Introduction to Data Management CSE 414

Unit 6: Conceptual Design E/R Diagrams Integrity Constraints BCNF

(3 lectures)

Introduction to Data Management CSE 414

E/R Diagrams

Announcements

- HW6 due on Friday. Turn instances off!!!
- WebQuiz 6 due on Saturday

Class Overview

- Unit 1: Intro
- Unit 2: Relational Data Models and Query Languages
- Unit 3: Non-relational data
- Unit 4: RDMBS internals and query optimization
- Unit 5: Parallel query processing
- Unit 6: DBMS usability, conceptual design
 - E/R diagrams
 - Constraints
 - Schema normalization
- Unit 7: Transactions
- Unit 8: Advanced topics (time permitting)

Database Design

What it is:

 Starting from scratch, design the database schema: relation, attributes, keys, foreign keys, constraints etc

Why it's hard

• The database will be in operation for a very long time (years). Updating the schema while in production is very expensive (why?)

Database Design

- Consider issues such as:
 - What entities to model
 - How entities are related
 - What constraints exist in the domain
- Several formalisms exists
 - We discuss E/R diagrams
 - UML, model-driven architecture
- Reading: Sec. 4.1-4.6

Database Design Process

Entity / Relationship Diagrams

Product

city

makes

- Entity set = a class
 An entity = an object
- Attribute
- Relationship

Keys in E/R Diagrams

• Every entity set must have a key

What is a Relation ?

A mathematical definition:

if A, B are sets, then a relation R is a subset of A × B

A={1,2,3}, B={a,b,c,d},

A × B = {(1,a),(1,b),(1,c),(1,d),
(2,a),(2,b),(2,c),(2,d),
(3,a),(3,b),(3,c),(3,d) } A=

R = {(1,a), (1,c), (3,b)}

makes is a subset of Product × Company:

d

3

B=

Multiplicity of E/R Relations

Attributes on Relationships

Multi-way Relationships

How do we model a purchase relationship between buyers, products and stores?

Can still model as a mathematical set (How?)

As a set of triples \subseteq Product × Person × Store

Arrows in Multiway Relationships

A: Any person buys a given product from at most one store

[Fine print: Arrow pointing to E means that if we select one entity from each of the other entity sets in the relationship, those entities are related to at most one entity in E]

CSE 414 - 2019sp

Arrows in Multiway Relationships

A: Any person buys a given product from at most one store AND every store sells to every person at most one product

3. Design Principles What's wrong? Product Purchase Person President Country Person

Moral: Be faithful to the specifications of the application!

Design Principles: What's Wrong?

From E/R Diagrams to Relational Schema

- Entity set \rightarrow relation
- Relationship \rightarrow relation

Entity Set to Relation

Product(prod-ID, category, price)

prod-ID	category	price
Gizmo55	Camera	99.99
Pokemn19	Тоу	29.99

N-N Relationships to Relations

N-N Relationships to Relations

N-1 Relationships to Relations

N-1 Relationships to Relations

Shipping-Co(name, address)

Remember: no separate relations for many-one relationship

Modeling Subclasses

Some objects in a class may be special

- define a new class
- better: define a *subclass*

So --- we define subclasses in E/R

Modeling Union Types with Subclasses

FurniturePiece

Say: each piece of furniture is owned either by a person or by a company

Modeling Union Types with Subclasses

Say: each piece of furniture is owned either by a person or by a company

Solution 1. Acceptable but imperfect (What's wrong ?)

Modeling Union Types with Subclasses

Solution 2: better, more laborious

Weak Entity Sets

Entity sets are weak when their key comes from other classes to which they are related.

Team(sport, <u>number, universityName</u>) University(<u>name</u>)

Introduction to Data Management CSE 414

Integrity Constraints

Integrity Constraints Motivation

An integrity constraint is a condition specified on a database schema that restricts the data that can be stored in an instance of the database.

Why?

How?

Integrity Constraints Motivation

An integrity constraint is a condition specified on a database schema that restricts the data that can be stored in an instance of the database.

Why? Because we want application data to be consistent

How?

