Introduction to Data Management CSE 414

Unit 6: Conceptual Design E/R Diagrams Integrity Constraints BCNF

(3 lectures)

Introduction to Data Management CSE 414

E/R Diagrams

Announcements

- HW6 due on Friday. Turn instances off!!!
- WebQuiz 6 due on Saturday

Class Overview

- Unit 1: Intro
- Unit 2: Relational Data Models and Query Languages
- Unit 3: Non-relational data
- Unit 4: RDMBS internals and query optimization
- Unit 5: Parallel query processing
- Unit 6: DBMS usability, conceptual design
- E/R diagrams
- Constraints
- Schema normalization
- Unit 7: Transactions
- Unit 8: Advanced topics (time permitting)

Database Design

What it is:

- Starting from scratch, design the database schema: relation, attributes, keys, foreign keys, constraints etc
Why it's hard
- The database will be in operation for a very long time (years). Updating the schema while in production is very expensive (why?)

Database Design

- Consider issues such as:
- What entities to model
- How entities are related
- What constraints exist in the domain
- Several formalisms exists
- We discuss E/R diagrams
- UML, model-driven architecture
- Reading: Sec. 4.1-4.6

Database Design Process

Conceptual Model:

Relational Model:
Tables + constraints And also functional dep.

Normalization:

Eliminates anomalies

Conceptual Schema

Physical storage details
Physical Schema

Entity / Relationship Diagrams

- Entity set = a class
- An entity = an object
- Attribute
- Relationship

Keys in E/R Diagrams

- Every entity set must have a key

What is a Relation?

- A mathematical definition:
- if A, B are sets, then a relation R is a subset of $A \times B$
- $A=\{1,2,3\}, B=\{a, b, c, d\}$,

$$
\begin{aligned}
& A \times B=\left\{\begin{array}{l}
(1, a),(1, b),(1, c),(1, d), \\
\\
(2, a),(2, b),(2, c),(2, d), \\
(3, a),(3, b),(3, c),(3, d)\} \quad A= \\
R=\{(1, a),(1, c),(3, b)\}
\end{array}\right.
\end{aligned}
$$

- makes is a subset of Product \times Company:

Multiplicity of E/R Relations

- one-one:
- many-one

- many-many

Attributes on Relationships

Multi-way Relationships

How do we model a purchase relationship between buyers, products and stores?

Can still model as a mathematical set (How?)
As a set of triples \subseteq Product \times Person \times Store

Arrows in Multiway Relationships

Q: What does the arrow mean?

date

A: Any person buys a given product from at most one store
[Fine print: Arrow pointing to E means that if we select one entity from each of the other entity sets in the relationship, those entities are related to at most one entity in E]

Arrows in Multiway Relationships

Q: What does the arrow mean?

date

A: Any person buys a given product from at most one store AND every store sells to every person at most one product

Converting Multi-way Relationships to Binary

Converting Multi-way Relationships to Binary

3. Design Principles

What's wrong?

Moral: Be faithful to the specifications of the application!

Design Principles: What's Wrong?

Design Principles: What's Wrong?

From E/R Diagrams to Relational Schema

- Entity set \rightarrow relation
- Relationship \rightarrow relation

Entity Set to Relation

Product(prod-ID, category, price)

prod-ID	category	price
Gizmo55	Camera	99.99
Pokemn19	Toy	29.99

N-N Relationships to Relations

Represent this in relations

N-N Relationships to Relations

 Shipment(prod-ID,cust-ID, name, date) Shipping-Co(name, address)

prod-ID	cust-ID	name	date
Gizmo55	Joe12	UPS	$4 / 10 / 2011$
Gizmo55	Joe12	FEDEX	$4 / 9 / 2011$

N-1 Relationships to Relations

Represent this in relations

N-1 Relationships to Relations

Orders(prod-ID,cust-ID, date1, name, date2) Shipping-Co(name, address)

Remember: no separate relations for many-one relationship

Multi-way Relationships to Relations

Purchase(prod-ID, ssn, name)

Modeling Subclasses

Some objects in a class may be special

- define a new class
- better: define a subclass

So --- we define subclasses in E/R

Subclasses

Subclasses to Relations

Modeling Union Types with Subclasses

FurniturePiece

Person

Company

Say: each piece of furniture is owned either by a person or by a company

Modeling Union Types with Subclasses

Say: each piece of furniture is owned either by a person or by a company
Solution 1. Acceptable but imperfect (What's wrong ?)

Modeling Union Types with Subclasses

Solution 2: better, more laborious

Weak Entity Sets

Entity sets are weak when their key comes from other classes to which they are related.

Team(sport, number, universityName)
University(name)

What Are the Keys of R ?

Introduction to Data Management CSE 414

Integrity Constraints

Integrity Constraints Motivation

An integrity constraint is a condition specified on a database schema that restricts the data that can be stored in an instance of the database.

Why?

How?

Integrity Constraints Motivation

An integrity constraint is a condition specified on a database schema that restricts the data that can be stored in an instance of the database.

Why? Because we want application data to be consistent

How?

Integrity Constraints Motivation

An integrity constraint is a condition specified on a database schema that restricts the data that can be stored in an instance of the database.

