

Introduction to Data Management Aggregates

Paul G. Allen School of Computer Science and Engineering University of Washington, Seattle

Announcements

- Homework 2
 - Posted
 - Due on Friday
 - Sqlite

Homework 3: coming up soon (SQL Azure)

Today's lecture is more challenging!
Please study the slides carefully at home

Aggregates

```
SELECT count(*) as C-
FROM Payroll
WHERE Job = 'TA';
```

May use alias

C 2

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Aggregates

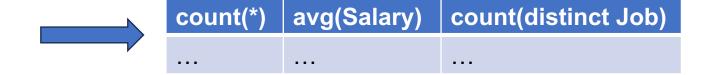
```
SELECT count(*) as Cf
FROM Payroll
WHERE Job = 'TA';
```

May use alias


```
SELECT count(*) as C, avg(Salary) as A
FROM Payroll
WHERE Job = 'TA';
```

C	A
2	55000

Payroll


UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

We may compute several aggreges

Today: GROUP BY

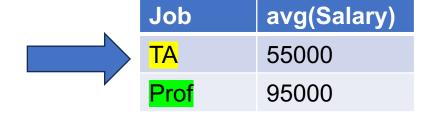
Group By

So far, a single aggregate, or a tuple of aggregates

Next: compute a set of aggregates, one per group:

 count(*)

```
SELECT Job, avg(Salary)
FROM Payroll
GROUP BY Job;
```


UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

```
SELECT Job, avg(Salary)
FROM Payroll
GROUP BY Job;
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

SELECT Job, avg(Salary)
FROM Payroll
GROUP BY Job;

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Find total revenue for each product.

Sales

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Find total revenue for each product.

```
SELECT Product, sum(Price*Quant)as Rev
FROM Sales
GROUP BY Product;
```

Sales

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Find total revenue for each product.

```
SELECT Product, sum(Price*Quant)as Rev
FROM Sales
GROUP BY Product;
```

Sales

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

12

Find total revenue for each product.

```
SELECT Product, sum(Price*Quant)as Rev
FROM Sales
GROUP BY Product;
```

Sales

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

One row for each product

Product	Rev	
Bagel	140	60+50+30
Banana	75	25+50
Apple	40	40

Find total revenue for each month.

Sales

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Find total revenue for each month.

```
SELECT Month, sum(Price*Quant)as Rev
FROM Sales
GROUP BY Month;
```

Sales

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Find total revenue for each month.

SELECT Month, sum(Price*Quant)as Rev
FROM Sales
GROUP BY Month;

Sales

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Banana	0.5	50	Feb
Banana	5	10	Feb
Bagel	1.50	20	March
Apple	4	10	March

Find total revenue for each month.

SELECT Month, sum(Price*Quant)as Rev
FROM Sales
GROUP BY Month;

Sales

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Banana	0.5	50	Feb
Banana	5	10	Feb
Bagel	1.50	20	March
Apple	4	10	March

Find total revenue for each month.

One row for each month

SELECT Month, sum (Price*Quant) as Rev

FROM Sales

GROUP BY Month;

MOTILII	Kev	
<mark>Jan</mark>	140	60+50
Feb	75	25+50
March	40	40+30

Sales

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Product	Price	Quant	Month
Bagel	3	20	<mark>Jan</mark>
Bagel	5	10	<mark>Jan</mark>
Banana	0.5	50	Feb
Banana	5	10	Feb
Bagel	1.50	20	March
Apple	4	10	March

Find total revenue per month, for sales over 2.50

```
SELECT Month, sum(Price*Quant)as Rev
FROM Sales
WHERE Price > 2.5
GROUP BY Month;
```

Sales

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Find total revenue per month, for sales over 2.50

```
SELECT Month, sum(Price*Quant) as Rev
FROM Sales
WHERE Price > 2.5
GROUP BY Month;
```

Sales

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Not interested in these sales

Find total revenue per month, for sales over 2.50

```
SELECT Month, sum(Price*Quant)as Rev
FROM Sales
WHERE Price > 2.5
GROUP BY Month;
```

Sales

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Banana	5	10	Feb
Apple	4	10	March

Find total revenue per month, for sales over 2.50

One row for each month

SELECT Month, sum(Price*Quant) as Rev

FROM Sales

WHERE Price > 2.5

GROUP BY Month;

Month	Rev	
Jan	140	60+50
Feb	75	25+50
March	40	40+30

Sales

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Price	Quant	Month
3	20	Jan
5	10	Jan
5	10	Feb
4	10	March
	3 5	3 20 5 10 5 10

Find total revenue for each product and each month.

```
SELECT Product, Month, sum(Price*Quant) as Rev
FROM Sales
GROUP BY Product, Month;
```

Sales

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Find total revenue for each product and each month.

