserID Car

123 Charger

567 Civic

567 Pinto

RegistUserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Payroll×Regist =

April 12, 2024 Relational Algebra 47

Cartesian Product / Cross Product

S×T

Cross product of S and T

SELECT *
FROM S,T Payroll

UserID Car

123 Charger

567 Civic

567 Pinto

RegistUserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Payroll×Regist =

UserID Name Job Salary UserID Car

123 Jack TA 50000 123 Charger

123 Jack TA 50000 567 Civic

. . .

789 Dan Prof 100000 567 Pinto

12 tuples

April 12, 2024 Relational Algebra 48

Cartesian Product / Cross Product

S×T

Cross product of S and T

SELECT *
FROM S,T

Join = cartesian product + selection

R ⋈; S = σ;(R×S)

April 12, 2024 Relational Algebra 49

Natural Join

S ⋈ T
Join S, T on
common attributes,
retain only one copy
of those attributes

April 12, 2024 Relational Algebra 50

Natural Join

S ⋈ T
Join S, T on
common attributes,
retain only one copy
of those attributes

Payroll

UserID Car

123 Charger

567 Civic

567 Pinto

RegistUserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Payroll ⋈ Regist =

April 12, 2024 Relational Algebra 51

Natural Join

S ⋈ T
Join S, T on
common attributes,
retain only one copy
of those attributes

Payroll

UserID Car

123 Charger

567 Civic

567 Pinto

RegistUserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

Payroll ⋈ Regist =

UserID Name Job Salary Car

123 Jack TA 50000 Charger

567 Magda Prof 90000 Civic

567 Magda Prof 90000 Pinto

Only one
UserID attr

Natural Join

What do these natural joins output?
§𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶

§𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐶, 𝐷)

§𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐴, 𝐵)

April 12, 2024 Relational Algebra 52

Natural Join

What do these natural joins output?
§𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶

§𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐶, 𝐷)

§𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐴, 𝐵)

April 12, 2024 Relational Algebra 53

R A B
1 10

2 10

2 20

S B C
10 8

10 9

20 8

50 7

Natural Join

What do these natural joins output?
§𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶

 equjoin on attribute B (5 tuples)

§𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐶, 𝐷)

§𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐴, 𝐵)

April 12, 2024 Relational Algebra 54

R A B
1 10

2 10

2 20

S B C
10 8

10 9

20 8

50 7

Natural Join

What do these natural joins output?
§𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶

 equjoin on attribute B (5 tuples)

§𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐶, 𝐷)

§𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐴, 𝐵)

April 12, 2024 Relational Algebra 55

R A B
1 10

2 10

2 20

S B C
10 8

10 9

20 8

50 7

R A B
1 10

2 10

2 20

S C D
8 u

9 v

8 v

7 w

Natural Join

What do these natural joins output?
§𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶

 equjoin on attribute B (5 tuples)

§𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐶, 𝐷)
 cross product (12 tuples)

§𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐴, 𝐵)

April 12, 2024 Relational Algebra 56

R A B
1 10

2 10

2 20

S B C
10 8

10 9

20 8

50 7

R A B
1 10

2 10

2 20

S C D
8 u

9 v

8 v

7 w

Natural Join

What do these natural joins output?
§𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶

 equjoin on attribute B (5 tuples)

§𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐶, 𝐷)
 cross product (12 tuples)

§𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐴, 𝐵)

April 12, 2024 Relational Algebra 57

R A B
1 10

2 10

2 20

S B C
10 8

10 9

20 8

50 7

R A B
1 10

2 10

2 20

S C D
8 u

9 v

8 v

7 w

R A B
1 10

2 10

2 20

S A B
1 10

2 20

Natural Join

What do these natural joins output?
§𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶

 equjoin on attribute B (5 tuples)

§𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐶, 𝐷)
 cross product (12 tuples)

§𝑅 𝐴, 𝐵 ⋈ 𝑆(𝐴, 𝐵)
 intersection (2 tuples)

April 12, 2024 Relational Algebra 58

R A B
1 10

2 10

2 20

S B C
10 8

10 9

20 8

50 7

R A B
1 10

2 10

2 20

S C D
8 u

9 v

8 v

7 w

R A B
1 10

2 10

2 20

S A B
1 10

2 20

Even More Joins

§ Inner join ⋈
• Eq-join, theta-join, cross product, natural join

§Outer join
• Left outer join ⟕
• Right outer join ⟖
• Full outer join ⟗

§Semi join ⋉

April 12, 2024 Relational Algebra 59

April 12, 2024 Relational Algebra 60

4. Union

S ∪ T

The union of S and T

S UNION T;