Integrity Constraints Motivation

An integrity constraint is a condition specified on a database schema that restricts the data that can be stored in an instance of the database.

Why? Because we want application data to be consistent

How? The DBMS checks and enforces IC during updates

Constraints in E/R Diagrams

- Keys
- Single-value constraints
- Referential integrity constraints
- General constraints

Keys in E/R Diagrams

Single Value Constraints

Referential Integrity Constraints

A Company entity is connected to at most 99 Product entities

Constraints in SQL

- Keys
- Attribute-level, tuple-level constraints
- General (complex) constraints

The more complex the constraint, the harder it is to check and to enforce

Key Constraints

Product(name, category)

CREATE TABLE Product (name CHAR(30) PRIMARY KEY, category VARCHAR(20))

OR:

CREATE TABLE Product (name CHAR(30), category VARCHAR(20), PRIMARY KEY (name))

Keys with Multiple Attributes

Product(name, category, price)

```
CREATE TABLE Product (
name CHAR(30),
category VARCHAR(20),
price INT,
PRIMARY KEY (name, category))
```

Name	Category	Price
Gizmo	Gadget	10
Camera	Photo	20
Gizmo	Photo	30
Gizmo	Gadget	40

Other Keys

CREATE TABLE Product (productID CHAR(10), name CHAR(30), category VARCHAR(20), price INT, PRIMARY KEY (productID), UNIQUE (name, category))

There is at most one **PRIMARY KEY**; there can be many **UNIQUE**

Foreign Key Constraints Referential integrity **CREATE TABLE** Purchase (constraints prodName CHAR(30) **REFERENCES** Product(name), date DATETIME) prodName is a foreign key to Product(name) May write name must be a key in Product just Product if name is PK

Foreign Key Constraints

• Example with multi-attribute primary key

CREATE TABLE Purchase (prodName CHAR(30), category VARCHAR(20), date DATETIME, FOREIGN KEY (prodName, category) REFERENCES Product(name, category)

• (name, category) must be a KEY in Product

What happens when data changes?

Types of updates:

- In Purchase: insert/update
- In Product: delete/update

What happens when data changes?

SQL policies for maintaining referential integrity:

- <u>NO ACTION</u> reject modifications (default)
- <u>CASCADE</u> after delete/update do delete/update
- <u>SET NULL</u> set foreign-key field to NULL
- <u>SET DEFAULT</u> CREATE TABLE ... (pid int DEFAULT 42 REFERENCES...)

Constraints on Attributes and Tuples

- Constraints on attributes: NOT NULL CHECK condition
- Constraints on tuples
 CHECK condition

- -- obvious meaning...
- -- any condition !

Constraints on Attributes and Tuples

Constraints on Attributes and Tuples

General Assertions

```
CREATE ASSERTION myAssert CHECK
(NOT EXISTS(
SELECT Product.name
FROM Product, Purchase
WHERE Product.name = Purchase.prodName
GROUP BY Product.name
HAVING count(*) > 200) )
```

But most DBMSs do not implement assertions Because it is hard to support them efficiently Instead, they provide triggers

Introduction to Data Management CSE 414

Design Theory and BCNF

Announcements

- Monday is Memorial day no lecture
- Webquiz 6 is due tomorrow
- HW6 is due tonight
- HW7 is posted, due next Friday.

What makes good schemas?

Relational Schema Design

Name	<u>SSN</u>	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield

One person may have multiple phones, but lives in only one city

Primary key is thus (SSN, PhoneNumber)

What is the problem with this schema?

Relational Schema Design

Name	<u>SSN</u>	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield

Anomalies:

- Redundancy = repeat data
- Update anomalies = what if Fred moves to "Bellevue"?
- **Deletion anomalies** = what if Joe deletes his phone number?

Relation Decomposition

Break the relation into two:

Name	SSN	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield

Name	<u>SSN</u>	City
Fred	123-45-6789	Seattle
Joe	987-65-4321	Westfield

<u>SSN</u>	PhoneNumber
123-45-6789	206-555-1234
123-45-6789	206-555-6543
987-65-4321	908-555-2121

Anomalies have gone:

- No more repeated data
- Easy to move Fred to "Bellevue" (how ?)
- Easy to delete all Joe's phone numbers (how ?)

