

Introduction to Data Management Joining Tables

Paul G. Allen School of Computer Science and Engineering University of Washington, Seattle

Announcements

HW1 due tonight!

HW2 will be posted tonight, due next Friday

Foreign Key

A **Key** is one or more attributes that **uniquely** identify a row.

Foreign Key

A **Key** is one or more attributes that **uniquely** identify a row.

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Foreign Key

A **Key** is one or more attributes that **uniquely** identify a row.

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

Foreign Key

A **Key** is one or more attributes that **uniquely** identify a row.

A **Foreign Key** is one or more attrs that uniquely identify a row in *another table*.

Key

References

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

Foreign Key

A **Key** is one or more attributes that **uniquely** identify a row.

Joins

Joins

Joins link records from different tables.

 May use the key / foreign-key relationship, but may also use any other relationships

For each employee, find the cars that they drive

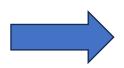
Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

For each employee, find the cars that they drive

```
SELECT P.Name, R.Car
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID;
```

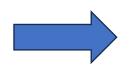

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

For each employee, find the cars that they drive

SELECT P.Name, R.Car
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID;


Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

For each employee, find the cars that they drive

SELECT P.Name, R.Car
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID;

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto

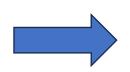
Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

For each TA, find the cars that they drive

```
SELECT P.Name, R.Car
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID
and P.Job = 'TA';
```


Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

For each TA, find the cars that they drive

SELECT P.Name, R.Car
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID
and P.Job = 'TA';

Name	Car
Jack	Charger

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

For each TA, find the cars that they drive

SELECT P.Name, R.Car
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID
and P.Job = 'TA';

Name	Car
Jack	Charger

<u>and</u> is a Boolean expression; let's review.

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

■ AND, OR, NOT

Example: are these true or false?

$$(5 < 7)$$
 or $(7 < 5)$

$$(5 < 7)$$
 or $(5 < 8)$

$$(5 < 7)$$
 and $(7 < 5)$

$$(5 < 7)$$
 and not $(7 < 5)$

$$(1 < 2)$$
 and $((2 != 3) \text{ or } (4 < 3))$

■ AND, OR, NOT

Example: are these true or false?

Make sure you understand why

$$(5 < 7)$$
 or $(7 < 5)$

TRUE

$$(5 < 7)$$
 or $(5 < 8)$

TRUE

$$(5 < 7)$$
 and $(7 < 5)$

FALSE

$$(5 < 7)$$
 and not $(7 < 5)$

TRUE

$$(1 < 2)$$
 and $((2 != 3) \text{ or } (4 < 3))$

TRUE

In the WHERE clause: may use AND, OR, NOT

```
SELECT Name
FROM Payroll
WHERE Job = 'TA' or (Salary > 55000 and Salary < 95000)</pre>
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

In the WHERE clause: may use AND, OR, NOT

```
SELECT Name
FROM Payroll
WHERE Job = 'TA' or (Salary > 55000 and Salary < 95000)</pre>
```

Name
Jack
Allison
Magda

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

In the WHERE clause: may use AND, OR, NOT

```
SELECT Name
FROM Payroll
WHERE Job = 'TA' or (Salary > 55000 and Salary < 95000)</pre>
```

Jack
Allison
Magda

```
SELECT Name
FROM Payroll
WHERE Job = 'TA' and (Salary > 55000 and Salary < 95000)</pre>
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

In the WHERE clause: may use AND, OR, NOT

```
SELECT Name
FROM Payroll
WHERE Job = 'TA' or (Salary > 55000 and Salary < 95000)</pre>
```

```
SELECT Name
FROM Payroll
WHERE Job = 'TA' and (Salary > 55000 and Salary < 95000)</pre>
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Name

Jack

Allison

Magda

Name

Allison

Joins

When we use joins we often have multiple conditions in the WHERE clause: and/or/not

Next: two ways to write the join

23

```
SELECT P.Name, R.Car
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID;
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

SELECT P.Name, R.Car
FROM Payroll AS P JOIN Regist AS R

SELECT P.Name, R.Car

FROM Payroll AS P, Regist AS R

WHERE P.UserID = R.UserID;

Means the same thing

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

ON P.UserID = R.UserID;