```
SELECT Product, Month, sum(Price*Quant) as Rev
FROM Sales
GROUP BY Product, Month;
```

Sales

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Product	Month	Rev
Bagel	Jan	110
Bagel	March	30
Banana	Feb	75
Apple	March	40

24

A Source of Errors

What does this query return?

```
SELECT Product, Price, sum(Price*Quant) as Rev
FROM Sales
GROUP BY Product;
```

Sales

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

A Source of Errors

What does this query return?

```
SELECT Product, Price, sum(Price*Quant) as Rev
FROM Sales
GROUP BY Product;
```

Sales

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

No unique price for One row for each product the group **Product Price** Rev Bagel ?? 140 Banana ?? 75 **Apple** ?? 40

26

A Source of Errors

What does this query return?

```
SELECT Product, Price, sum(Price*Quant) as Rev
FROM Sales
GROUP BY Product;
```

Rule: every attribute in SELECT must also occur in GROUP BY

Sales

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

One row for each product

No unique price for the group

Product	Price	Rev
Bagel	??	140
Banana	??	75
Apple	??	40

Discussion so far

GROUP BY: list of attributes

SELECT: some group-by attrs, and aggregates

One output tuple for each group

28

Semantics

Semantics

```
SELECT attr1, attr2,.., agg1(..), agg2(..),..
FROM Tables
WHERE Condition
GROUP BY attr1, attr2,..;
```

- Step 1: compute SELECT * FROM .. WHERE...
- Step 2: GROUP BY

Step 3: for each group emit 1 output

30

SELECT Month, sum(Quant)
FROM Sales
WHERE Price < 4.5
GROUP BY Month;</pre>

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

```
SELECT Month, sum(Quant)
FROM Sales
WHERE Price < 4.5
GROUP BY Month;</pre>
```

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Step 1

SELECT *
FROM Sales
WHERE Price < 4.5;</pre>

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Apple	4	10	March

SELECT Month, sum(Quant)
FROM Sales

WHERE Price < 4.5

GROUP BY Month;

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Step 1

SELECT *
FROM Sales

WHERE Price < 4.5;

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Apple	4	10	March

Step 2 Group-by

Product	Price	Quant	Month
Bagel	3	20	Jan
Banana	0.5	50	Feb
Bagel	1.50	20	March
Apple	4	10	March

SELECT Month, sum(Quant)

FROM Sales

WHERE Price < 4.5

GROUP BY Month;

Each group, one output

Product Month **Price** Quant Bagel 3 20 Jan Bagel 10 Jan 5 1.50 20 Bagel March 0.5 50 Feb Banana 10 Feb Banana **Apple** 4 10 March

Step 1

SELECT *

FROM Sales

WHERE Price < 4.5;

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Apple	4	10	March

Step 2 Group-by

Product	Price	Quant	Month	Month	Quant
Bagel	3	20	Jan	Jan	20
Banana	0.5	50	Feb	Feb	50
Bagel	1.50	20	March	March	30
Apple	4	10	March		

Step 3

34

April 3, 2024 Aggregates

Multiple Aggregates

```
SELECT Product, count(*), sum(Quant)

FROM Sales

GROUP BY Product;
```

Product	count	sum
Bagel	3	50
Banana	2	60
Apple	1	10

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

April 3, 2024 Aggregates 35

Multiple Aggregates

```
SELECT Product, count(*), sum(Quant)

FROM Sales

GROUP BY Product;
```

Product	count	sum
Bagel	3	50
Banana	2	60
Apple	1	10

```
SELECT Product, count(*)
FROM Sales
GROUP BY Product;
```

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

```
SELECT Product, count(*), sum(Quant)
FROM Sales
GROUP BY Product;
```

Product	count	sum
Bagel	3	50
Banana	2	60
Apple	1	10

37

SELECT P	roduct,	count(*)
FROM Sale	es	
GROUP BY	Product	;

Product	count
Bagel	3
Banana	2
Apple	1

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

```
SELECT Product, count(*), sum(Quant)
FROM Sales
GROUP BY Product;
```

Product	count	sum
Bagel	3	50
Banana	2	60
Apple	1	10

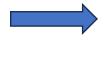
SELECT Product, count(*)
FROM Sales
GROUP BY Product;

Product	count
Bagel	3
Banana	2
Apple	1

SELECT Product
FROM Sales
GROUP BY Product;

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

```
SELECT Product, count(*), sum(Quant)
FROM Sales
GROUP BY Product;
```


Product	count	sum
Bagel	3	50
Banana	2	60
Apple	1	10

SELECT Product, count(*)
FROM Sales
GROUP BY Product;

SELECT Product
FROM Sales
GROUP BY Product;

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Product

Bagel Banana

Apple