Relational Schema Design (or Logical Design)

How do we do this systematically?

- Start with some relational schema
- Find out its <u>functional dependencies</u> (FDs)
- Use FDs to *normalize* the relational schema

Functional Dependencies (FDs)

Definition

If two tuples agree on the attributes

then they must also agree on the attributes

Functional Dependencies (FDs)

Definition $A_1, ..., A_m \rightarrow B_1, ..., B_n$ holds in R if: $\forall t, t' \in R,$ $(t.A_1 = t'.A_1 \land ... \land t.A_m = t'.A_m \rightarrow t.B_1 = t'.B_1 \land ... \land t.B_n = t'.B_n)$

Example

An FD holds, or does not hold on an instance:

EmpID	Name	Phone	Position	
E0045	Smith	1234	Clerk	
E3542	Mike	9876	Salesrep	
E1111	Smith	9876	Salesrep	
E9999	Mary	1234	Lawyer	

 $EmpID \rightarrow Name, Phone, Position$ $Position \rightarrow Phone$

but not Phone \rightarrow Position

Example

EmplD	Name	Phone	Position	
E0045	Smith	1234	Clerk	
E3542	Mike	9876 ←	Salesrep	
E1111	Smith	9876 ←	Salesrep	
E9999	Mary	1234	Lawyer	

Position \rightarrow Phone

Example

EmplD	Name	Phone	Position
E0045	Smith	1234 →	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234 →	Lawyer

But not Phone \rightarrow Position

Example	name \rightarrow color
•	category \rightarrow department
	color, category \rightarrow price
	department \rightarrow price

name	category	color	department	price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Red	Toys	49
Gizmo	Stationary	Green	Office-supp.	59

Buzzwords

- FD holds or does not hold on an instance
- If we can be sure that every instance of R will be one in which a given FD is true, then we say that R satisfies the FD
- If we say that R satisfies an FD, we are stating a constraint on R
Why bother with FDs?

Name	<u>SSN</u>	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield

Anomalies:

- Redundancy = repeat data
- Update anomalies = what if Fred moves to "Bellevue"?
- **Deletion anomalies** = what if Joe deletes his phone number?

An Interesting Observation

If all these FDs are true:

name \rightarrow color category \rightarrow department color, category \rightarrow price

Then this FD also holds:

name, category \rightarrow price

If we find out from application domain that a relation satisfies some FDs, it doesn't mean that we found all the FDs that it satisfies! There could be more FDs implied by the ones we have.

Closure of a set of Attributes

Given a set of attributes $A_1, ..., A_n$

The **closure** is the set of attributes B, notated $\{A_1, ..., A_n\}^+$, s.t. $A_1, ..., A_n \rightarrow B$

Example: 1. name \rightarrow color 2. category \rightarrow department

3. color, category \rightarrow price

Closures:

name⁺ = {name, color}
{name, category}⁺ = {name, category, color, department, price}
color⁺ = {color}

Closure Algorithm

{name, category}⁺ =
 { name, category, color, department, price }
Hence: name, category → color, department, price

Why do we care?

- The closure allows us to compute all FDs implied by a given FD; Here is how:
- To check if the FD implies $A \rightarrow B$
 - Compute A⁺
 - Check if $B \subseteq A^+$

In class:

R(A,B,C,D,E,F)

$$\begin{array}{c} A, B \rightarrow C \\ A, D \rightarrow E \\ B \rightarrow D \\ A, F \rightarrow B \end{array}$$

Compute $\{A,B\}^+$ X = $\{A, B,$ Compute $\{A, F\}^+$ X = $\{A, F,$ }

}

In class:

R(A,B,C,D,E,F)

$$\begin{array}{c} A, B \rightarrow C \\ A, D \rightarrow E \\ B \rightarrow D \\ A, F \rightarrow B \end{array}$$