Why? Because we want application data to be consistent

How? The DBMS checks and enforces IC during updates

Constraints in E/R Diagrams

- Keys
- Single-value constraints
- Referential integrity constraints
- General constraints

Keys in E/R Diagrams

Underline:

No formal way to specify multiple

Product

 keys in E/R diagrams

Single Value Constraints

Referential Integrity Constraints

Product

 makesCompany

Each product made by at most one company. Some products made by no company

Each product made by exactly one company.

Other Constraints

A Company entity is connected to at most 99 Product entities

Constraints in SQL

- Keys
- Attribute-level, tuple-level constraints
- General (complex) constraints

The more complex the constraint, the harder it is to check and to enforce

Key Constraints

Product(name, category)

CREATE TABLE Product (name CHAR(30) PRIMARY KEY, category VARCHAR(20))

OR: CREATE TABLE Product (name CHAR(30), category VARCHAR(20), PRIMARY KEY (name))

Keys with Multiple Attributes

Product(name, category, price)

> | CREATE TABLE Product (|
| :--- |
| name CHAR(30), |
| category VARCHAR(20), |
| price INT, |
| PRIMARY KEY (name, category)) |

Name	Category	Price
Gizmo	Gadget	10
Camera	Photo	20
Gizmo	Photo	30
Gizino	Gaerget	40

Other Keys

CREATE TABLE Product (productID CHAR(10), name CHAR(30), category VARCHAR(20), price INT, PRIMARY KEY (productID), UNIQUE (name, category))

There is at most one PRIMARY KEY; there can be many UNIQUE

Foreign Key Constraints

CREATE TABLE Purchase (prodName CHAR(30) REFERENCES Product(name), date DATETIME)
prodName is a foreign key to Product(name) name must be a key in Product

May write just Product if name is PK

Foreign Key Constraints

- Example with multi-attribute primary key

```
CREATE TABLE Purchase (
    prodName CHAR(30),
    category VARCHAR(20),
    date DATETIME,
    FOREIGN KEY (prodName, category)
        REFERENCES Product(name, category)
```

- (name, category) must be a KEY in Product

What happens when data changes?

Types of updates:

- In Purchase: insert/update
- In Product: delete/update

What happens when data changes?

SQL policies for maintaining referential integrity:

- NO ACTION reject modifications (default)
- CASCADE after delete/update do delete/update
- SET NULL set foreign-key field to NULL
- SET DEFAULT (pid int DEFAULT 42 REFERENCES...)

Constraints on Attributes and Tuples

- Constraints on attributes: NOT NULL CHECK condition
-- obvious meaning...
-- any condition!
- Constraints on tuples CHECK condition

Constraints on Attributes and Tuples

CREATE TABLE User (
uid int primary key,
firstName text,
lastName text NOT NULL, age int CHECK (age > 12 and age < 120),
email text, phone text,
CHECK (email is not NULL or phone is not NULL)

Constraints on Attributes and Tuples

What does this constraint do?
CREATE TABLE Purchase (prodName CHAR(30)

CHECK (prodName IN
(SELECT Product.name FROM Product),
date DATETIME NOT NULL)

General Assertions

CREATE ASSERTION myAssert CHECK (NOT EXISTS(

SELECT Product.name FROM Product, Purchase WHERE Product.name = Purchase.prodName GROUP BY Product.name HAVING count(*) > 200))

But most DBMSs do not implement assertions Because it is hard to support them efficiently Instead, they provide triggers

Introduction to Data Management CSE 414

Design Theory and BCNF

Announcements

- Monday is Memorial day - no lecture
- Webquiz 6 is due tomorrow
- HW6 is due tonight
- HW7 is posted, due next Friday.

What makes good schemas?

Relational Schema Design

Name	$\underline{\text { SSN }}$	PhoneNumber	City
Fred	$123-45-6789$	$206-555-1234$	Seattle
Fred	$123-45-6789$	$206-555-6543$	Seattle
Joe	$987-65-4321$	$908-555-2121$	Westfield

One person may have multiple phones, but lives in only one city
Primary key is thus (SSN, PhoneNumber)
What is the problem with this schema?

Relational Schema Design

Name	$\underline{\text { SSN }}$	PhoneNumber	City
Fred	$123-45-6789$	$206-555-1234$	Seattle
Fred	$123-45-6789$	$206-555-6543$	Seattle
Joe	$987-65-4321$	$908-555-2121$	Westfield

Anomalies:

- Redundancy = repeat data
- Update anomalies = what if Fred moves to "Bellevue"?
- Deletion anomalies $=$ what if Joe deletes his phone number?

Relation Decomposition

Break the relation into two:

	Name	SSN	PhoneNumber	City
	Fred	123-45-6789	206-555-1234	Seattle
	Fred	123-45-6789	206-555-6543	Seattle
	Joe	987-65-4321	908-555-2121	Westfield
Name	SSN	City	SSN	PhoneNumber
Fred	123-45-6789	Seattle	123-45-6789	206-555-1234
Joe	987-65-4321	Westfield	123-45-6789	206-555-6543
Anomalies have gone:			987-65-4321	908-555-2121

- No more repeated data
- Easy to move Fred to "Bellevue" (how ?)
- Easy to delete all Joe's phone numbers (how ?)

