Unit 5: Parallel Data Processing

Parallel RDBMS
MapReduce
Spark

(4 lectures)
Introduction to Data Management
CSE 414

Spark
Class Overview

• Unit 1: Intro
• Unit 2: Relational Data Models and Query Languages
• Unit 3: Non-relational data
• Unit 4: RDMBS internals and query optimization
 • Unit 5: Parallel query processing
 – Spark, Hadoop, parallel databases
• Unit 6: DBMS usability, conceptual design
• Unit 7: Transactions
• Unit 8: Advanced topics (time permitting)
Parallelism is of Increasing Importance

• Multi-cores:
 – Most processors have multiple cores
 – This trend will likely increase in the future

• Big data: too large to fit in main memory
 – Distributed query processing on 100x-1000x servers
 – Widely available now using cloud services
Performance Metrics for Parallel DBMSs

Nodes = processors, computers

• **Speedup:**
 – More nodes, same data ➔ higher speed

• **Scaleup:**
 – More nodes, more data ➔ same speed
Linear v.s. Non-linear Speedup

Ideal

Speedup

×1

×5

×10

×15

nodes (=P)
Linear v.s. Non-linear Scaleup

Batch Scaleup

nodes (=P) AND data size

Ideal

×1 ×5 ×10 ×15
Why Sub-linear?

• Startup cost
 – Cost of starting an operation on many nodes

• Interference
 – Contention for resources between nodes

• Skew
 – Slowest node becomes the bottleneck
Spark

A Case Study of the MapReduce Programming Paradigm
Spark

- Open source system from UC Berkeley
- Distributed processing over HDFS
- Differences from MapReduce (CSE322):
 - Multiple steps, including iterations
 - Stores intermediate results in main memory
 - Closer to relational algebra (familiar to you)
- Details:
 http://spark.apache.org/examples.html
Spark

• Spark supports interfaces in Java, Scala, and Python
 – Scala: extension of Java with functions/closures

• We will illustrate use the Spark Java interface in this class

• Spark also supports a SQL interface (SparkSQL), and compiles SQL to its native Java interface
Programming in Spark

• A Spark program consists of:
 – Transformations (map, reduce, join…). Lazy
 – Actions (count, reduce, save...). Eager

• **Eager**: operators are executed immediately

• **Lazy**: operators are not executed immediately
 – A *operator tree* is constructed in memory instead
 – Similar to a relational algebra tree
Collections in Spark

• `RDD<T>` = an RDD collection of type T
 – Distributed on many servers, not nested
 – Operations are done in parallel
 – Recoverable via lineage; more later

• `Seq<T>` = a sequence
 – Local to one server, may be nested
 – Operations are done sequentially
Example

Given a large log file hdfs://logfile.log retrieve all lines that:
• Start with “ERROR”
• Contain the string “sqlite”

```scala
s = SparkSession.builder()...getOrCreate();
lines = s.read().textFile("hdfs://logfile.log");
errors = lines.filter(l => l.startsWith("ERROR"));
sqlerrors = errors.filter(l => l.contains("sqlite"));
sqlerrors.collect();
```
Example

Given a large log file hdfs://logfile.log retrieve all lines that:

- Start with “ERROR”
- Contain the string “sqlite”

```java
s = SparkSession.builder().getOrCreate();

lines = s.read().textFile("hdfs://logfile.log");

errors = lines.filter(l -> l.startsWith("ERROR"));

sqlerrors = errors.filter(l -> l.contains("sqlite"));

sqlerrors.collect();
```
Example

Given a large log file `hdfs://logfile.log` retrieve all lines that:

- Start with “ERROR”
- Contain the string “sqlite”

```java
s = SparkSession.builder.getOrCreate();
lines = s.read().textFile("hdfs://logfile.log");
errors = lines.filter(l -> l.startsWith("ERROR"));
sqlerrors = errors.filter(l -> l.contains("sqlite"));
sqlerrors.collect();
```

Transformation: Not executed yet...