Compute $\{A,B\}^+$ X = $\{A, B, C, D, E\}$ Compute $\{A, F\}^+$ X = $\{A, F, F\}$

}

In class:

R(A,B,C,D,E,F)

$$\begin{array}{c} A, B \rightarrow C \\ A, D \rightarrow E \\ B \rightarrow D \\ A, F \rightarrow B \end{array}$$

Compute {A,B}⁺ X = {A, B, C, D, E } Compute {A, F}⁺ X = {A, F, B, C, D, E }

In class:

R(A,B,C,D,E,F)

$$\begin{array}{c} A, B \rightarrow C \\ A, D \rightarrow E \\ B \rightarrow D \\ A, F \rightarrow B \end{array}$$

Compute {A,B}⁺ X = {A, B, C, D, E } Compute {A, F}⁺ X = {A, F, B, C, D, E }

CSE 414 - 2019sp

What is the key of R?

Practice at Home

Find all FD's implied by:

Practice at Home

Find all FD's implied by:

$$\begin{array}{ccc} A, B \rightarrow C \\ A, D \rightarrow B \\ B \rightarrow D \end{array}$$

Step 1: Compute X⁺, for every X: $A^+ = A, B^+ = BD, C^+ = C, D^+ = D$ $AB^+ = ABCD, AC^+ = AC, AD^+ = ABCD, BD^+ = BD, CD^+ = CD$ $ABC^+ = ABD^+ = ACD^+ = ABCD$ (no need to compute– why ?) $BCD^+ = BCD, ABCD^+ = ABCD$

Practice at Home

Find all FD's implied by:

$$\begin{array}{ccc} A, B \rightarrow C \\ A, D \rightarrow B \\ B \rightarrow D \end{array}$$

Step 1: Compute X⁺, for every X: $A^+ = A, B^+ = BD, C^+ = C, D^+ = D$ $AB^+ = ABCD, AC^+ = AC, AD^+ = ABCD, BC^+ = BCD, BD^+ = BD, CD^+ = CD$ $ABC^+ = ABD^+ = ACD^+ = ABCD$ (no need to compute– why ?) $BCD^+ = BCD, ABCD^+ = ABCD$ Step 2: Enumerate all FD's X \rightarrow Y, s.t. Y \subseteq X⁺ and X \cap Y = Ø : $AB \rightarrow CD, AD \rightarrow BC, ABC \rightarrow D, ABD \rightarrow C, ACD \rightarrow B$

Keys

- A superkey is a set of attributes A₁, ..., A_n s.t. for any other attribute B, we have A₁, ..., A_n → B
- A key is a minimal superkey
 - A superkey and for which no subset is a superkey

Computing (Super)Keys

- For all sets X, compute X⁺
- If X⁺ = [all attributes], then X is a superkey
- Try reducing to the minimal X's to get the key

Product(name, price, category, color)

name, category \rightarrow price category \rightarrow color

What is the key?

Product(name, price, category, color)

name, category \rightarrow price category \rightarrow color

What is the key?

(name, category) + = { name, category, price, color }

Hence (name, category) is a key

Key or Keys ?

We can we have more than one key!

What are the keys here ?

Eliminating Anomalies

Main idea:

- $X \rightarrow A$ is OK if X is a (super)key
- X → A is not OK otherwise
 Need to decompose the table, but how?

Boyce-Codd Normal Form

There are no "bad" FDs:

Definition. A relation R is in BCNF if:

Whenever $X \rightarrow B$ is a non-trivial dependency, then X is a superkey.

