

CSE 414: Intro to Data Management Introduction

Paul G. Allen School of Computer Science and Engineering University of Washington, Seattle

March 25, 2024

Introduction

Outline

- 1. Administrivia
- 2. Databases, DBMS
- 3. The Relational Data Model

414 Staff

Instructor:

Dan Suciu <u>suciu@cs</u> TAs:

- Zareef Amyeen
- Eden Chmielewski
- Cindy Fu
- Arjun Jagnani
- Moe Kayali
- Aaron D Kim
- Madrona Kelly Maling
- Qirui Wang
- Emi Kamaleiokekua Yoshikawa
- Andrew Mingwei Zhang

Course Format

- Lectures: in person, in this room
 - Attend. Arrive on time. Pay attention.
- Sections: in person, see locations at my.uw.edu
 - Bring your laptop
- Several homework assignments
 - First assignment published on gradescope
- Two exams:
 - Midterm: Friday, April 26, 10:30-11:20 in class
 - Final: Monday, June 3, 8:30-10:20 same room

Communication

- Website:
 - <u>https://cs.uw.edu/414</u> same as
 - <u>https://courses.cs.washington.edu/courses/cse414/24sp/</u>
- Ed message board (link on website)
 - All course-related questions
 - Log in today, enable email notifications
- Class mailing list
 - Very low traffic, only important announcements

Textbook

Textbook

Main textbook, available at the bookstore or pdf:

 Database Systems: The Complete Book, Hector Garcia-Molina, Jeffrey Ullman, Jennifer Widom, second edition.

Also useful: • Database Management Systems (3rd Edition)

Grading

- Grading:
 - Homeworks 50%, Exams 20%+30%
- Late days:
 - 6 in total, max 2/assignment in 24 hours chunks
- Collaboration:
 - Do complete homeworks individually
 - Do discuss concepts, but see previous item
 - Don't show your work
 - Don't post it on the Web
 - Don't look at other peoples' work
 - Don't use AI tools to produce your work

Questions?

Questions?

Let's get started!

Database

What is a database ?

Give examples of databases

What is a database ?

• A collection of files storing related data

Give examples of databases

What is a database ?

• A collection of files storing related data

Give examples of databases

- Accounts database
- Payroll database
- UW's student database
- Amazon's products database
- Airline reservation database

What is a DBMS ?

What is a DBMS ?

 "A big program written by someone else that allows us to manage efficiently a large database and allows it to persist over long periods of time"

What is a DBMS ?

 "A big program written by someone else that allows us to manage efficiently a large database and allows it to persist over long periods of time"

Examples of DBMSs

- Oracle, IBM DB2, Microsoft SQL Server, Vertica, Teradata
- Cloud: Snowflake, Redshift, BigQuery, SQL Azure
- Open source: MySQL (Sun/Oracle), PostgreSQL, DuckDB
- Open source library: SQLite

What is a DBMS ?

 "A big program written by someone else that allows us to manage efficiently a large database and allows it to persist over long periods of time"

Examples of DBMSs

- Oracle, IBM DB2, Microsoft SQL Server, Vertica, Teradata
- Cloud: Snowflake, Redshift, BigQuery, SQL Azure
- Open source: MySQL (Sun/Oracle), PostgreSQL, DuckDB
- Open source library: SQLite

A DBMS needs a Data Model

Example

Database of patients, their names, their health status... How do we describe information?

Example

Database of patients, their names, their health status... How do we describe information?

PatientID	Name	Status	Notes
123	Alex	Healthy	
345	Bob	Critical	

Example

Database of patients, their names, their health status... How do we describe information?

Medical Records

PatientID	Name	Status	Notes
123	Alex	Healthy	
345	Bob	Critical	

Data Model

A **Data Model** is a mathematical formalism to describe data. It is how we can talk about data conceptually without having to think about implementation.