UserID	Car
123	Charger
567	Civic
567	Pinto

```
SELECT P.Name, R.Car
FROM Payroll AS P,Regist AS R
WHERE P.UserID = R.UserID
and P.Job = 'TA';
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

```
SELECT P.Name, R.Car
FROM Payroll AS P,Regist AS R
WHERE P.UserID = R.UserID
and P.Job = 'TA';
```

```
SELECT P.Name, R.Car
FROM Payroll AS P JOIN Regist AS R
ON P.UserID = R.UserID
WHERE P.Job = 'TA';
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

```
SELECT P.Name, R.Car
FROM Payroll AS P,Regist AS R
WHERE P.UserID = R.UserID
and P.Job = 'TA';
```

```
SELECT P.Name, R.Car
FROM Payroll AS P JOIN Regist AS R
ON P.UserID = R.UserID
WHERE P.Job = 'TA';
```

```
SELECT P.Name, R.Car
FROM Payroll AS P JOIN Regist AS R
ON P.UserID = R.UserID
and P.Job = 'TA';
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

ON same as WHERE for now; but wait for it...

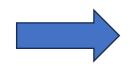
```
FROM Payroll AS P,Regist AS R
WHERE P.UserID = R.UserID
and P.Job = 'TA';
```

```
SELECT P.Name, R.Car
FROM Payroll AS P JOIN Regist AS R
ON P.UserID = R.UserID
WHERE P.Job = 'TA';
```

```
SELECT P.Name, R.Car
FROM Payroll AS P JOIN Regist AS R
ON P.UserID = R.UserID
and P.Job = 'TA';
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000


UserID	Car
123	Charger
567	Civic
567	Pinto

Discussion

A join is often between a key and a foreign key

But not always! Let's see some examples

-- find the cars they are driving
SELECT P.Name, R.Car
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID;

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

-- find the cars they are driving **SELECT** P.Name, R.Car **FROM** Payroll AS P, Regist AS R

WHERE P.UserID = R.UserID;

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto

32

-- find the cars they are not driving **SELECT** P.Name, R.Car **FROM** Payroll AS P, Regist AS R **WHERE** P.UserID != R.UserID;

Payroll

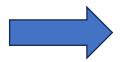
UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

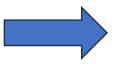
-- find the cars they are driving

SELECT P.Name, R.Car

FROM Payroll AS P, Regist AS R


WHERE P.UserID = R.UserID;

-- find the cars they are not driving


SELECT P.Name, R.Car

FROM Payroll AS P, Regist AS R

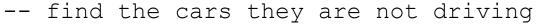
WHERE P.UserID != R.UserID;

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto

Name	Car
Jack	Civic
Jack	Pinto
Allison	Charger
Allison	

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000


UserID	Car
123	Charger
567	Civic
567	Pinto

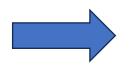
-- find the cars they are driving

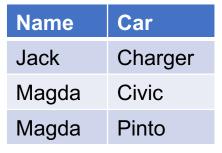
SELECT P.Name, R.Car

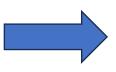
FROM Payroll AS P, Regist AS R

WHERE P.UserID = R.UserID;

SELECT P.Name, R.Car


FROM Payroll AS P, Regist AS R


WHERE P.UserID != R.UserID;



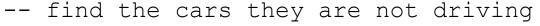
SELECT P.Name, R.Car

FROM Payroll AS P, Regist AS R

Name	Car
Jack	Civic
Jack	Pinto
Allison	Charger
Allison	

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000


UserID	Car
123	Charger
567	Civic
567	Pinto

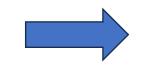
-- find the cars they are driving

SELECT P.Name, R.Car

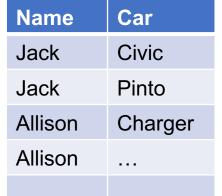
FROM Payroll AS P, Regist AS R

WHERE P.UserID = R.UserID;

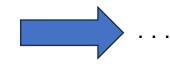
SELECT P.Name, R.Car


FROM Payroll AS P, Regist AS R

WHERE P.UserID != R.UserID;



SELECT P.Name, R.Car


FROM Payroll AS P, Regist AS R

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto

35

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

Discussion

FROM clause: several table names

WHERE clause: some condition on these tables

• Q: What does it mean?