Definition. A relation R is in BCNF if:

Equivalently: $\forall X$, either $X^+ = X$ (i.e., X is not in any FDs) or $X^+ = [all attributes]$ (computed using FDs)

BCNF Decomposition Algorithm

Normalize(R)

find X s.t.: $X \neq X^+$ and $X^+ \neq$ [all attributes] <u>if</u> (not found) <u>then</u> "R is in BCNF" <u>let</u> Y = X⁺ - X; Z = [all attributes] - X⁺ decompose R into R1(X \cup Y) and R2(X \cup Z) Normalize(R1); Normalize(R2);

Name	SSN	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield
Joe	987-65-4321	908-555-1234	Westfield

Phone-

Number/

Name,

City

SSN

SSN⁺

SSN
$$\rightarrow$$
 Name, City

The only key is: {SSN, PhoneNumber} Hence $SSN \rightarrow Name$, City is a "bad" dependency

In other words:

SSN+ = SSN, Name, City and is neither SSN nor All Attributes

Example BCNF Decomposition

Name	<u>SSN</u>	City
Fred	123-45-6789	Seattle
Joe	987-65-4321	Westfield

 $SSN \rightarrow Name, City$

<u>SSN</u>	PhoneNumber
123-45-6789	206-555-1234
123-45-6789	206-555-6543
987-65-4321	908-555-2121
987-65-4321	908-555-1234

Let's check anomalies:

- Redundancy ?
- Update ?
- Delete ?

Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)

SSN \rightarrow name, age age \rightarrow hairColor

Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)

SSN \rightarrow name, age

age \rightarrow hairColor

Iteration 1: Person: SSN+ = SSN, name, age, hairColor Decompose into: P(SSN, name, age, hairColor) Phone(SSN, phoneNumber)

Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)

SSN \rightarrow name, age

age \rightarrow hairColor

What are the keys ?

Iteration 1: Person: SSN+ = SSN, name, age, hairColor

Decompose into: P(SSN, name, age, hairColor) Phone(SSN, phoneNumber)

Iteration 2: P: age+ = age, hairColor Decompose: People(SSN, name, age) Hair(age, hairColor) Phone(SSN, phoneNumber)

Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)

SSN \rightarrow name, age

age \rightarrow hairColor

Iteration 1: Person: SSN+ = SSN, name, age, hairColor Decompose into: P(<u>SSN</u>, name, age, hairColor) Phone(SSN, phoneNumber)

Iteration 2: P: age+ = age, hairColor Decompose: People(<u>SSN</u>, name, age) Hair(<u>age</u>, hairColor) Phone(<u>SSN</u>, phoneNumber)

Example: BCNF

Example: BCNF

Example: BCNF

What happens if in R we first pick B⁺ ? Or AB⁺ ?

$$S_1$$
 = projection of R on A₁, ..., A_n, B₁, ..., B_m
 S_2 = projection of R on A₁, ..., A_n, C₁, ..., C_p

Lossless Decomposition

Lossy Decomposition

Name	Category
Gizmo	Gadget
OneClick	Camera
Gizmo	Camera

Price	Category
19.99	Gadget
24.99	Camera
19.99	Camera

CSE 414 - 2019sp

Lossy Decomposition

Name	Price	Category	
Gizmo	19.99	Gadget	
OneClick	24.99	Camera	
Gizmo	19.99	Camera	

Name	Category
Gizmo	Gadget
OneClick	Camera
Gizmo	Camera

Price	Category
19.99	Gadget
24.99	Camera
19.99	Camera

CSE 414 - 2019sp
Lossy Decomposition

Name	Price	Category	
Gizmo	19.99	Gadget	
OneClick	24.99	Camera	
Gizmo	19.99	Camera	

Name	Category	
Gizmo	Gadget	
OneClick	Camera	
Gizmo	Camera	

Price	Category	
19.99	Gadget	
24.99	Camera	
19.99	Camera	

CSE 414 - 2019sp

$$\begin{array}{c} \hline \textbf{B}(A_1,...,A_n,B_1,...,B_m,C_1,...,C_p)\\\hline \textbf{S}_1(A_1,...,A_n,B_1,...,B_m) \hline \textbf{S}_2(A_1,...,A_n,C_1,...,C_p)\\ \hline \textbf{Let:} \quad \textbf{S}_1 = \text{projection of R on } A_1,...,A_n,B_1,...,B_m\\\hline \textbf{S}_2 = \text{projection of R on } A_1,...,A_n,C_1,...,C_p\\ \hline \textbf{The decomposition is called } \underline{\textit{lossless}} \text{ if } \textbf{R} = \textbf{S}_1 \Join \textbf{S}_2 \end{array}$$

Fact: If $A_1, ..., A_n \rightarrow B_1, ..., B_m$ then the decomposition is lossless

It follows that every BCNF decomposition is lossless 110

Testing for Lossless Join

If we decompose R into $\Pi_{S1}(R)$, $\Pi_{S2}(R)$, $\Pi_{S3}(R)$, ... Is it true that S1 \bowtie S2 \bowtie S3 \bowtie ... = R ?