The 3 parts of any data model

PatientID	Name	Status	Notes
123	Alex	Healthy?	
345	Bob	Critical	

The 3 parts of any data model

Instance

• The actual data

PatientID	Name	Status	Notes
123	Alex	Healthy?	
345	Bob	Critical	

- The 3 parts of any data model
- Instance
 - The actual data
- Schema
 - A description of what data is being stored

PatientID	Name	Status	Notes
123	Alex	Healthy?	
345	Bob	Critical	

- The 3 parts of any data model
- Instance
 - The actual data
- Schema
 - A description of what data is being stored
- Query Language
 - How to retrieve and manipulate data

Medical Records

PatientID	Name	Status	Notes
123	Alex	Healthy?	
345	Bob	Critical	

"Which patients are critical?"

SELECT * FROM records
WHERE status="critical"

There are lots of models out there!

- Relational
- Semi-structured
- Key-value pairs
- Graph
- 00

. . .

There are lots of models out there!

- Relational
- Semi-structured
- Key-va
- Graph

March 25, 2024

lue pairs		https://db-engines.com/en/ranking		
	DBMS		Database Model	
	Oracle 🖶	F	Relational, Multi-model 👔	
	MySQL 🗄	F	Relational, Multi-model 👔	
	Microsoft SQL Server 🗄	F	Relational, Multi-model 👔	
	PostgreSQL 🔠	F	Relational, Multi-model 👔	
	MongoDB 🚹	ſ	Document, Multi-model 👔	
	Redis 🗄	ł	Key-value, Multi-model 👔	
	Elasticsearch	9	Search engine, Multi-model 👔	
	IBM Db2	F	Relational, Multi-model 👔	
	Snowflake 🚹	F	Relational	
	SQLite 🚹	F	Relational	
			07	

Introduction

There are lots of models out there!

- Relational
- Semi-structured
- Key-value pairs

https://db-engines.com/en/ranking

March 25, 2024

Relational Data Model

What is the Relational Model?

Information Retrieval

P. BAXENDALE, Editor

A Relational Model of Data for Large Shared Data Banks

E. F. CODD IBM Research Laboratory, San Jose, California

Future users of large data banks must be protected from having to know how the data is organized in the machine (the internal representation). A prompting service which supplies such information is not a satisfactory solution. Activities of users at terminals and most application programs should remain

Levein and Maron [2] provide numerous references to work in this area.

In contrast, the problems treated here are those of *data independence*—the independence of application programs and terminal activities from growth in data types and changes in data representation—and certain kinds of *data inconsistency* which are expected to become troublesome even in nondeductive systems.

Volume 13 / Number / June, 1970

The relational view (or model) of data described in Section 1 appears to be superior in several respects to the graph or network model [3, 4] presently in vogue for noninferential systems. It provides a means of describing data with its natural structure only—that is, without superimposing any additional structure for machine representation purposes. Accordingly, it provides a basis for a high level data language which will yield maximal independence between programs on the one hand and machine representation and organization of data on the other.

A further advantage of the relational view is that it forms a sound basis for treating derivability, redundancy, and consistency of relations—these are discussed in Section

those existing systems which either require or permit data elements to be stored in at least one total ordering which is closely associated with the hardware-determined ordering of addresses. For example, the records of a file concerning parts might be stored in ascending order by part serial number. Such systems normally permit application programs to assume that the order of presentation of records from such a file is identical to (or is a subordering of) the

Communications of the ACM 377

The Relational Model

Ted Codd

Turing Award 1981

Data is stored in simple, flat relations

Is retrieved via a set-at-a-time query language

Data is stored in simple, flat relations

Is retrieved via a set-at-a-time query language

Payroll (UserId, Name, Job, Salary)

Schema, describes data

Payroll (UserId, Name, Job, Salary)

Schema, describes data

Payroll (UserId, Name, Job, Salary)

UserID	Name	Job	Salary
123	Jack	ТА	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Schema, describes data

Payroll (UserId, Name, Job, Salary)

UserID	Name	Job	Salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Instance of actual data