■ A: For-Each semantics (Nested Loop Semantics)!

Nested Loop Semantics (again!)

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

```
SELECT P.Name, R.Car
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID;
```

UserID	Name	Job	Salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
<mark>123</mark>	Charger
567	Civic
<mark>567</mark>	Pinto

SELECT P.Name, R.Car
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID;

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto

UserID	Name	Job	Salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
<mark>123</mark>	Charger
567	Civic
<mark>567</mark>	Pinto

SELECT P.Name, R.Car

FROM Payroll AS P, Regist AS R

WHERE P.UserID = R.UserID;

How do we algorithmically get our results?

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

```
SELECT P.Name, R.Car
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID;
```

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car	
123	Charger	
567	Civic	
567	Pinto	

Name Car

```
for each row1 in Payroll:
   for each row2 in Regist:
      if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car	
123	Charger	
567	Civic	
567	Pinto	

Name	Car
Jack	Charger

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car	
123	Charger	
567	Civic	—
567	Pinto	

Name	Car
Jack	Charger

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

Name	Car
Jack	Charger

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

Us	erID	Name	Job	Salary
12	3	Jack	TA	50000
34	5	Allison	TA	60000
56	7	Magda	Prof	90000
78	9	Dan	Prof	100000

UserID	Car	
123	Charger	
567	Civic	
567	Pinto	

Name	Car
Jack	Charger

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car	
123	Charger	
567	Civic	—
567	Pinto	

Name	Car
Jack	Charger

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

Name	Car
Jack	Charger

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car	
123	Charger	
567	Civic	
567	Pinto	

Name	Car
Jack	Charger

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car	
123	Charger	
567	Civic	—
567	Pinto	

Name	Car
Jack	Charger

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car	
123	Charger	
567	Civic	(
567	Pinto	

Name	Car
Jack	Charger
Magda	Civic

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

Name	Car
Jack	Charger
Magda	Civic

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car	
123	Charger	+
567	Civic	
567	Pinto	

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car	
123	Charger	
567	Civic	—
567	Pinto	

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

```
SELECT P.Name, R.Car
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID;
```


Key / Foreign-key join

```
for each row1 in Payroll:
  for each row2 in Regist:
   if (row1.UserID = row2.UserID):
      output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

SELECT P.Name, R.Car
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID;

Key / Foreign-key join

for each row1 in Payroll:
 for each row2 in Regist:
 if (row1.UserID = row2.UserID):
 output (row1.Name, row2.Car)

SELECT P.Name, R.Car
FROM Payroll AS P, Regist AS R;

Cross product

for each row1 in Payroll:
 for each row2 in Regist:
 output (row1.Name, row2.Car)

Summary: Nested-Loop Semantics

■ FROM clause has tables T1, T2, T3, ...

WHERE clause has condition

```
for each r1 in T1:
  for each t2 in T2:
    for each t3 in T3:
     ...
     if (condition):
        output (r1, r2,...)
```

Self-Joins

Find all people who drive a Civic and Pinto

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
123	Pinto
123	Tesla
567	Civic
567	Pinto

```
SELECT P.Name, R.Car
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID AND
R.Car = 'Civic';
```

Find all people who drive a Civic and Pinto

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Car
Charger
Pinto
Tesla
Civic
Pinto

```
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID AND
R.Car = 'Civic' AND
R.Car = 'Pinto';
```

Will this work?

Find all people who drive a Civic and Pinto

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
123	Pinto
123	Tesla
567	Civic
567	Pinto

```
SELECT P.Name, R.Car
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID AND
R.Car = 'Civic' AND
R.Car = 'Pinto';
```

Will this work? Nope, returns the empty set.

Find all people who drive a Civic and Pinto

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
123	Pinto
123	Tesla
567	Civic
567	Pinto

Is this better?

Find all people who drive a Civic and Pinto

UserID	Name	Job	Salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
<mark>123</mark>	Pinto
123	Tesla
567	Civic
567	Pinto

Is this better? Nope, it returns Jack, Magda.

Find all people who drive a Civic and Pinto

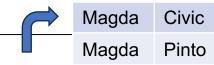
UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
123	Pinto
123	Tesla
567	Civic
567	Pinto

Discuss with the people around you how you would solve this.