To check "=" we need to check " \subseteq " and " \supseteq "

 $R \subseteq S1 \bowtie S2 \bowtie S3 \bowtie \dots$ always holds (why?)

 $R \supseteq S1 \bowtie S2 \bowtie S3 \bowtie \dots$ neet to check

The Chase Test for Lossless Join

 $R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D)$ R satisfies: A \rightarrow B, B \rightarrow C, CD \rightarrow A Lossless?

S1 = $\Pi_{AD}(R)$, S2 = $\Pi_{AC}(R)$, S3 = $\Pi_{BCD}(R)$

The Chase Test for Lossless Join

 $R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D)$ R satisfies: A \rightarrow B, B \rightarrow C, CD \rightarrow A Lossless?

S1 = $\Pi_{AD}(R)$, S2 = $\Pi_{AC}(R)$, S3 = $\Pi_{BCD}(R)$ R⊆ S1 ⋈ S2 ⋈ S3

To check: $R \supseteq S1 \bowtie S2 \bowtie S3$

The Chase Test for Lossless Join

 $R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D)$ R satisfies: A \rightarrow B, B \rightarrow C, CD \rightarrow A Lossless?

S1 = $\Pi_{AD}(R)$, S2 = $\Pi_{AC}(R)$, S3 = $\Pi_{BCD}(R)$ R \subseteq S1 \bowtie S2 \bowtie S3 To check: R \supseteq S1 \bowtie S2 \bowtie S3 Suppose (a,b,c,d) \in S1 \bowtie S2 \bowtie S3 Is it also in R?

The Chase Test for Lossless Join

 $R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D)$ R satisfies: A \rightarrow B, B \rightarrow C, CD \rightarrow A Lossless?

S1 = $\Pi_{AD}(R)$, S2 = $\Pi_{AC}(R)$, S3 = $\Pi_{BCD}(R)$ R⊆ S1 ⋈ S2 ⋈ S3

To check: $R \supseteq S1 \bowtie S2 \bowtie S3$

Suppose $(a,b,c,d) \in S1 \bowtie S2 \bowtie S3$ Is it also in R?

R must contain the following tuples:

The Chase Test for Lossless Join

 $R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D)$ R satisfies: A \rightarrow B, B \rightarrow C, CD \rightarrow A Lossless?

S1 = $\Pi_{AD}(R)$, S2 = $\Pi_{AC}(R)$, S3 = $\Pi_{BCD}(R)$ R⊆ S1 ⋈ S2 ⋈ S3

To check: $R \supseteq S1 \bowtie S2 \bowtie S3$

Suppose $(a,b,c,d) \in S1 \bowtie S2 \bowtie S3$ Is it also in R?

R must contain the following tuples:

The Chase Test for Lossless Join

 $R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D)$ R satisfies: A \rightarrow B, B \rightarrow C, CD \rightarrow A Lossless?

S1 = $\Pi_{AD}(R)$, S2 = $\Pi_{AC}(R)$, S3 = $\Pi_{BCD}(R)$ R⊆ S1 ⋈ S2 ⋈ S3

To check: $R \supseteq S1 \bowtie S2 \bowtie S3$

Suppose $(a,b,c,d) \in S1 \bowtie S2 \bowtie S3$ Is it also in R?

R must contain the following tuples:

Α	В	С	D	
а	b1	c1	d	
а	b2	С	d2	
a3	b	С	d	

Why ? (a,d) \in S1 = $\Pi_{AD}(R)$ (a,c) \in S2 = $\Pi_{BD}(R)$ (b,c,d) \in S3 = $\Pi_{BCD}(R)$

The Chase Test for Lossless Join

 $R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D)$ R satisfies: A \rightarrow B, B \rightarrow C, CD \rightarrow A Lossless?