SQL

April 12, 2024 Relational Algebra 61

4. Union

S ∪ T

The union of S and T

S UNION T;

Regist ∪ Bicycle =

UserID Model

123 Charger

567 Civic

567 Pinto

Regist

UserID Model

345 Schwinn

567 Sirrus

Bicycle

April 12, 2024 Relational Algebra 62

4. Union

S ∪ T

The union of S and T

S UNION T;

Regist ∪ Bicycle =

UserID Model

123 Charger

567 Civic

567 Pinto

Regist

UserID Model

345 Schwinn

567 Sirrus

Bicycle

Must have
same schema

April 12, 2024 Relational Algebra 63

4. Union

S ∪ T

The union of S and T

S UNION T;

Regist ∪ Bicycle =

UserID Model

123 Charger

567 Civic

567 Pinto

Regist

UserID Model

345 Schwinn

567 Sirrus

Bicycle

UserID Model

123 Charger

567 Civic

567 Pinto

345 Schwinn

567 Sirrus

Must have
same schema

April 12, 2024 Relational Algebra 64

5. Difference

S − T

The set difference of S and T

S EXCEPT T;

SQL

April 12, 2024 Relational Algebra 65

5. Difference

S − T

The set difference of S and T

S EXCEPT T;

Regist − Bicycle =

UserID Model

123 Charger

567 Civic

567 Pinto

Regist

UserID Model

345 Schwinn

567 Civic

Bicycle

Must have
same schema

April 12, 2024 Relational Algebra 66

5. Difference

S − T

The set difference of S and T

S EXCEPT T;

Regist − Bicycle =

UserID Model

123 Charger

567 Civic

567 Pinto

Regist

UserID Model

345 Schwinn

567 Civic

Bicycle

UserID Model

123 Charger

567 Pinto

Must have
same schema

April 12, 2024 Relational Algebra 67

Renaming

𝜌+,,-./(𝑇)

Rename attributes

SELECT a1 as a1’,
 a2 as a2’,
 ...
FROM T;

April 12, 2024 Relational Algebra 68

Renaming

𝜌+,,-./(𝑇)

Rename attributes

SELECT a1 as a1’,
 a2 as a2’,
 ...
FROM T;

ρ8!5$9:,<-+5#(Regist) =

UserID Car

123 Charger

567 Civic

567 Pinto

Regist

April 12, 2024 Relational Algebra 69

Renaming

𝜌+,,-./(𝑇)

Rename attributes

SELECT a1 as a1’,
 a2 as a2’,
 ...
FROM T;

ρ8!5$9:,<-+5#(Regist) =

UserID Car

123 Charger

567 Civic

567 Pinto

Regist

UserID Model

123 Charger

567 Civic

567 Pinto

April 12, 2024 Relational Algebra 70

Renaming

𝜌+,,-./(𝑇)

Rename attributes

SELECT a1 as a1’,
 a2 as a2’,
 ...
FROM T;

ρ8!5$9:,<-+5#(Regist) =

UserID Car

123 Charger

567 Civic

567 Pinto

Regist

UserID Model

123 Charger

567 Civic

567 Pinto

Corrected union:

ρ!"#$%&,()*#+(Regist) ∪ Bicycle

The Five Basic Relational Operators

1. Selection σ456789856(S)

2. Projection Π:99;<(S)

3. Join R ⋈= S = σ=(R	×S)

4. Union ∪

5. Set difference −

§Rename ρ

April 12, 2024 Relational Algebra 71

Which operators are monotone?

The Five Basic Relational Operators

1. Selection σ456789856(S)

2. Projection Π:99;<(S)

3. Join R ⋈= S = σ=(R	×S)

4. Union ∪

5. Set difference −

§Rename ρ

April 12, 2024 Relational Algebra 72

Which operators are monotone?

Monotone

Non-monotone

Monotone, but doesn’t do anything

April 12, 2024 Relational Algebra 73

Query Plans

April 12, 2024 Relational Algebra 74

Relational Algebra Plan, or Query Plan

Payroll

UserID Car

123 Charger

567 Civic

567 Pinto

RegistUserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

SELECT P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
 and P.Job = ‘TA’;

April 12, 2024 Relational Algebra 75

Relational Algebra Plan, or Query Plan

Payroll

UserID Car

123 Charger

567 Civic

567 Pinto

RegistUserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

SELECT P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
 and P.Job = ‘TA’;

Π,-.#(σ/)01!23!(Payroll ⋈ Regist))

April 12, 2024 Relational Algebra 76

Relational Algebra Plan, or Query Plan

Payroll

UserID Car

123 Charger

567 Civic

567 Pinto

RegistUserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

SELECT P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
 and P.Job = ‘TA’;