Relational Schema Design (or Logical Design)

How do we do this systematically?

- Start with some relational schema
- Find out its functional dependencies (FDs)
- Use FDs to normalize the relational schema

Functional Dependencies (FDs)

Definition

If two tuples agree on the attributes

$$
A_{1}, A_{2}, \ldots, A_{n}
$$

then they must also agree on the attributes

$$
B_{1}, B_{2}, \ldots, B_{m}
$$

Formally:

$$
A_{1}, A_{2}, \ldots, A_{n} \rightarrow B_{1}, B_{2}, \ldots, B_{m}
$$

Functional Dependencies (FDs)

Definition $A_{1}, \ldots, A_{m} \rightarrow B_{1}, \ldots, B_{n}$ holds in R if:
$\forall t, t^{\prime} \in R$,
(t. $\mathrm{A}_{1}=\mathrm{t}^{\prime} . \mathrm{A}_{1} \wedge \ldots \wedge \mathrm{t} . \mathrm{A}_{\mathrm{m}}=\mathrm{t}^{\prime} . \mathrm{A}_{\mathrm{m}} \rightarrow \mathrm{t} . \mathrm{B}_{1}=\mathrm{t}^{\prime} . \mathrm{B}_{1} \wedge \ldots \wedge \mathrm{t} . \mathrm{B}_{\mathrm{n}}=\mathrm{t}^{\prime} . \mathrm{B}_{\mathrm{n}}$)

if t, t^{\prime} agree here then $\mathrm{t}, \mathrm{t}^{\prime}$ agree here

Example

An FD holds, or does not hold on an instance:

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

EmpID \rightarrow Name, Phone, Position
Position \rightarrow Phone
but not Phone \rightarrow Position

Example

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	$9876 \leftarrow$	Salesrep
E1111	Smith	$9876 \leftarrow$	Salesrep
E9999	Mary	1234	Lawyer

Position \rightarrow Phone

Example

EmpID	Name	Phone	Position
E0045	Smith	$1234 \rightarrow$	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	$1234 \rightarrow$	Lawyer

But not Phone \rightarrow Position

Example name \rightarrow color category \rightarrow department color, category \rightarrow price department \rightarrow price

name	category	color	department	price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Red	Toys	49
Gizmo	Stationary	Green	Office-supp.	59

Buzzwords

- FD holds or does not hold on an instance
- If we can be sure that every instance of R will be one in which a given FD is true, then we say that R satisfies the FD
- If we say that R satisfies an FD, we are stating a constraint on R

Why bother with FDs?

Name	$\underline{\text { SSN }}$	PhoneNumber	City
Fred	$123-45-6789$	$206-555-1234$	Seattle
Fred	$123-45-6789$	$206-555-6543$	Seattle
Joe	$987-65-4321$	$908-555-2121$	Westfield

Anomalies:

- Redundancy = repeat data
- Update anomalies = what if Fred moves to "Bellevue"?
- Deletion anomalies $=$ what if Joe deletes his phone number?

An Interesting Observation

If all these FDs are true:
name \rightarrow color
category \rightarrow department color, category \rightarrow price

Then this FD also holds: name, category \rightarrow price

If we find out from application domain that a relation satisfies some FDs, it doesn't mean that we found all the FDs that it satisfies!
There could be more FDs implied by the ones we have.

Closure of a set of Attributes

Given a set of attributes A_{1}, \ldots, A_{n}
The closure is the set of attributes B, notated $\left\{A_{1}, \ldots, A_{n}\right\}^{+}$,

$$
\text { s.t. } A_{1}, \ldots, A_{n} \rightarrow B
$$

Example: 1. name \rightarrow color
 2. category \rightarrow department
 3. color, category \rightarrow price

Closures:
name ${ }^{+}=$\{name, color\}
\{name, category $\}^{+}=\{$name, category, color, department, price\} color $^{+}=$\{color $\}$

Closure Algorithm

$X=\{A 1, \ldots, A n\}$.

Example:

Repeat until X doesn't change do: if $\quad B_{1}, \ldots, B_{n} \rightarrow C$ is a FD and B_{1}, \ldots, B_{n} are all in X
then $\operatorname{add} \mathrm{C}$ to X .

1. name \rightarrow color
2. category \rightarrow department
3. color, category \rightarrow price
\{name, category\} ${ }^{+}=$ \{ name, category, color, department, price \}
Hence: name, category \rightarrow color, department, price

Why do we care?