S1 = $\Pi_{AD}(R)$, S2 = $\Pi_{AC}(R)$, S3 = $\Pi_{BCD}(R)$ R⊆ S1 ⋈ S2 ⋈ S3

To check: $R \supseteq S1 \bowtie S2 \bowtie S3$

Suppose $(a,b,c,d) \in S1 \bowtie S2 \bowtie S3$ Is it also in R?

R must contain the following tuples:

"Chase" them (apply FDs):

Why ? (a,d) \in S1 = $\Pi_{AD}(R)$ (a,c) \in S2 = $\Pi_{BD}(R)$ (b,c,d) \in S3 = $\Pi_{BCD}(R)$

The Chase Test for Lossless Join

 $R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D)$ R satisfies: A \rightarrow B, B \rightarrow C, CD \rightarrow A Lossless?

S1 = $\Pi_{AD}(R)$, S2 = $\Pi_{AC}(R)$, S3 = $\Pi_{BCD}(R)$ R \subseteq S1 \bowtie S2 \bowtie S3

To check: $R \supseteq S1 \bowtie S2 \bowtie S3$

Suppose (a,b,c,d) \in S1 \bowtie S2 \bowtie S3 Is it also in R?

R must contain the following tuples:

"Chase" them (apply FDs):

Why ? (a,d) \in S1 = $\Pi_{AD}(R)$ (a,c) \in S2 = $\Pi_{BD}(R)$ (b,c,d) \in S3 = $\Pi_{BCD}(R)$

The Chase Test for Lossless Join

 $R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D)$ R satisfies: A \rightarrow B, B \rightarrow C, CD \rightarrow A Lossless?

S1 = $\Pi_{AD}(R)$, S2 = $\Pi_{AC}(R)$, S3 = $\Pi_{BCD}(R)$ R⊆ S1 ⋈ S2 ⋈ S3

To check: $R \supseteq S1 \bowtie S2 \bowtie S3$

Suppose $(a,b,c,d) \in S1 \bowtie S2 \bowtie S3$ Is it also in R?

R must contain the following tuples:

"Chase" them (apply FDs):

С

С

а

а

b1

b

d2

d

Why ? (a,d) \in S1 = $\Pi_{AD}(R)$ (a,c) \in S2 = $\Pi_{BD}(R)$ (b,c,d) \in S3 = $\Pi_{BCD}(R)$

Hence R contains (a,b,c,d)

The Chase Test for Lossless Join

 $R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D)$ R satisfies: A \rightarrow B, B \rightarrow C, CD \rightarrow A Lossless?

S1 = $\Pi_{AD}(R)$, S2 = $\Pi_{AC}(R)$, S3 = $\Pi_{BCD}(R)$ R⊆ S1 ⋈ S2 ⋈ S3

To check: $R \supseteq S1 \bowtie S2 \bowtie S3$

Suppose $(a,b,c,d) \in S1 \bowtie S2 \bowtie S3$ Is it also in R?

R must contain the following tuples:

"Chase" them (apply FDs):

С

С

С

С

D

d

d2

d

В

b1

b1

b

Α

а

а

а

YES!

Hence R contains (a,b,c,d)

 $(a,d) \in S1 = \Pi_{AD}(R)$

 $(a,c) \in S2 = \Pi_{BD}(R)$

 $(b,c,d) \in S3 = \Pi_{BCD}(R)$

Why?

Schema Refinements = Normal Forms

- 1st Normal Form = all tables are flat
- 2nd Normal Form = obsolete
- Boyce Codd Normal Form = no bad FDs
- 3rd Normal Form = see book
 - BCNF removes anomalies, but my lose some FDs (see book 3.4.4)
 - 3NF preserves all FD's, but may still have some anomalies

Conclusion

- E/R diagrams are means to structurally visualize and design relational schemas
- Normalization is a principled way of converting schemas into a form that avoid such redundancies.
- BCNF and 3NF are the most widely used normalized form in practice