```
SELECT Product, count(*), sum(Quant)
FROM Sales
GROUP BY Product;
```

Product	count	sum
Bagel	3	50
Banana	2	60
Apple	1	10

SELECT Product, count(*) FROM Sales GROUP BY Product;

Product count... 3 Bagel Banana **Apple**

SELECT Product FROM Sales **GROUP BY** Product;

Product

Bagel

Banana

Apple

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Same as

SELECT DISTINCT Product

FROM Sales;

A group is never empty, by definition!

- Therefore count(*) ≥ 1
- Sometimes we want answers with count(*)=0
- Then we use outer-joins

SELECT Job, count(*)
FROM Payroll
GROUP BY Job;

Job	Count(*)
TA	2
Prof	2

Count people per job

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

```
SELECT Job, count(*)
FROM Payroll
GROUP BY Job;
```

```
SELECT Job, count(*)
FROM Payroll
WHERE Salary > 55000
GROUP BY Job;
```

Job	Count(*)
TA	2
Prof	2

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

```
SELECT Job, count(*)
FROM Payroll
GROUP BY Job;
```

```
SELECT Job, count(*)
FROM Payroll
WHERE Salary > 55000
GROUP BY Job;
```

Job	Count(*)
TA	2
Prof	2

Job	Count(*)
TA	1
Prof	2

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

```
SELECT Job, count(*)
FROM Payroll
GROUP BY Job;
```

```
SELECT Job, count(*)
FROM Payroll
WHERE Salary > 55000
GROUP BY Job;
```

```
SELECT Job, count(*)
FROM Payroll
WHERE Salary > 75000
GROUP BY Job;
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Job	Count(*)
TA	2
Prof	2

Job	Count(*)
TA	1
Prof	2

```
SELECT Job, count(*)
FROM Payroll
GROUP BY Job;
```

```
SELECT Job, count(*)
FROM Payroll
WHERE Salary > 55000
GROUP BY Job;
```

```
SELECT Job, count(*)
FROM Payroll
WHERE Salary > 75000
GROUP BY Job;
```

Job	Count(*)
TA	2
Prof	2

Job	Count(*)
TA	1
Prof	2

TA group no longer exists

Job	Count(*)
Prof	2

47

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

```
SELECT Job, count(*)
FROM Payroll
GROUP BY Job;
```

```
SELECT Job, count(*)
FROM Payroll
WHERE Salary > 55000
GROUP BY Job;
```

```
SELECT Job, count(*)
FROM Payroll
WHERE Salary > 75000
GROUP BY Job;
```

Job	Count(*)
TA	2
Prof	2

Job	Count(*)
TA	1
Prof	2

TA group no longer exists

Job	Count(*)
Prof	2

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Can never have count(*)=0
If we want them: outer joins!

How many cars does each person drive?

Let's start with a simpler example

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

Car
Charger
Civic
Pinto

How many cars does each person drive?

```
SELECT P.Name, count(*)
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
GROUP BY P.UserID;
```

Let's start with a simpler example

Payroll

UserID	Name	Job	Salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
<mark>123</mark>	Charger
567	Civic
<mark>567</mark>	Pinto

How many cars does each person drive?

```
SELECT P.Name, count(*)
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
GROUP BY P.UserID;
```

Let's start with a simpler example

Name	count
Jack	1
Magda	2

Payroll

UserID	Name	Job	Salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
<mark>123</mark>	Charger
567	Civic
567	Pinto

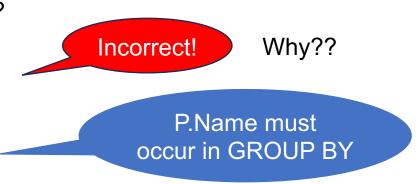
How many cars does each person drive?

```
SELECT P.Name, count(*)
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
GROUP BY P.UserID;
```


Name	count
Jack	1
Magda	2

Payroll

UserID	Name	Job	Salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000


Regist


UserID	Car
<mark>123</mark>	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

52

How many cars does each person drive?

SELECT P.Name, count(*)
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
GROUP BY P.UserID;

Name	count
Jack	1
Magda	2

Payroll

UserID	Name	Job	Salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
<mark>123</mark>	Charger
567	Civic
567	Pinto

How many cars does each person drive?