- The closure allows us to compute all FDs implied by a given FD; Here is how:
- To check if the FD implies $A \rightarrow B$
- Compute A^{+}
- Check if $\mathrm{B} \subseteq \mathrm{A}^{+}$

Example

In class:
R(A,B,C,D,E,F)

$$
\begin{array}{lll}
\mathrm{A}, \mathrm{~B} & \rightarrow \mathrm{C} \\
\mathrm{~A}, \mathrm{D} & \rightarrow & \mathrm{E} \\
\mathrm{~B} & \rightarrow & \mathrm{D} \\
\mathrm{~A}, \mathrm{~F} & \rightarrow & \mathrm{~B}
\end{array}
$$

Compute $\{\mathrm{A}, \mathrm{B}\}^{+} \quad \mathrm{X}=\{\mathrm{A}, \mathrm{B}$, \}

Compute $\{\mathrm{A}, \mathrm{F}\}^{+} \quad \mathrm{X}=\{\mathrm{A}, \mathrm{F}$, \}

Example

In class:
R(A,B,C,D,E,F)

$$
\begin{array}{lll}
\mathrm{A}, \mathrm{~B} & \rightarrow \mathrm{C} \\
\mathrm{~A}, \mathrm{D} & \rightarrow & \mathrm{E} \\
\mathrm{~B} & \rightarrow & \mathrm{D} \\
\mathrm{~A}, \mathrm{~F} & \rightarrow & \mathrm{~B}
\end{array}
$$

Compute $\{\mathrm{A}, \mathrm{B}\}^{+} \quad \mathrm{X}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$
Compute $\{\mathrm{A}, \mathrm{F}\}^{+} \quad \mathrm{X}=\{\mathrm{A}, \mathrm{F}$,

$$
\}
$$

Example

In class:
R(A,B,C,D,E,F)

$$
\begin{array}{lll}
\mathrm{A}, \mathrm{~B} & \rightarrow \mathrm{C} \\
\mathrm{~A}, \mathrm{D} & \rightarrow & \mathrm{E} \\
\mathrm{~B} & \rightarrow & \mathrm{D} \\
\mathrm{~A}, \mathrm{~F} & \rightarrow & \mathrm{~B}
\end{array}
$$

Compute $\{\mathrm{A}, \mathrm{B}\}^{+} \quad \mathrm{X}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$
Compute $\{\mathrm{A}, \mathrm{F}\}^{+} \quad \mathrm{X}=\{\mathrm{A}, \mathrm{F}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$

Example

In class:
R(A,B,C,D,E,F)

$$
\begin{array}{lll}
\mathrm{A}, \mathrm{~B} & \rightarrow \mathrm{C} \\
\mathrm{~A}, \mathrm{D} & \rightarrow \mathrm{E} \\
\mathrm{~B} & \rightarrow & \mathrm{D} \\
\mathrm{~A}, \mathrm{~F} & \rightarrow & \mathrm{~B}
\end{array}
$$

Compute $\{\mathrm{A}, \mathrm{B}\}^{+} \quad \mathrm{X}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$
Compute $\{\mathrm{A}, \mathrm{F}\}^{+} \quad \mathrm{X}=\{\mathrm{A}, \mathrm{F}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$

Practice at Home

Find all FD's implied by:

Practice at Home

Find all FD's implied by:

$$
\begin{array}{lll}
\mathrm{A}, \mathrm{~B} & \rightarrow \mathrm{C} \\
\mathrm{~A}, \mathrm{D} & \rightarrow & \mathrm{~B} \\
\mathrm{~B} & \rightarrow & \mathrm{D}
\end{array}
$$

Step 1: Compute X^{+}, for every X :

$$
\begin{aligned}
& \mathrm{A}^{+}=\mathrm{A}, \quad \mathrm{~B}^{+}=\mathrm{BD}, \quad \mathrm{C}^{+}=\mathrm{C}, \quad \mathrm{D}^{+}=\mathrm{D} \\
& \mathrm{AB}^{+}=\mathrm{ABCD}, \mathrm{AC}^{+}=\mathrm{AC}, \mathrm{AD}^{+}=\mathrm{ABCD}, \\
& \mathrm{BC}^{+}=\mathrm{BCD}, \mathrm{BD}^{+}=\mathrm{BD}, \mathrm{CD}^{+}=\mathrm{CD}
\end{aligned}
$$

$A B C^{+}=A B D^{+}=A C D^{+}=A B C D$ (no need to compute - why ?)
$B C D^{+}=B C D, \quad A B C D^{+}=A B C D$

Practice at Home

Find all FD's implied by:

$$
\begin{array}{lll}
\mathrm{A}, \mathrm{~B} & \rightarrow \mathrm{C} \\
\mathrm{~A}, \mathrm{D} & \rightarrow & \mathrm{~B} \\
\mathrm{~B} & \rightarrow & \mathrm{D}
\end{array}
$$

Step 1: Compute X^{+}, for every X :

$$
\begin{aligned}
& \mathrm{A}^{+}=\mathrm{A}, \quad \mathrm{~B}^{+}=\mathrm{BD}, \quad \mathrm{C}^{+}=\mathrm{C}, \quad \mathrm{D}^{+}=\mathrm{D} \\
& \mathrm{AB}^{+}=\mathrm{ABCD}, \mathrm{AC}^{+}=\mathrm{AC}, \mathrm{AD}^{+}=\mathrm{ABCD}, \\
& \mathrm{BC}^{+}=\mathrm{BCD}, \mathrm{BD}^{+}=\mathrm{BD}, \mathrm{CD}^{+}=\mathrm{CD}
\end{aligned}
$$