Action: triggers execution of entire program
Example

Recall: anonymous functions (lambda expressions) starting in Java 8

```
errors = lines.filter(l -> l.startsWith("ERROR"));
```

is the same as:

```
class FilterFn implements Function<Row, Boolean>{
    Boolean call (Row r)
    { return l.startsWith("ERROR"); }
}

errors = lines.filter(new FilterFn());
```
Example

Given a large log file hdfs://logfile.log retrieve all lines that:

- Start with “ERROR”
- Contain the string “sqlite”

```java
s = SparkSession.builder()...getOrCreate();
sqlerrors = s.read().textFile("hdfs://logfile.log")
    .filter(l -> l.startsWith("ERROR"))
    .filter(l -> l.contains("sqlite"))
    .collect();
```

“Call chaining” style
Example

s = SparkSession.builder().getOrCreate();

sqlerrors = s.read().textFile("hdfs://logfile.log")
 .filter(l -> l.startsWith("ERROR"))
 .filter(l -> l.contains("sqlite"))
 .collect();
The RDD s:

<table>
<thead>
<tr>
<th>Error</th>
<th>Warning</th>
<th>Warning</th>
<th>Error</th>
<th>Aborted</th>
<th>Aborted</th>
<th>Error</th>
<th>Error</th>
<th>Warning</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>filter("ERROR")</td>
</tr>
</tbody>
</table>

s = SparkSession.builder()...getOrCreate();

sqlerrors = s.read().textFile("hdfs://logfile.log")
 .filter(l -> l.startsWith("ERROR"))
 .filter(l -> l.contains("sqlite"))
 .collect();
Example

The RDDs:

```
s = SparkSession.builder()...getOrCreate();

sqlerrors = s.read().textFile("hdfs://logfile.log")
  .filter(l -> l.startsWith("ERROR"))
  .filter(l -> l.contains("sqlite"))
  .collect();
```
s = SparkSession.builder().getOrCreate();

sqlerrors = s.read().textFile("hdfs://logfile.log")
 .filter(l -> l.startsWith("ERROR"))
 .filter(l -> l.contains("sqlite"))
 .collect();
Fault Tolerance

• When a job is executed on x100 or x1000 servers, the probability of a failure is high

• Example: if a server fails once/year, then a job with 10000 servers fails once/hour

• Different solutions:
 – Parallel database systems: restart. Expensive.
 – MapReduce: write everything to disk, redo. Slow.
 – Spark: redo only what is needed. Efficient.
Resilient Distributed Datasets

• RDD = Resilient Distributed Dataset
 – Distributed, immutable and records its lineage
 – Lineage = expression that says how that relation was computed = a relational algebra plan

• Spark stores intermediate results as RDD

• If a server crashes, its RDD in main memory is lost. However, the driver (=master node) knows the lineage, and will simply recompute the lost partition of the RDD
Persistence

```scala
lines = s.read().textFile("hdfs://logfile.log");
errors = lines.filter(l->l.startsWith("ERROR"));
sqllerrors = errors.filter(l->l.contains("sqlite"));
sqllerrors.collect();
```

If any server fails before the end, then Spark must restart
Persistence

```scala
lines = s.read().textFile("hdfs://logfile.log");
errors = lines.filter(l->l.startsWith("ERROR"));
sqlerrors = errors.filter(l->l.contains("sqlite"));
sqlerrors.collect();
```

If any server fails before the end, then Spark must restart.
Persistence

If any server fails before the end, then Spark must restart

```scala
lines = s.read().textFile("hdfs://logfile.log");
errors = lines.filter(l->l.startsWith("ERROR"));
sqlerrors = errors.filter(l->l.contains("sqlite"));
sqlerrors.collect();
```

Spark can recompute the result from errors

```scala
lines = s.read().textFile("hdfs://logfile.log");
errors = lines.filter(l->l.startsWith("ERROR"));
errors.persist();
sqlerrors = errors.filter(l->l.contains("sqlite"));
sqlerrors.collect();
```
Persistence