SELECT P.Name, count(*)
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
GROUP BY P.Name, P.UserID;

Now it's correct

Name	count
Jack	1
Magda	2

Payroll

UserID	Name	Job	Salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
<mark>123</mark>	Charger
567	Civic
567	Pinto

How many cars does each person drive?

```
SELECT P.Name, count(*)
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
GROUP BY P.Name, P.UserID;
```

Steps 1,2:

P.UserID	P.Name	P.Job	P.Salary	R.UserID	R.Car
123	Jack	TA	50000	123	Charger
567	Magda	Prof	90000	567	Civic
567	Magda	Prof	90000	567	Pinto

Payroll

UserID	Name	Job	Salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
<mark>123</mark>	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

How many cars does each person drive?

```
SELECT P.Name, count(*)
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
GROUP BY P.Name, P.UserID;
```

Steps 1,2:

P.UserID	P.Name	P.Job	P.Salary	R.UserID	R.Car	
123	Jack	TA	50000	123	Charger	ı
567	Magda	Prof	90000	567	Civic	١,
567	Magda	Prof	90000	567	Pinto	J

	Name	count
>	Jack	1
	Magda	2

Payroll

UserID	Name	Job	Salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
<mark>123</mark>	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

How many cars does each person drive?

```
SELECT P.Name, count(*)
FROM Payroll P, Regist R
WHERE P.UserID = R.UserID
GROUP BY P.Name, P.UserID;
```


Steps 1,2:

P.UserID	P.Name	P.Job	P.Salary	R.UserID	R.Car
123	Jack	TA	50000	123	Charger
567	Magda	Prof	90000	567	Civic
567	Magda	Prof	90000	567	Pinto

	Name	count
>	Jack	1
	Magda	2

Payroll

UserID	Name	Job	Salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
<mark>123</mark>	Charger
567	Civic
<mark>567</mark>	Pinto

How many cars does each person drive?

To also include Allison, Dan, we will use outer joins

Payroll

UserID	Name	Job	Salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
<mark>123</mark>	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

How many cars does each person drive?

```
SELECT P.Name, count(*)
FROM Payroll P LEFT OUTER JOIN Regist R ON P.UserID = R.UserID
GROUP BY P.Name, P.UserID;
```

Payroll

UserID	Name	Job	Salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
<mark>123</mark>	Charger
<mark>567</mark>	Civic
567	Pinto

How many cars does each person drive?

```
SELECT P.Name, count(*)
FROM Payroll P LEFT OUTER JOIN Regist R ON P.UserID = R.UserID
GROUP BY P.Name, P.UserID;
```

Step 1

P.UserID	P.Name	P.Job	P.Salary	R.UserID	R.Car
123	Jack	TA	50000	123	Charger
345	Allison	TA	60000	NULL	NULL
567	Magda	Prof	90000	567	Civic
567	Magda	Prof	90000	567	Pinto
789	Dan	Prof	100000	NULL	NULL

Payroll

UserID	Name	Job	Salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
<mark>123</mark>	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

How many cars does each person drive?

```
SELECT P.Name, count(*)
FROM Payroll P LEFT OUTER JOIN Regist R ON P.UserID = R.UserID
GROUP BY P.Name, P.UserID;
```

Steps 1,2:

P.UserID	P.Name	P.Job	P.Salary	R.UserID	R.Car
123	Jack	TA	50000	123	Charger
345	Allison	TA	60000	NULL	NULL
567	Magda	Prof	90000	567	Civic
567 567	Magda Magda	Prof Prof	90000	567 567	Civic Pinto

Payroll

UserID	Name	Job	Salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
<mark>123</mark>	Charger
<mark>567</mark>	Civic
567	Pinto

How many cars does each person drive?

```
SELECT P.Name, count(*)
FROM Payroll P LEFT OUTER JOIN Regist R ON P.UserID = R.UserID
GROUP BY P.Name, P.UserID;
```

Steps 1,2:

	P.UserID	P.Name	P.Job	P.Salary	R.UserID	R.Car		
	123	Jack	TA	50000	123	Charger	Name	count
	345	Allison	TA	60000	NULL	NULL	Jack	1
<u> </u>	567	Magda	Prof	90000	567	Civic	Allison	1
	567	Magda	Prof	90000	567	Pinto	Magda	2
	789	Dan	Prof	100000	NULL	NULL	Dan	1

Payroll

UserID	Name	Job	Salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
<mark>123</mark>	Charger
<mark>567</mark>	Civic
567	Pinto

How many cars does each person drive?

```
SELECT P.Name, count(*)
FROM Payroll P LEFT OUTER JOIN Regist R ON P.UserID = R.UserID
GROUP BY P.Name, P.UserID;
```

Steps 1,2:

	P.UserID	P.Name	P.Job	P.Salary	R.UserID	R.Car			
	123	Jack	TA	50000	123	Charger		Name	count
	345	Allison	TA	60000	NULL	NULL		Jack	1
) • • •	567	Magda	Prof	90000	567	Civic		Allison	<mark>1</mark>
	567	Magda	Prof	90000	567	Pinto		Magda	2
ľ	789	Dan	Prof	100000	NULL	NULL		Dan	<mark>1</mark>
							•		

Payroll

UserID	Name	Job	Salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
<mark>123</mark>	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

Should be 0! How to fix?

How many cars does each person drive?