$A B C^{+}=A B D^{+}=A C D^{+}=A B C D$ (no need to compute - why ?)
$B C D^{+}=B C D, \quad A B C D+=A B C D$
Step 2: Enumerate all FD's $X \rightarrow Y$, s.t. $Y \subseteq X^{+}$and $X \cap Y=\varnothing$:
$\mathrm{AB} \rightarrow \mathrm{CD}, \mathrm{AD} \rightarrow \mathrm{BC}, \mathrm{ABC} \rightarrow \mathrm{D}, \mathrm{ABD} \rightarrow \mathrm{C}, \mathrm{ACD} \rightarrow \mathrm{B}$

Keys

- A superkey is a set of attributes A_{1}, \ldots, A_{n} s.t. for any other attribute B, we have $A_{1}, \ldots, A_{n} \rightarrow B$
- A key is a minimal superkey
- A superkey and for which no subset is a superkey

Computing (Super)Keys

- For all sets X , compute X^{+}
- If $X^{+}=$[all attributes], then X is a superkey
- Try reducing to the minimal X 's to get the key

Example

Product(name, price, category, color)

name, category \rightarrow price category \rightarrow color

What is the key?

Example

Product(name, price, category, color)

name, category \rightarrow price category \rightarrow color

What is the key?
(name, category) + = \{ name, category, price, color \}
Hence (name, category) is a key

Key or Keys?

We can we have more than one key!
What are the keys here?

$$
\begin{aligned}
& A \rightarrow B \\
& B \rightarrow C \\
& C \rightarrow A
\end{aligned}
$$

$A \rightarrow B C$ $B \rightarrow A C$

Eliminating Anomalies

Main idea:

- $X \rightarrow A$ is OK if X is a (super)key
- $\mathrm{X} \rightarrow \mathrm{A}$ is not OK otherwise
- Need to decompose the table, but how?

Boyce-Codd Normal Form

There are no "bad" FDs:

Definition. A relation R is in BCNF if:
Whenever $X \rightarrow B$ is a non-trivial dependency, then X is a superkey.

Definition. A relation R is in BCNF if:

Equivalently: $\forall X$, either $\mathrm{X}^{+}=\mathrm{X}$ (i.e., X is not in any FDs) or $\mathrm{X}^{+}=$[all attributes] (computed using FDs)

BCNF Decomposition Algorithm

Normalize(R)
find X s.t.: $X \neq X^{+}$and $X^{+} \neq$[all attributes]
if (not found) then " R is in BCNF" let $Y=X^{+}-X ; \quad Z=[$ all attributes $]-X^{+}$ decompose R into R1 ($\mathrm{X} \cup \mathrm{Y}$) and R2 $(\mathrm{X} \cup \mathrm{Z})$ Normalize(R1); Normalize(R2);

Example

Name	SSN	PhoneNumber	City
Fred	$123-45-6789$	$206-555-1234$	Seattle
Fred	$123-45-6789$	$206-555-6543$	Seattle
Joe	$987-65-4321$	$908-555-2121$	Westfield
Joe	$987-65-4321$	$908-555-1234$	Westfield

SSN \rightarrow Name, City

The only key is: \{SSN, PhoneNumber\} Hence SSN \rightarrow Name, City is a "bad" dependency

In other words:
SSN+ = SSN, Name, City and is neither SSN nor All Attributes

Example BCNF Decomposition

| Name | SSN | City | SSN \rightarrow Name, City |
| :--- | :--- | :--- | :--- | :--- |
| Fred | $123-45-6789$ | Seattle | |
| Joe | $987-65-4321$ | Westfield | |

Find X s.t.: $X \neq X^{+}$and $X^{+} \neq[$all attributes $]$

Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber) SSN \rightarrow name, age age \rightarrow hairColor

Find X s.t.: $\mathrm{X} \neq \mathrm{X}^{+}$and $\mathrm{X}^{+} \neq$[all attributes]

Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)
SSN \rightarrow name, age
age \rightarrow hairColor
Iteration 1: Person: SSN+ = SSN, name, age, hairColor Decompose into: P(SSN, name, age, hairColor) Phone(SSN, phoneNumber)

Find X s.t.: $\mathrm{X} \neq \mathrm{X}^{+}$and $\mathrm{X}^{+} \neq[$all attributes $]$

Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)

SSN \rightarrow name, age age \rightarrow hairColor

What are the keys?

Iteration 1: Person: SSN+ = SSN, name, age, hairColor Decompose into: P(SSN, name, age, hairColor) Phone(SSN, phoneNumber)

Iteration 2: P: age+ = age, hairColor
Decompose: People(SSN, name, age)
Hair(age, hairColor)
Phone(SSN, phoneNumber)

Find X s.t.: $\mathrm{X} \neq \mathrm{X}^{+}$and $\mathrm{X}^{+} \neq$[all attributes]

Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)
SSN \rightarrow name, age age \rightarrow hairColor

Note the keys!