Table/ Relation

UserID	Name	Job	Salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Table/ Relation

	UserID	Name	Job	Salary
Rows/	123	Jack	ТА	50000
	345	Allison	ТА	60000
Tuples/	567	Magda	Prof	90000
Records	789	Dan	Prof	100000

Set semantics

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

- Set semantics
- Order doesn't matter

UserID	Name	Job	Salary	UserID	Name	Job	Salary
123	Jack	TA	50000	567	Magda	Prof	90000
345	Allison	TA	60000	123	Jack	TA	50000
567	Magda	Prof	90000	789	Dan	Prof	100000
789	Dan	Prof	100000	345	Allison	TA	60000

- Set semantics
- Order doesn't matter
- Duplicates not allowed

UserID	Name	Job	Salary	
123	Jack	TA	50000	
345	Allison	ТА	60000	
567	Magda	Prof	90000	
789	Dan	Prof	100000	Violates set
789	Dan	Prof	100000	semantics!

- Set semantics
- Order doesn't matter
- Duplicates not allowed
- ...but systems do allow them

UserID	Name	Job	Salary	
123	Jack	TA	50000	
345	Allison	TA	60000	
567	Magda	Prof	90000	
789	Dan	Prof	100000	Allowed by
789	Dan	Prof	100000	systems,
				but bad idea

- Attributes are typed and static
 - INTEGER, FLOAT, VARCHAR(n), DATETIME, ...

UserID	Name	Job	Salary	Violates
123	Jack	ТА	banana	attribute type
345	Allison	TA	60000	assuming INT
567	Magda	Prof	90000	
789	Dan	Prof	100000	

- Attributes are typed and static
 - INTEGER, FLOAT, VARCHAR(n), DATETIME, ...
- Tables are flat

No su	b-tab	les al	llowed!
110 00		100 01	

UserID	Name	Job	Salary	
123	Jack	JobName	obName HasBananas	
		ТА	0	
		farmer	1	
345	Allison	ТА		60000
567	Magda	Prof		90000
789	Dan	Prof		100000

Data is stored in simple, flat relations

Is retrieved via a set-at-a-time query language

Data is stored in simple, flat relations

Is retrieved via a set-at-a-time query language

What doe this mean?

But how is this data ACTUALLY stored?

i ayion						
UserID	Name	Job	Salary			
123	Jack	TA	50000			
345	Allison	TA	60000			
567	Magda	Prof	90000			
789	Dan	Prof	100000			

Payroll

But how is this data ACTUALLY stored?

Payroll					
UserID	Name	Job	Salary		
123	Jack	TA	50000		
345	Allison	TA	60000		
567	Magda	Prof	90000		
789	Dan	Prof	100000		

"123\tJack\tTA\t50000\t345\tAllison..." or maybe "123\t345\t567\t789\tJack\tAllison..."

But how is this data ACTUALLY stored?

Payroll					
UserID	Name	Job	Salary		
123	Jack	TA	50000		
345	Allison	TA	60000		
567	Magda	Prof	90000		
789	Dan	Prof	100000		

"123\tJack\tTA\t50000\t345\tAllison..." or maybe "123\t345\t567\t789\tJack\tAllison..."

No prescription for physical storage: system decides

But how is this data ACTUALLY stored?

Payroll						
UserID	Name	Job	Salary			
123	Jack	TA	50000			
345	Allison	TA	60000			
567	Magda	Prof	90000			
789	Dan	Prof	100000			

"123\tJack\tTA\t50000\t345\tAllison..." or maybe

<u>"123\t345\t567\t789\tJack\tAllison..."</u>

Physical Data Independence

No prescription for physical storage: system decides

Data is stored in simple, flat relations

Is retrieved via a set-at-a-time query language

The Relational Model

We discussed this...

Data is stored in simple, flat relations

Is retrieved via a set-at-a-time query language

Data is stored in simple, flat relations

Is retrieved via a set-at-a-time query language