Count ignores NULLs

SELECT P.Name, count(R.Car)

FROM Payroll P LEFT OUTER JOIN Regist R ON P.UserID = R.UserID
GROUP BY P.Name, P.UserID;

Steps 1,2:

Payroll

P.UserID	P.Name	P.Job	P.Salary	R.UserID	R.Car	
123	Jack	TA	50000	123	Charger	
345	Allison	TA	60000	NULL	NULL	
567	Magda	Prof	90000	567	Civic	ĺ
567	Magda	Prof	90000	567	Pinto	\rightarrow

Regis	5
-------	---

UserID	Name	Job	Salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
<mark>123</mark>	Charger
567	Civic
<mark>567</mark>	Pinto

Now it's correct

2

count

Name

Jack

Allison

Magda

Dan

For each job, how many people earn more than 75000?

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

For each job, how many people earn more than 75000?

```
SELECT Job, count(*)
FROM Payroll
WHERE Salary > 75000
GROUP BY Job;
```

Job	Count(*)
Prof	2

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

For each job, how many people earn more than 75000?

```
SELECT Job, count(*)
FROM Payroll
WHERE Salary > 75000
GROUP BY Job;
```

Job	Count(*)
Prof	2

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

To include users where count(*)=0, we will use a self-outer-join

For each job, how many people earn more than 75000?

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

To include users where count(*)=0, we will use a self-outer-join

For each job, how many people earn more than 75000?

```
SELECT P1.Job, count(
FROM Payroll P1 LEFT OUTER JOIN Payroll P2
ON P1.Job = P2.Job and P2.Salary > 75000
GROUP BY P1.Job;
```

What goes here? Keep your thought!

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

For each job, how many people earn more than 75000?

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

For each job, how many people earn more than 75000?

```
SELECT P1.Job, count(
FROM Payroll P1 LEFT OUTER JOIN Payroll P2
ON P1.Job = P2.Job and P2.Salary > 75000
GROUP BY P1.Job;
```

Left Outer Join

P1.UserID	P1.Name	P1.Job	P1.Salary	P2.UserID	P2.Name	P2.Job	P2.Salary
123	Jack	TA	50000	NULL	NULL	NULL	NULL
345	Allison	TA	60000	NULL	NULL	NULL	NULL
567	Magda	Prof	90000	567	Magda	Prof	90000
789	Dan	Prof	100000	567	Magda	Prof	90000
567	Magda	Prof	90000	789	Dan	Prof	100000
789	Dan	Prof	100000	789	Dan	Prof	100000

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

We want to include <u>all</u> jobs, even when the count is 0. Need an outer join with the Jobs

For each job, how many people earn more than 75000?

P1.UserID	P1.Name	P1.Job	P1.Salary	P2.UserID	P2.Name	P2.Job	P2.Salary
123	Jack	TA	50000	NULL	NULL	NULL	NULL
345	Allison	TA	60000	NULL	NULL	NULL	NULL
567	Magda	Prof	90000	567	Magda	Prof	90000
789	Dan	Prof	100000	567	Magda	Prof	90000
567	Magda	Prof	90000	789	Dan	Prof	100000
789	Dan	Prof	100000	789	Dan	Prof	100000

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

We want to include <u>all</u> jobs, even when the count is 0. Need an outer join with the Jobs

Coping with Empty Groups

For each job, how many people earn more than 7500

What do we write here?

SELECT P1.Job, count(
FROM Payroll P1 LEFT OUTER JOIN Payroll P2
ON P1.Job = P2.Job and P2.Salary > 75000
GROUP BY P1.Job;

	Job	
Want this:	TA	0
	Prof	2

P1.UserID	P1.Name	P1.Job	P1.Salary	P2.UserID	P2.Name	P2.Job	P2.Salary
123	Jack	TA	50000	NULL	NULL	NULL	NULL
345	Allison	TA	60000	NULL	NULL	NULL	NULL
567	Magda	Prof	90000	567	Magda	Prof	90000
789	Dan	Prof	100000	567	Magda	Prof	90000
567	Magda	Prof	90000	789	Dan	Prof	100000
789	Dan	Prof	100000	789	Dan	Prof	100000

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

We want to include <u>all</u> jobs, even when the count is 0. Need an outer join with the Jobs

April 3, 2024 Aggregates 73

Coping with Empty Groups

For each job, how many people earn more than 75000?