Iteration 1: Person: SSN+ = SSN, name, age, hairColor Decompose into: P(SSN, name, age, hairColor)

Phone(SSN, phoneNumber)

Iteration 2: P: age+ = age, hairColor
Decompose: People(SSN, name, age)
Hair(age, hairColor)
Phone(SSN, phoneNumber)

R(A,B,C,D)

Example: BCNF

$A \rightarrow B$
 $B \rightarrow C$

$R(A, B, C, D)$

Example: BCNF

$A \rightarrow B$
 $B \rightarrow C$

Recall: find X s.t. $X \subsetneq X^{+} \subsetneq$ [all-attrs] $\quad R(A, B, C, D)$

R(A,B,C,D)

Example: BCNF

$\mathrm{A} \rightarrow \mathrm{B}$ $B \rightarrow C$

R(A,B,C,D)
 $A^{+}=A B C \neq A B C D$

$R(A, B, C, D)$

Example: BCNF

$$
\begin{aligned}
& \mathrm{A} \rightarrow \mathrm{~B} \\
& \mathrm{~B} \rightarrow \mathrm{C}
\end{aligned}
$$

$R(A, B, C, D)$

Example: BCNF

$$
\begin{aligned}
& A \rightarrow B \\
& B \rightarrow C
\end{aligned}
$$

R(A,B,C,D)

Example: BCNF

$$
\begin{aligned}
& A \rightarrow B \\
& B \rightarrow C
\end{aligned}
$$

What happens if in R we first pick B^{+}? Or AB^{+}?

Decompositions in General

$S_{1}=$ projection of R on $A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{m}$
$S_{2}=$ projection of R on $A_{1}, \ldots, A_{n}, C_{1}, \ldots, C_{p}$

Lossless Decomposition

Lossy Decomposition

What is lossy here?

Name	Price	Category
Gizmo	19.99	Gadget
OneClick	24.99	Camera
Gizmo	19.99	Camera

Name	Category
Gizmo	Gadget
OneClick	Camera
Gizmo	Camera

Price	Category
19.99	Gadget
24.99	Camera
19.99	Camera

Lossy Decomposition

Lossy Decomposition

Decomposition in General

$$
R\left(A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{m}, C_{1}, \ldots, C_{p}\right)
$$

$$
S_{1}\left(A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{m}\right) \quad S_{2}\left(A_{1}, \ldots, A_{n}, C_{1}, \ldots, C_{p}\right)
$$

Let: $\quad S_{1}=$ projection of R on $A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{m}$
$S_{2}=$ projection of R on $A_{1}, \ldots, A_{n}, C_{1}, \ldots, C_{p}$
The decomposition is called lossless if $R=S_{1} \bowtie S_{2}$
Fact: If $A_{1}, \ldots, A_{n} \rightarrow B_{1}, \ldots, B_{m}$ then the decomposition is lossless
It follows that every BCNF decomposition is lossless

Testing for Lossless Join

If we decompose R into $\Pi_{S 1}(R), \Pi_{S 2}(R), \Pi_{S 3}(R), \ldots$ Is it true that $S 1 \bowtie S 2 \bowtie S 3 \bowtie \ldots=R$?

To check "=" we need to check " \subseteq " and " \supseteq "
$R \subseteq S 1 \bowtie S 2 \bowtie S 3 \bowtie \ldots$ always holds (why?)
$R \supseteq S 1 \bowtie S 2 \bowtie S 3 \bowtie \ldots$ neet to check

Example from textbook Ch. 3.4.2

The Chase Test for Lossless Join

$R(A, B, C, D)=S 1(A, D) \bowtie S 2(A, C) \bowtie S 3(B, C, D)$
R satisfies: $A \rightarrow B, B \rightarrow C, C D \rightarrow A$ Lossless?
$S 1=\Pi_{A D}(R), S 2=\Pi_{A C}(R), S 3=\Pi_{B C D}(R)$

Example from textbook Ch. 3.4.2

The Chase Test for Lossless Join

$R(A, B, C, D)=S 1(A, D) \bowtie S 2(A, C) \bowtie S 3(B, C, D)$
R satisfies: $A \rightarrow B, B \rightarrow C, C D \rightarrow A$ Lossless?
$S 1=\Pi_{A D}(R), S 2=\Pi_{A C}(R), S 3=\Pi_{B C D}(R)$
R \subseteq S1 \bowtie S2 \bowtie S3
To check: $\mathrm{R} \supseteq \mathrm{S} 1 \bowtie \mathrm{~S} 2 \bowtie \mathrm{~S} 3$

Example from textbook Ch. 3.4.2

The Chase Test for Lossless Join

$R(A, B, C, D)=S 1(A, D) \bowtie S 2(A, C) \bowtie S 3(B, C, D)$
R satisfies: $A \rightarrow B, B \rightarrow C, C D \rightarrow A$ Lossless?
$S 1=\Pi_{A D}(R), S 2=\Pi_{A C}(R), S 3=\Pi_{B C D}(R)$
$R \subseteq S 1 \bowtie S 2 \bowtie S 3$
To check: R \supseteq S1 \downarrow S2 \bowtie S3
Suppose $(a, b, c, d) \in S 1 \bowtie S 2 \bowtie S 3$ Is it also in R ?