Payroll Regist

⋈

σ!"#$‘&'’

Π)*+,

Π,-.#(σ/)01!23!(Payroll ⋈ Regist))

We write it as

a query plan

April 12, 2024 Relational Algebra 77

Relational Algebra Plan, or Query Plan

Payroll

UserID Car

123 Charger

567 Civic

567 Pinto

RegistUserID Name Job Salary

123 Jack TA 50000

345 Allison TA 60000

567 Magda Prof 90000

789 Dan Prof 100000

SELECT P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
 and P.Job = ‘TA’;

Payroll Regist

⋈

σ!"#$‘&'’

Π)*+,

Π,-.#(σ/)01!23!(Payroll ⋈ Regist))

Data
flows
this
way

We write it as

a query plan

April 12, 2024 Relational Algebra 78

Query Plan: Attribute Names

Payroll

Regist

⋈-.,/01$-23

σ!"#$‘&'’

Π)*+,

Managing attribute names
correctly is tedious

ρ-23,5*/

Rename
UserID to Uid
to distinguish
from Payroll

Better: use aliases,
much like in SQL

Payroll P Regist R

⋈6.-.,/01$8.-.,/01

σ6.!"#$‘&'’

Π6.)*+,

Now it’s
clear which

UserID

April 12, 2024 Relational Algebra 79

Query Plan: Execution Order
SELECT P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
 and P.Job = ‘TA’;

We say what we want,
not how to get it

April 12, 2024 Relational Algebra 80

Query Plan: Execution Order
SELECT P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
 and P.Job = ‘TA’;

We say what we want,
not how to get it

Payroll P Regist R

⋈6.-.,/01$8.-.,/01

σ6.!"#$‘&'’

Π6.)*+,One way
how to get it

April 12, 2024 Relational Algebra 81

Query Plan: Execution Order
SELECT P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
 and P.Job = ‘TA’;

We say what we want,
not how to get it

Payroll P Regist R

⋈6.-.,/01$8.-.,/01

σ6.!"#$‘&'’

Π6.)*+,One way
how to get it

Payroll P Regist R

⋈6.-.,/01$8.-.,/01

σ6.!"#$‘&'’

Π6.)*+,

Another way
how to get it

April 12, 2024 Relational Algebra 82

Query Plan: Execution Order
SELECT P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
 and P.Job = ‘TA’;

We say what we want,
not how to get it

Payroll P Regist R

⋈6.-.,/01$8.-.,/01

σ6.!"#$‘&'’

Π6.)*+,One way
how to get it

Payroll P Regist R

⋈6.-.,/01$8.-.,/01

σ6.!"#$‘&'’

Π6.)*+,

Another way
how to get it

Which one
is more

efficient?

April 12, 2024 Relational Algebra 83

Query Plan: Execution Order
SELECT P.Name
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
 and P.Job = ‘TA’;

We say what we want,
not how to get it

Payroll P Regist R

⋈6.-.,/01$8.-.,/01

σ6.!"#$‘&'’

Π6.)*+,One way
how to get it

Payroll P Regist R

⋈6.-.,/01$8.-.,/01

σ6.!"#$‘&'’

Π6.)*+,

Another way
how to get it

Which one
is more

efficient?

Most likely
this one

Discussion

§Database system converts a SQL query to a
Relational Algebra Plan

April 12, 2024 Relational Algebra 84

Discussion

§Database system converts a SQL query to a
Relational Algebra Plan

§ Then it optimizes the plan by exploring equivalent
plans, using simple algebraic identities:
 𝑅 ⋈ 𝑆 = 𝑆 ⋈ 𝑅
 𝑅 ⋈ 𝑆 ⋈ 𝑇 = 𝑅 ⋈ 𝑆 ⋈ 𝑇
 𝜎H 𝑅 ⋈ 𝑆 = 𝜎H 𝑅 ⋈ 𝑆
 … many others*

April 12, 2024 Relational Algebra 85

*over 500 rules in SQL Server

Discussion

§Database system converts a SQL query to a
Relational Algebra Plan

§ Then it optimizes the plan by exploring equivalent
plans, using simple algebraic identities:
 𝑅 ⋈ 𝑆 = 𝑆 ⋈ 𝑅
 𝑅 ⋈ 𝑆 ⋈ 𝑇 = 𝑅 ⋈ 𝑆 ⋈ 𝑇
 𝜎H 𝑅 ⋈ 𝑆 = 𝜎H 𝑅 ⋈ 𝑆
 … many others*

§Next lecture: how to convert SQL to RA plan

April 12, 2024 Relational Algebra 86

*over 500 rules in SQL Server