SELECT P1.Job, count(DISTINCT P2.UserID)
FROM Payroll P1 LEFT OUTER JOIN Payroll P2
ON P1.Job = P2.Job and P2.Salary > 75000
GROUP BY P1.Job;

Count this

P1.UserID	P1.Name	P1.Job	P1.Salary	P2.UserID	r2.Name	P2.Job	P2.Salary
123	Jack	TA	50000	NULL	NULL	NULL	NULL
345	Allison	TA	60000	NULL	NULL	NULL	NULL
567	Magda	Prof	90000	567	Magda	Prof	90000
789	Dan	Prof	100000	567	Magda	Prof	90000
567	Magda	Prof	90000	789	Dan	Prof	100000
789	Dan	Prof	100000	789	Dan	Prof	100000

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

We want to include <u>all</u> jobs, even when the count is 0. Need an outer join with the Jobs

April 3, 2024 Aggregates 74

Coping with Empty Groups

For each job, how many people earn more than 75000?

SELECT P1.Job, count(DISTINCT P2.UserID)
FROM Payroll P1 LEFT OUTER JOIN Payroll P2
ON P1.Job = P2.Job and P2.Salary > 75000
GROUP BY P1.Job;

Job	Count()
TA	0
Prof	2

	P1.UserID	P1.Name	P1.Job	P1.Salary	P2.UserID	P2.Name	P2.Job	P2.Salary	
	123	Jack	TA	50000	NULL	NULL	NULL	NULL	
l	345	Allison	TA	60000	NULL	NULL	NULL	NULL	
	567	Magda	Prof	90000	567	Magda	Prof	90000	
	789	Dan	Prof	100000	567	Magda	Prof	90000	
	567	Magda	Prof	90000	789	Dan	Prof	100000	
-	789	Dan	Prof	100000	789	Dan	Prof	100000)

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

We want to include <u>all</u> jobs, even when the count is 0. Need an outer join with the Jobs

Discussion

Coping with empty groups requires some creativity

Use Left-outer-join

Sometimes, you need a self-left-outer-join

76

WHERE:

- Applies a predicate to a single tuple*
- Cannot use any aggregate operation

HAVING:

- Applies a predicate to an entire group
- May use aggregate operations
- Can only check attributes occurring in GROUP-BY

78

^{*} Actually, to one tuple from each relation in the FROM clause

Find the total quantity of products that were sold ≥ 2 times.

Sales

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Find the total quantity of products that were sold ≥ 2 times.

```
SELECT Product, sum(Quant)
FROM Sales
GROUP BY Product
HAVING count(*) >= 2;
```

Sales

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Find the total quantity of products that were sold ≥ 2 times.

```
SELECT Product, sum(Quant)
FROM Sales
GROUP BY Product
HAVING count(*) >= 2;
```

Sales

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

Find the total quantity of products that were sold ≥ 2 times.

```
SELECT Product, sum(Quant)
FROM Sales
GROUP BY Product
HAVING count(*) >= 2;
```

Sales

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

count(*)=1 NOT included

Find the total quantity of products that were sold ≥ 2 times.

```
SELECT Product, sum(Quant)
FROM Sales
GROUP BY Product
HAVING count(*) >= 2;
```

Sales

Product	Price	Quant	Month
Bagel	3	20	Jan
Bagel	5	10	Jan
Bagel	1.50	20	March
Banana	0.5	50	Feb
Banana	5	10	Feb
Apple	4	10	March

count(*)=3

Product	sum
Bagel	50
Banana	60

count(*)=2

count(*)=1 NOT included

SQL Query Summary

```
SELECT A

FROM R<sub>1</sub>, ..., R<sub>n</sub>

WHERE C1

GROUP BY a<sub>1</sub>, ..., a<sub>k</sub>

HAVING C2

ORDER BY T
```

A = any attributes from $a_1, ..., a_k$ and/or any aggregates

C1 = any condition on the attributes in $R_1, ..., R_n$

C2 = any condition on $a_1, ..., a_k$ and/or any aggregates

T = any attributes from $a_1, ..., a_k$ and/or any aggregates

Discussion: WHERE v.s. HAVING

WHERE:

- Applies to single tuple from each table
- May decrease size of groups, even make them empty
- Cannot use aggregates (count(*)=5, sum(...) > 10)

HAVING:

- Applies to entire group: keep it or drop it
- May use aggregates (count(*)=5, sum(...) > 10)
- May only use attributes in GROUP-BY

85

The Witness

The Witness

- SQL provides the aggregate operators min, max
- SQL does not have argmin or argmax

Often we want to find the record that achieves that minimum or maximum: we call it The Witness

One way to compute it is using the HAVING clause

Find the person with highest salary for each job

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Find the person with highest salary for each job

Desired answer:

Job	Name	Salary
TA	Allison	60000
Prof	Dan	100000

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Find the person with highest salary for each job

SELECT Job, MAX (Salary)
FROM Payroll
GROUP BY Job

Job	Salary
TA	60000
Prof	100000

Finding max is easy.

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Find the person with highest salary for each job

SELECT Job, MAX(Salary)
FROM Payroll
GROUP BY Job

Job	Salary
TA	60000
Prof	100000

Finding max is easy.