If any server fails before the end, then Spark must restart

Spark can recompute the result from errors
Example

\[
\text{SELECT count(*) FROM R, S WHERE R.B > 200 and S.C < 100 and R.A = S.A}
\]

\[
R = \text{strm.read().textFile("R.csv").map(parseRecord).persist();}
\]

\[
S = \text{strm.read().textFile("S.csv").map(parseRecord).persist();}
\]

Parses each line into an object

Persisting on disk
SELECT count(*) FROM R, S
WHERE R.B > 200 and S.C < 100 and R.A = S.A

R(A,B) S(A,C)

Example

R = strm.read().textFile("R.csv").map(parseRecord).persist();
S = strm.read().textFile("S.csv").map(parseRecord).persist();
RB = R.filter(t -> t.b > 200).persist();
SC = S.filter(t -> t.c < 100).persist();
J = RB.join(SC).persist();
J.count();
Recap: Programming in Spark

• A Spark/Scala program consists of:
 – Transformations (map, reduce, join…). **Lazy**
 – Actions (count, reduce, save...). **Eager**

• RDD<T> = an RDD collection of type T
 – Partitioned, recoverable (through lineage), not nested

• Seq<T> = a sequence
 – Local to a server, may be nested
Transformations:

<table>
<thead>
<tr>
<th>Function</th>
<th>Return Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>map(f : T -> U)</td>
<td>RDD<T> -> RDD<U></td>
</tr>
<tr>
<td>flatMap(f: T -> Seq(U))</td>
<td>RDD<T> -> RDD<U></td>
</tr>
<tr>
<td>filter(f:T->Bool)</td>
<td>RDD<T> -> RDD<T></td>
</tr>
<tr>
<td>groupByKey()</td>
<td>RDD<(K,V)> -> RDD<(K,Seq[V])></td>
</tr>
<tr>
<td>reduceByKey(F:(V,V)-> V)</td>
<td>RDD<(K,V)> -> RDD<(K,V)></td>
</tr>
<tr>
<td>union()</td>
<td>(RDD<T>,RDD<T>) -> RDD<T></td>
</tr>
<tr>
<td>join()</td>
<td>(RDD<(K,V)>,RDD<(K,W)>) -> RDD<(K,(V,W))></td>
</tr>
<tr>
<td>cogroup()</td>
<td>(RDD<(K,V)>,RDD<(K,W)>) -> RDD<(K,(Seq<V>,Seq<W>))></td>
</tr>
<tr>
<td>crossProduct()</td>
<td>(RDD<T>,RDD<U>) -> RDD<(T,U)></td>
</tr>
</tbody>
</table>

Actions:

<table>
<thead>
<tr>
<th>Function</th>
<th>Return Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>count()</td>
<td>RDD<T> -> Long</td>
</tr>
<tr>
<td>collect()</td>
<td>RDD<T> -> Seq<T></td>
</tr>
<tr>
<td>reduce(f:(T,T)->T)</td>
<td>RDD<T> -> T</td>
</tr>
<tr>
<td>save(path:String)</td>
<td>Outputs RDD to a storage system e.g., HDFS</td>
</tr>
</tbody>
</table>
Spark 2.0

The DataFrame and Dataset Interfaces
Three Java-Spark APIs

• RDDs: Syntax: JavaRDD<T>
 – T = anything, basically untyped
 – Distributed, main memory

• Data frames: Dataset<Row>
 – <Row> = a record, dynamically typed
 – Distributed, main memory or external (e.g. SQL)

• Datasets: Dataset<Person>
 – <Person> = user defined type
 – Distributed, main memory (not external)
DataFrames

• Like RDD, also an immutable distributed collection of data

• Organized into named columns rather than individual objects
 – Just like a relation
 – Elements are untyped objects called Row’s

• Similar API as RDDs with additional methods
 – people = spark.read().textFile(...);
 ageCol = people.col("age");
 ageCol.plus(10); // creates a new DataFrame
Datasets