Example from textbook Ch. 3.4.2

The Chase Test for Lossless Join

$R(A, B, C, D)=S 1(A, D) \bowtie S 2(A, C) \bowtie S 3(B, C, D)$
R satisfies: $A \rightarrow B, B \rightarrow C, C D \rightarrow A$ Lossless?
$S 1=\Pi_{A D}(R), S 2=\Pi_{A C}(R), S 3=\Pi_{B C D}(R)$
$R \subseteq S 1 \bowtie S 2 \bowtie S 3$
To check: R \supseteq S1 \bowtie S2 \bowtie S3
Suppose (a,b,c,d) $\in S 1 \bowtie S 2 \bowtie S 3$ Is it also in R?
R must contain the following tuples:

A	B	C	D
Why ?			
a	b1	c1	d
$(a, d) \in S 1=\Pi_{A D}(R)$			

Example from textbook Ch. 3.4.2

The Chase Test for Lossless Join

$R(A, B, C, D)=S 1(A, D) \bowtie S 2(A, C) \bowtie S 3(B, C, D)$
R satisfies: $A \rightarrow B, B \rightarrow C, C D \rightarrow A$ Lossless?
$S 1=\Pi_{A D}(R), S 2=\Pi_{A C}(R), S 3=\Pi_{B C D}(R)$
$R \subseteq S 1 \bowtie S 2 \bowtie S 3$
To check: R \supseteq S1 \bowtie S2 \bowtie S3
Suppose (a,b,c,d) $\in S 1 \bowtie S 2 \bowtie S 3$ Is it also in R?
R must contain the following tuples:

A	B	C	D	Why?$\begin{aligned} & (\mathrm{a}, \mathrm{~d}) \in \mathrm{S} 1=\Pi_{\mathrm{AD}}(\mathrm{R}) \\ & (\mathrm{a}, \mathrm{c}) \in \mathrm{S} 2=\Pi_{\mathrm{BD}}(\mathrm{R}) \end{aligned}$
a	b1	c1	d	
a	b2	C	d2	

Example from textbook Ch. 3.4.2

The Chase Test for Lossless Join

$R(A, B, C, D)=S 1(A, D) \bowtie S 2(A, C) \bowtie S 3(B, C, D)$
R satisfies: $A \rightarrow B, B \rightarrow C, C D \rightarrow A \quad$ Lossless?
$S 1=\Pi_{A D}(R), S 2=\Pi_{A C}(R), S 3=\Pi_{B C D}(R)$
$\mathrm{R} \subseteq \mathrm{S} 1 \bowtie \mathrm{~S} 2 \bowtie \mathrm{~S} 3$
To check: $\mathrm{R} \supseteq \mathrm{S} 1 \bowtie \mathrm{~S} 2 \bowtie \mathrm{~S} 3$
Suppose (a,b,c,d) $\in S 1 \bowtie S 2 \bowtie S 3$ Is it also in R ?
R must contain the following tuples:

A	B	C	D	Why ?$\begin{aligned} & (\mathrm{a}, \mathrm{~d}) \in \mathrm{S} 1=\Pi_{\mathrm{AD}}(\mathrm{R}) \\ & (\mathrm{a}, \mathrm{c}) \in \mathrm{S} 2=\Pi_{\mathrm{BD}}(\mathrm{R}) \\ & (\mathrm{b}, \mathrm{c}, \mathrm{~d}) \in \mathrm{S} 3=\Pi_{\mathrm{BCD}}(\mathrm{R}) \end{aligned}$
a	b1	c1	d	
a	b2	c	d2	
a3	b	c	d	

Example from textbook Ch. 3.4.2

The Chase Test for Lossless Join

$$
R(A, B, C, D)=S 1(A, D) \bowtie S 2(A, C) \bowtie S 3(B, C, D)
$$

R satisfies: $A \rightarrow B, B \rightarrow C, C D \rightarrow A$

$S 1=\Pi_{A D}(R), S 2=\Pi_{A C}(R), S 3=\Pi_{B C D}(R)$
$\mathrm{R} \subseteq \mathrm{S} 1 \bowtie \mathrm{~S} 2 \bowtie \mathrm{~S} 3$
To check: $\mathrm{R} \supseteq \mathrm{S} 1 \bowtie \mathrm{~S} 2 \bowtie \mathrm{~S} 3$
Suppose (a,b,c,d) $\in S 1 \bowtie S 2 \bowtie S 3$ Is it also in R? R must contain the following tuples:
"Chase" them (apply FDs):

A	B	C	D	Why?$\begin{aligned} & (\mathrm{a}, \mathrm{~d}) \in \mathrm{S} 1=\Pi_{\mathrm{AD}}(\mathrm{R}) \\ & (\mathrm{a}, \mathrm{c}) \in \mathrm{S} 2=\Pi_{\mathrm{BD}}(\mathrm{R}) \\ & (\mathrm{b}, \mathrm{c}, \mathrm{~d}) \in \mathrm{S} 3=\Pi_{\mathrm{BCD}}(\mathrm{R}) \end{aligned}$
a	b1	c1	d	
a	b2	C	d2	
a3	b	C	d	