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

But we want argmax. How do we find the witness?

Find the person with highest salary for each job

```
SELECT Job, Name, MAX(Salary)
FROM Payroll
GROUP BY Job
```

Does this work?

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Find the person with highest salary for each job

SELECT Job, Name, MAX(Salary)
FROM Payroll
GROUP BY Job

Does this work?

WRONG!
Name not in GROUP BY

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Sqlite does not return an error, but returns junk outputs.
Don't use this.

Find the person with highest salary for each job

Plan:

- 1. Compute the max(Salary) for each Job
- 2. Join back with Payroll on Job
- 3. Return the users where Salary = max(Salary)

UserID	Name	Job	Salary	
123	Jack	TA	50000	
345	Allison	TA	60000	
567	Magda	Prof	90000	
789	Dan	Prof	100000	

Find the person with highest salary for each job

Plan:

- 1. Compute the max(Salary) for each Job
- 2. Join back with Payroll on Job
- 3. Return the users where Salary = max(Salary)

Goes in HAVING

We first join

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Find the person with highest salary for each job

```
SELECT P1.Job, MAX(P1.Salary) FROM Payroll AS P1
```

GROUP BY P1.Job

UserID	Name	Job	Salary	
123	Jack	TA	50000	
345	Allison	TA	60000	
567	Magda	Prof	90000	
789	Dan	Prof	100000	

Find the person with highest salary for each job

```
SELECT P1.Job, MAX(P1.Salary)
FROM Payroll AS P1
```

GROUP BY P1.Job

UserID	Name	Job	Salary	
123	Jack	TA	50000	
345	Allison	TA	60000	
567	Magda	Prof	90000	
789	Dan	Prof	100000	

Find the person with highest salary for each job

SELECT P1.Job FROM Payroll AS P1

GROUP BY P1.Job

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Find the person with highest salary for each job

```
SELECT P1.Job, P2.Name, P2.Salary
FROM Payroll AS P1, Payroll AS P2
WHERE P1.Job = P2.Job
GROUP BY P1.Job
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

99

Find the person with highest salary for each job

```
SELECT P1.Job, P2.Name, P2.Salary
FROM Payroll AS P1, Payroll AS P2
WHERE P1.Job = P2.Job
GROUP BY P1.Job
```

Payroll

UserID	Name	Job	Salary
123	Jack TA		50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Incorrect!

Find the person with highest salary for each job

```
SELECT P1.Job, P2.Name, P2.Salary
FROM Payroll AS P1, Payroll AS P2
WHERE P1.Job = P2.Job
GROUP BY P1.Job, P2.Name, P2.Salary
```

Correct; but not done!

UserID	Name Job		Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Find the person with highest salary for each job

```
SELECT P1.Job, P2.Name, P2.Salary
FROM Payroll AS P1, Payroll AS P2
WHERE P1.Job = P2.Job
GROUP BY P1.Job, P2.Name, P2.Salary
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Which P2 should we return for each Job?

Find the person with highest salary for each job

```
SELECT P1.Job, P2.Name, P2.Salary
FROM Payroll AS P1, Payroll AS P2
WHERE P1.Job = P2.Job
GROUP BY P1.Job, P2.Name, P2.Salary
HAVING P2.Salary = MAX(P1.Salary)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Find the person with highest salary for each job

```
SELECT P1.Job, P2.Name, P2.Salary
FROM Payroll AS P1, Payroll AS P2
WHERE P1.Job = P2.Job
GROUP BY P1.Job, P2.Name, P2.Salary
HAVING MAX(P1.Salary) = P2.Salary;
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Find the person with highest salary for each job

SELECT P1.Job, P2.Name, P2.Salary
FROM Payroll AS P1, Payroll AS P2
WHERE P1.Job = P2.Job
GROUP BY P1.Job, P2.Name, P2.Salary
HAVING MAX(P1.Salary) = P2.Salary;

Payroll join with Payroll

P1				P2			
UserID	Name	Job	Salary	UserID	Name	Job	Salary
123	Jack	TA	50000	123	Jack	TA	50000
345	Allison	TA	60000	123	Jack	TA	50000
123	Jack	TA	50000	345	Allison	TA	60000
345	Allison	TA	60000	345	Allison	TA	60000
567	Magda	Prof	90000	567	Magda	Prof	90000
789	Dan	Prof	100000	567	Magda	Prof	90000
567	Magda	Prof	90000	789	Dan	Prof	100000
789	Dan	Prof	100000	789	Dan	Prof	100000

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

 \Box 4

Find the person with highest salary for each job

SELECT P1.Job, P2.Name, P2.Salary
FROM Payroll AS P1, Payroll AS P2
WHERE P1.Job = P2.Job
GROUP BY P1.Job, P2.Name, P2.Salary
HAVING MAX(P1.Salary) = P2.Salary;