• Similar to DataFrames, except that elements must be typed objects

• E.g.: Dataset<People> rather than Dataset<Row>

• Can detect errors during compilation time

• DataFrames are aliased as Dataset<Row> (as of Spark 2.0)

• You will use both Datasets and RDD APIs in HW6
Datasets API: Sample Methods

• Functional API
 - `agg(Column expr, Column... exprs)`
 Aggregates on the entire Dataset without groups.
 - `groupBy(String col1, String... cols)`
 Groups the Dataset using the specified columns, so that we can run aggregation on them.
 - `join(Dataset<?> right)`
 Join with another DataFrame.
 - `orderBy(Column... sortExprs)`
 Returns a new Dataset sorted by the given expressions.
 - `select(Column... cols)`
 Selects a set of column based expressions.

• “SQL” API
 - `SparkSession.sql("select * from R");`

• Look familiar?
Introduction to Data Management
CSE 414

Parallel Databases
Architectures for Parallel Databases

- Shared memory
- Shared disk
- Shared nothing
Shared Memory

- Nodes share both RAM and disk
- Dozens to hundreds of processors

Example: SQL Server runs on a single machine and can leverage many threads to speed up a query
- check your HW3 query plans

- Easy to use and program
- Expensive to scale
Shared Disk

- All nodes access the same disks
- Found in the largest "single-box" (non-cluster) multiprocessors

Example: Oracle

- No more memory contention
- Harder to program
- Still hard to scale: existing deployments typically have fewer than 10 machines
Shared Nothing

- Cluster of commodity machines on high-speed network
- Called "clusters" or "blade servers"
- Each machine has its own memory and disk: lowest contention.

Example: Spark

Because all machines today have many cores and many disks, shared-nothing systems typically run many "nodes" on a single physical machine.

- Easy to maintain and scale
- Most difficult to administer and tune.

We discuss only Shared Nothing in class
Approaches to Parallel Query Evaluation

- **Inter-query parallelism**
 - Transaction per node
 - Good for transactional workloads

- **Inter-operator parallelism**
 - Operator per node
 - Good for analytical workloads

- **Intra-operator parallelism**
 - Operator on multiple nodes
 - Good for both?

We study only intra-operator parallelism: most scalable
Single Node Query Processing (Review)

Given relations R(A,B) and S(B, C), no indexes:

• **Selection:** $\sigma_{A=123}(R)$

 – Scan file R, select records with A=123

• **Group-by:** $\gamma_{A,\text{sum}(B)}(R)$

 – Scan file R, insert into a hash table using A as key
 – When a new key is equal to an existing one, add B to the value

• **Join:** $R \bowtie_{R.B=S.B} S$

 – Scan file S, insert into a hash table using B as key
 – Scan file R, probe the hash table using B
Distributed Query Processing

• Data is horizontally partitioned on servers

• Operators may require data reshuffling
Horizontal Data Partitioning

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Data:

Servers:

1

2

...
Horizontal Data Partitioning

Data:

<table>
<thead>
<tr>
<th>K</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Servers:

1

<table>
<thead>
<tr>
<th>K</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

2

<table>
<thead>
<tr>
<th>K</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

...
Horizontal Data Partitioning

Data:

<table>
<thead>
<tr>
<th>K</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Servers:

1

<table>
<thead>
<tr>
<th>K</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

2

<table>
<thead>
<tr>
<th>K</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

...

P

<table>
<thead>
<tr>
<th>K</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Which tuples go to what server?
Horizontal Data Partitioning

- **Block Partition**:
 - Partition tuples arbitrarily s.t. $\text{size}(R_1) \approx \ldots \approx \text{size}(R_P)$

- **Hash partitioned on attribute A**:
 - Tuple t goes to chunk i, where $i = h(t.A) \mod P + 1$
 - Recall: calling hash fn’s is free in this class

- **Range partitioned on attribute A**:
 - Partition the range of A into $-\infty = v_0 < v_1 < \ldots < v_P = \infty$
 - Tuple t goes to chunk i, if $v_{i-1} < t.A < v_i$
Data: $R(K,A,B,C)$

- Informally: we say that the data is skewed if one server holds much more data than the average.
- E.g. we hash-partition on A, and some value of A occurs very many times ("Justin Bieber")
- Then the server holding that value will be skewed.
Uniform Data v.s. Skewed Data

• Let $R(K,A,B,C)$; which of the following partition methods may result in skewed partitions?

