
Introduction to Data Management
CSE 414

Unit 2: The Relational Data Model
SQL

Relational Algebra
Datalog

(9 lectures*)

*Slides may change: refresh each lecture

Introduction to Data Management
CSE 414

Lecture 2: Data Models

2CSE 414 - 2019sp

Class Overview

• Unit 1: Intro
• Unit 2: Relational Data Models and Query Languages

– Data models, SQL RA, Datalog
• Unit 3: Non-relational data
• Unit 4: RDMBS internals and query optimization
• Unit 5: Parallel query processing
• Unit 6: DBMS usability, conceptual design
• Unit 7: Transactions
• Unit 8: Advanced topics (time permitting)

CSE 414 - 2019sp 3

Reminders

• Sections tomorrow (bring your laptops)

• HW1 due on Friday

• Webquiz due on Saturday

CSE 414 - 2019sp 4

Review

• What is a database?
– A collection of files storing related data

• What is a DBMS?
– An application program that allows us to

manage efficiently the collection of data
files

CSE 414 - 2019sp 5

Data Models

• Recall our example: want to design a
database of books:
– author, title, publisher, pub date, price, etc
– How should we describe this data?

• Data model = mathematical formalism
(or conceptual way) for describing the
data

CSE 414 - 2019sp 6

Data Models
• Relational

– Data represented as relations
• Semi-structured (JSon)

– Data represented as trees
• Key-value pairs

– Used by NoSQL systems
• Graph
• Object-oriented

CSE 414 - 2019sp 7

Unit 2

Unit 3

Example: storing FB friends

CSE 414 - 2019sp 8

Peter

Mary John

Phil

As a graph

OR

Person1 Person2 is_friend
Peter John 1
John Mary 0
Mary Phil 1
Phil Peter 1
… … …

As a relation

We will learn the tradeoffs of different
data models later this quarter

3 Elements of Data Models

• Instance
– The actual data

• Schema
– Describe what data is being stored

• Query language
– How to retrieve and manipulate data

CSE 414 - 2019sp 9

Relational Model
• Data is a collection of relations / tables:

• mathematically, relation is a set of tuples
– each tuple appears 0 or 1 times in the table
– order of the rows is unspecified

CSE 414 - 2019sp 10

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

columns /
attributes /
fields

rows /
tuples /
records

The Relational Data Model

• Each attribute has a type. E.g.
– Strings: CHAR(20), VARCHAR(50), TEXT
– Numbers: INT, SMALLINT, FLOAT
– MONEY, DATETIME, …
– Few more that are vendor specific

• Types statically and strictly enforced
• #Attributes= “degree” (arity) of a relation

CSE 414 - 2019sp 11

Keys
• Key = one (or multiple) attributes that

uniquely identify a record

CSE 414 - 2019sp 12

Keys
• Key = one (or multiple) attributes that

uniquely identify a record

CSE 414 - 2019sp 13

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

Key

Keys
• Key = one (or multiple) attributes that

uniquely identify a record

CSE 414 - 2019sp 14

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

Key Not a key

Keys
• Key = one (or multiple) attributes that

uniquely identify a record

CSE 414 - 2019sp 15

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

Key Not a key Is this a key?

Keys
• Key = one (or multiple) attributes that

uniquely identify a record

CSE 414 - 2019sp 16

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

Key Not a key Is this a key?
No: future updates to the
database may create duplicate
no_employees

Multi-attribute Key

CSE 414 - 2019sp 17

fName lName Income Department
Alice Smith 20000 Testing
Alice Thompson 50000 Testing
Bob Thompson 30000 SW
Carol Smith 50000 Testing

Key = fName,lName
(what does this mean?)