P1				P2			
UserID	Name	Job	Salary	UserID	Name	Job	Salary
123	Jack	TA	50000	123	Јаск	TA	50000
345	Allison	TA	60000	123	Jack	TA	50000
123	Jack	TA	50000	345	Allison	TA	60000
345	Allison	TA	60000	345	Allison	TA	60000
567	Magda	Prof	90000	567	Magda	Prof	90000
789	Dan	Prof	100000	567	Magda	Prof	90000
567	Magda	Prof	90000	789	Dan	Prof	100000
789	Dan	Prof	100000	789	Dan	Prof	100000

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Group by

Find the person with highest salary for each job

SELECT P1.Job, P2.Name, P2.Salary
FROM Payroll AS P1, Payroll AS P2
WHERE P1.Job = P2.Job
GROUP BY P1.Job, P2.Name, P2.Salary
HAVING MAX(P1.Salary) = P2.Salary;

Compute	max(P1.	Salary)
---------	---------	---------

P1				P2 '			
UserID	Name	Job	Salary	UserID	Name	Job	Salary
123	Jack	TA	50000	123	Jack	TA	50000
345	Allison	TA	60000	123	Jack	TA	50000
123	Jack	TA	50000	345	Allison	TA	60000
345	Allison	TA	60000	345	Allison	TA	60000
567	Magda	Prof	90000	567	Magda	Prof	90000
789	Dan	Prof	100000	567	Magda	Prof	90000
567	Magda	Prof	90000	789	Dan	Prof	100000
789	Dan	Prof	100000	789	Dan	Prof	100000

max(salary)=60000	/)=60000
-------------------	-----------------

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Find the person with highest salary for each job

SELECT P1.Job, P2.Name, P2.Salary
FROM Payroll AS P1, Payroll AS P2
WHERE P1.Job = P2.Job
GROUP BY P1.Job, P2.Name, P2.Salary
HAVING MAX(P1.Salary) = P2.Salary;

Check HAVING	

<u>P1</u>				P2			
UserID	Name	Job	Salary	UserID	Name	Job	Salary
123	Jack	TA	50000	123	Jack	TA	50000
345	Allison	TA	60000	123	Jack	TA	50000
123	Jack	TA	50000	345	Allison	TA	<mark>60000</mark>
345	Allison	TA	60000	345	Allison	TA	60000
567	Magda	Prof	90000	567	₩agda	Prof	90000
789	Dan	Prof	100000	567	₩ agda	Prof	90000
567	Magda	Prof	90000	789	Dan	Prof	100000
789	Dan	Prof	100000	789	Dan	Prof	100000

max('sa	larv)=(60	000)
many	, UG	ıcı y	,	U	000	•

$$max(salary) = 60000$$

$$max(salary) = 100000$$

UserID	Name	Job	Salary	
123	Jack	TA	50000	
345	Allison	TA	60000	
567	Magda	Prof	90000	
789	Dan	Prof	100000	

Find the person with highest salary for each job

SELECT P1.Job, P2.Name, P2.Salary
FROM Payroll AS P1, Payroll AS P2
WHERE P1.Job = P2.Job
GROUP BY P1.Job, P2.Name, P2.Salary
HAVING MAX(P1.Salary) = P2.Salary;

	P1				P2			
	UserID	Name	Job	Salary	UserID	Name	Job	Salary
٢	123	Jack	TA	50000	123	Jack	TA	50000
L	345	Allison	TA	60000	123	Jack	TA	50000
	123	Jack	TA	50000	345	Allison	TA	<mark>60000</mark>
L	345	Allison	TA	60000	345	Allison	TA	60000
_	567	Magda	Prof	90000	567	- M agda	Prof	90000
L	789	Dan	Prof	100000	567	∺ agda	Prof	90000
۲	567	Magda	Prof	90000	789	Dan	Prof	100000
L	789	Dan	Prof	100000	789	Dan	Prof	100000

max(salary)=60000

max(salary)= <mark>600</mark>	JU	U
-------------------------------	----	---

max(sala	ary)=1	00000
----------	--------	-------

$$max(salary) = 100000$$

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

P1.Job	P2.Name	P2.Salary
TA	Allison	60000
Prof	Dan	100000

Find the person with highest salary for each job

```
SELECT P1.Job, P2.Name, P2.Salary
FROM Payroll AS P1, Payroll AS P2
WHERE P1.Job = P2.Job
GROUP BY P1.Job, P2.Name, P2.Salary
HAVING MAX(P1.Salary) = P2.Salary;
```

Final output has the witnesses

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

P1.Job	P2.Name	P2.Salary
TA	Allison	60000
Prof	Dan	100000

Summary

Group-by can be subtle!

Empty groups

Having clause

Finding the witness