• Block partition

• Hash-partition
 - On the key K
 - On the attribute A

Assuming good hash function
E.g. when all records have the same value of the attribute A, then all records end up in the same partition

May be skewed

Keep this in mind in the next few slides
Parallel Execution of RA Operators: Grouping

Data: $R(K,A,B,C)$
Query: $\gamma_{A,\text{sum}(C)}(R)$

How to compute group by if:

• R is hash-partitioned on A?

• R is hash-partitioned on K?
Parallel Execution of RA Operators: Grouping

Data: $R(K,A,B,C)$

Query: $\gamma_{A,\text{sum}(C)}(R)$

- R is block-partitioned or hash-partitioned on K

Reshuffle R on attribute A

Run grouping on reshuffled partitions
Speedup and Scaleup

Consider the Query: $\gamma_{A,\text{sum}(C)}(R)$

- If we double the number of nodes P, what is the new running time?
 - Half (each server holds $\frac{1}{2}$ as many records)

- If we double both P and the size of R, what is the new running time?
 - Same (each server holds the same # of records)

But only if the data is without skew!
Parallel Execution of RA Operators: Partitioned Hash-Join

- **Data:** $R(K_1, A, B), S(K_2, B, C)$
- **Query:** $R(K_1, A, B) \bowtie_{R.B=S.B} S(K_2, B, C)$
 - Initially, R and S are partitioned on K_1 and K_2

Each server computes the join locally.
Data: $R(K_1, A, B)$, $S(K_2, B, C)$
Query: $R(K_1, A, B) \bowtie S(K_2, B, C)$

Parallel Join Illustration

Partition

Shuffle on B

Local Join
Data: $R(A, B), S(C, D)$
Query: $R(A, B) \bowtie_{B=C} S(C, D)$
Data: $R(A, B), S(C, D)$
Query: $R(A, B) \bowtie_{B=C} S(C, D)$

Broadcast Join

Broadcast S

Keep R in place

R_1, S R_2, S . . . R_P, S
Data: \(R(A, B), S(C, D) \)
Query: \(R(A,B) \bowtie_{B=C} S(C,D) \)

Broadcast Join

Why would you want to do this?
Putting it Together:
Example Parallel Query Plan

Find all orders from today, along with the items ordered

SELECT *
FROM Order o, Line i
WHERE o.item = i.item
AND o.date = today()

Order(oid, item, date), Line(item, ...)

```
SELECT *
FROM Order o, Line i
WHERE o.item = i.item
AND o.date = today()
```
Example Parallel Query Plan

Order(oid, item, date), Line(item, …)
Example Parallel Query Plan

Order(oid, item, date), Line(item, ...)

Node 1

hash

h(i.item)

scan

Item i

Node 2

hash

h(i.item)

scan

Item i

Node 3

hash

h(i.item)

scan

Item i
Example Parallel Query Plan

Node 1

\[\text{o.item} = \text{i.item} \]

contains all orders and all lines where hash(item) = 1

Node 2

\[\text{o.item} = \text{i.item} \]

contains all orders and all lines where hash(item) = 2

Node 3

\[\text{o.item} = \text{i.item} \]

contains all orders and all lines where hash(item) = 3

Order(oid, item, date), Line(item, …)
Summary

- Parallel query evaluation is based on data partitioning
- Main challenge: skew
- When the data is skewed (has “heavy hitter” values) then hash partitioning will lead to uneven load, and poor performance
- Skewed data values must be broadcast, e.g. Broadcast join