Find all people who drive a Civic and Pinto

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000


UserID	Car
123	Charger
123	Pinto
123	Tesla
567	Civic
567	Pinto

```
SELECT P.Name, R1.Car
FROM Payroll AS P, Regist AS R1, Regist AS R2
WHERE P.UserID = R1.UserID AND
P.UserID = R2.UserID AND
R1.Car = 'Civic' AND
R2.Car = 'Pinto';
```

Find all people who drive a Civic and Pinto

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
123	Pinto
123	Tesla
567	Civic
567	Pinto Nam

Job

```
FROM Payroll AS P, Regist AS R1, Regist AS R2
WHERE P.UserID = R1.UserID AND
    P.UserID = R2.UserID AND
    R1.Car = 'Civic' AND
    R2.Car = 'Pinto';
```

Find all people who drive a Civic and Pinto

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Car
Charger
Pinto
Tesla
Civic
Pinto Nam

Job

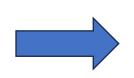
Civic

Pinto

Magda

Magda

```
SELECT P.Name, R1.Car
  FROM Payroll AS P, Regist AS R1, Regist AS R2
 WHERE P.UserID = R1.UserID AND
       P.UserID = R2.UserID AND
       R1.Car = 'Civic' AND
                                      The person we look for
       R2.Car = 'Pinto';
                                       must drive TWO cars
```


When a relation occurs twice in the FROM clause we call it a "self-join"

• If we have a self-join, we must use table aliases;
Otherwise, the attribute names are ambiguous

Outer Joins

For each employee, find the cars that they drive

SELECT P.Name, R.Car
FROM Payroll AS P
 JOIN Regist AS R
 ON P.UserID = R.UserID;

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto

73

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

For each employee, find the cars that they drive

SELECT P.Name, R.Car
FROM Payroll AS P
 JOIN Regist AS R
 ON P.UserID = R.UserID;

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto

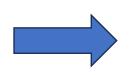
Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

For each employee, find the cars that they drive

```
SELECT P.Name, R.Car
FROM Payroll AS P
    LEFT OUTER JOIN Regist AS R
    ON P.UserID = R.UserID;
```


Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

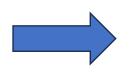
UserID	Car
123	Charger
567	Civic
567	Pinto

For each employee, find the cars that they drive

SELECT P.Name, R.Car
FROM Payroll AS P
 LEFT OUTER JOIN Regist AS R
 ON P.UserID = R.UserID;

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto
Allison	NULL
Dan	NULL

76


Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

For each employee, find the cars that they drive

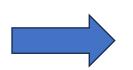
SELECT P.Name, R.Car
FROM Payroll AS P
 LEFT OUTER JOIN Regist AS R
 ON P.UserID = R.UserID;

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto
Allison	NULL
Dan	NULL

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist


UserID	Car
123	Charger
567	Civic
567	Pinto

NULL means "unknown" or "missing"

March 29, 2024 Joins

For each employee, find the cars that they drive

SELECT P.Name, R.Car
FROM Payroll AS P
 LEFT OUTER JOIN Regist AS R
 ON P.UserID = R.UserID;

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto
Allison	NULL
Dan	NULL

78

Left outer join:

- Perform the join with the ON clause
- 2. Add all missing tuples from LEFT
- 3. Check the WHERE clause (if present)

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

For each employee, find the cars that they drive

SELECT P.Name, R.Car
FROM Payroll AS P
 LEFT OUTER JOIN Regist AS R
 ON P.UserID = R.UserID;

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto
Allison	NULL
Dan	NULL

79

Left outer join:

- Perform the join with the ON clause
- 2. Add all missing tuples from LEFT
- 3. Check the WHERE clause (if present)

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

ON, WHERE differ

UserID	Car
123	Charger
567	Civic
567	Pinto

Outer Joins

LEFT OUTER JOIN

Add missing tuples from the LEFT

RIGHT OUTER JOIN

Add missing tuples from the RIGHT

FULL OUTER JOIN

Add missing tuples from both

Outer Joins

LEFT OUTER JOIN

Add missing tuples from the LEFT

Useful, especially for aggregates (next week)

RIGHT OUTER JOIN

Add missing tuples from the RIGHT

FULL OUTER JOIN

Add missing tuples from both

Rarely used