$A \rightarrow B$

A	B	C	D
a	b1	c1	d
a	b1	c	d2
a3	b	c	d

Example from textbook Ch. 3.4.2

The Chase Test for Lossless Join

$$
R(A, B, C, D)=S 1(A, D) \bowtie S 2(A, C) \bowtie S 3(B, C, D)
$$

R satisfies: $A \rightarrow B, B \rightarrow C, C D \rightarrow A$

$S 1=\Pi_{A D}(R), S 2=\Pi_{A C}(R), S 3=\Pi_{B C D}(R)$
$\mathrm{R} \subseteq \mathrm{S} 1 \bowtie \mathrm{~S} 2 \bowtie \mathrm{~S} 3$
To check: $\mathrm{R} \supseteq \mathrm{S} 1 \bowtie \mathrm{~S} 2 \bowtie \mathrm{~S} 3$
Suppose (a,b,c,d) $\in S 1 \bowtie S 2 \bowtie S 3$ Is it also in R?
R must contain the following tuples:
"Chase" them (apply FDs):

A	B	C	D	Why?$\begin{aligned} & (\mathrm{a}, \mathrm{~d}) \in S 1=\Pi_{A D}(\mathrm{R}) \\ & (\mathrm{a}, \mathrm{c}) \in \mathrm{S} 2=\Pi_{\mathrm{BD}}(\mathrm{R}) \\ & (\mathrm{b}, \mathrm{c}, \mathrm{~d}) \in \mathrm{S} 3=\Pi_{\mathrm{BCD}}(\mathrm{R}) \end{aligned}$
a	b1	c1	d	
a	b2	c	d2	
a3	b	c	d	

$A \rightarrow B$				$B \rightarrow C$			
A	B	C	D	A	B	C	D
a	b1	c1	d	a	b1	C	d
a	b1	C	d2	a	b1	C	d2
a3	b	C	d	a3	b	C	d

The Chase Test for Lossless Join

$$
\mathrm{R}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\mathrm{S} 1(\mathrm{~A}, \mathrm{D}) \bowtie \mathrm{S} 2(\mathrm{~A}, \mathrm{C}) \bowtie \mathrm{S} 3(\mathrm{~B}, \mathrm{C}, \mathrm{D})
$$

R satisfies: $A \rightarrow B, B \rightarrow C, C D \rightarrow A$
$S 1=\Pi_{A D}(R), S 2=\Pi_{A C}(R), S 3=\Pi_{B C D}(R)$
$\mathrm{R} \subseteq \mathrm{S} 1 \bowtie \mathrm{~S} 2 \bowtie \mathrm{~S} 3$
To check: $\mathrm{R} \supseteq \mathrm{S} 1 \bowtie \mathrm{~S} 2 \bowtie \mathrm{~S} 3$
Suppose (a,b,c,d) $\in S 1 \bowtie S 2 \bowtie S 3$ Is it also in R ?
R must contain the following tuples:
"Chase" them (apply FDs):

$A \rightarrow B$			
A	B	C	D
a	b1	c1	d
a	b1	c	d2
a3	b	C	d

$B \rightarrow C$			
A	B	C	D
a	$b 1$	c	d
a	$b 1$	c	$d 2$
a3	b	c	d

		a		C
	$\mathrm{CD} \rightarrow \mathrm{A}$			
	A	B	C	D
	a	b1	C	d
	a	b1	C	d2
	a	b	C	d

Hence R
contains (a,b,c,d)

The Chase Test for Lossless Join

$$
\mathrm{R}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\mathrm{S} 1(\mathrm{~A}, \mathrm{D}) \bowtie \mathrm{S} 2(\mathrm{~A}, \mathrm{C}) \bowtie \mathrm{S} 3(\mathrm{~B}, \mathrm{C}, \mathrm{D})
$$

R satisfies: $A \rightarrow B, B \rightarrow C, C D \rightarrow A$
$S 1=\Pi_{A D}(R), S 2=\Pi_{A C}(R), S 3=\Pi_{B C D}(R)$
$\mathrm{R} \subseteq \mathrm{S} 1 \bowtie \mathrm{~S} 2 \bowtie \mathrm{~S} 3$
To check: $\mathrm{R} \supseteq \mathrm{S} 1 \bowtie \mathrm{~S} 2 \bowtie \mathrm{~S} 3$

YES!

 Suppose (a,b,c,d) $\in S 1 \bowtie S 2 \bowtie S 3$ Is it also in R? R must contain the following tuples:"Chase" them (apply FDs):

$A \rightarrow B$			
A	B	C	D
a	b1	c1	d
a	b1	c	d2
a3	b	C	d

$B \rightarrow C$			
A	B	C	D
a	$b 1$	c	d
a	$b 1$	c	$d 2$
a3	b	c	d

		a		C
	$\mathrm{CD} \rightarrow \mathrm{A}$			
	A	B	C	D
	a	b1	C	d
	a	b1	C	d2
	a	b	C	d

Hence R
contains (a,b,c,d)

Schema Refinements = Normal Forms

- 1st Normal Form = all tables are flat
- 2nd Normal Form = obsolete
- Boyce Codd Normal Form = no bad FDs
- 3rd Normal Form = see book
- BCNF removes anomalies, but my lose some FDs (see book 3.4.4)
- 3NF preserves all FD's, but may still have some anomalies

Conclusion

- E/R diagrams are means to structurally visualize and design relational schemas
- Normalization is a principled way of converting schemas into a form that avoid such redundancies.
- BCNF and 3NF are the most widely used normalized form in practice