Multiple Keys

CSE 414 - 2019sp 18

SSN fName lName Income Department
111-22-3333 Alice Smith 20000 Testing
222-33-4444 Alice Thompson 50000 Testing
333-44-5555 Bob Thompson 30000 SW
444-55-6666 Carol Smith 50000 Testing

Key Another key

We can choose one key and designate it as primary key
E.g.: primary key = SSN

Foreign Key

CSE 414 - 2019sp 19

cname country no_employees for_profit
Canon Japan 50000 Y
Hitachi Japan 30000 Y

name population
USA 320M
Japan 127M

Company(cname, country, no_employees, for_profit)
Country(name, population)

Foreign key to
Country.nameCompany

Country

Keys: Summary
• Key = columns that uniquely identify tuple

– Usually we underline
– A relation can have many keys, but only one

can be chosen as primary key
• Foreign key:

– Attribute(s) whose value is a key of a record
in some other relation

– Foreign keys are sometimes called semantic
pointer

CSE 414 - 2019sp 20

Query Language
• SQL

– Structured Query Language
– Developed by IBM in the 70s
– Most widely used language to query

relational data
• Other relational query languages

– Datalog, relational algebra

CSE 414 - 2019sp 21

Our First DBMS

• SQL Lite
• Will switch to SQL Server later in the

quarter

CSE 414 - 2019sp 22

Demo 1

CSE 414 - 2019sp 23

Discussion
• Tables are NOT ordered

– they are sets or multisets (bags)
• Tables are FLAT

– No nested attributes
• Tables DO NOT prescribe how they are

implemented / stored on disk
– This is called physical data independence

CSE 414 - 2019sp 24

Table Implementation
• How would you implement this?

CSE 414 - 2019sp 25

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

Table Implementation
• How would you implement this?

CSE 414 - 2019sp 26

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

Row major: as an array of objects

GizmoWorks
USA
20000
True

Canon
Japan
50000
True

Hitachi
Japan
30000
True

HappyCam
Canada
500
False

Table Implementation
• How would you implement this?

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

Column major: as one array per attribute
GizmoWorks Canon Hitachi HappyCam

USA Japan Japan Canada

True True True False

20000 50000 30000 500

Table Implementation
• How would you implement this?

CSE 414 - 2019sp 28

Physical data independence
The logical definition of the data remains
unchanged, even when we make changes to
the actual implementation

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

First Normal Form

• All relations must be flat: we say that the
relation is in first normal form

cname country no_employees for_profit
Canon Japan 50000 Y
Hitachi Japan 30000 Y

First Normal Form

• All relations must be flat: we say that the
relation is in first normal form

• E.g. we want to add products manufactured
by each company:

cname country no_employees for_profit
Canon Japan 50000 Y
Hitachi Japan 30000 Y

First Normal Form

• All relations must be flat: we say that the
relation is in first normal form

• E.g. we want to add products manufactured
by each company:

cname country no_employees for_profit
Canon Japan 50000 Y
Hitachi Japan 30000 Y

cname country no_employees for_profit products

Canon Japan 50000 Y

Hitachi Japan 30000 Y pname price category

AC 300 Appliance

pname price category

SingleTouch 149.99 Photography

Gadget 200 Toy

First Normal Form

• All relations must be flat: we say that the
relation is in first normal form

• E.g. we want to add products manufactured
by each company:

cname country no_employees for_profit
Canon Japan 50000 Y
Hitachi Japan 30000 Y

cname country no_employees for_profit products

Canon Japan 50000 Y

Hitachi Japan 30000 Y pname price category

AC 300 Appliance

pname price category

SingleTouch 149.99 Photography

Gadget 200 Toy

Non-1NF!

First Normal Form

CSE 414 - 2019sp 33

cname country no_employees for_profit
Canon Japan 50000 Y
Hitachi Japan 30000 Y

pname price category manufacturer
SingleTouch 149.99 Photography Canon
AC 300 Appliance Hitachi
Gadget 200 Toy Canon

Company

Products

Now it’s in 1NF

Data Models: Summary

• Schema + Instance + Query language
• Relational model:

– Database = collection of tables
– Each table is flat: “first normal form”
– Key: may consists of multiple attributes
– Foreign key: “semantic pointer”
– Physical data independence

CSE 414 - 2019sp 34

Introduction to Data Management
CSE 414

Lecture 3: SQL Basics

35CSE 414 - 2019sp

Review

• Relational data model
– Schema+instance+query language

• Query language: SQL
– Create tables
– Retrieve records from tables
– Declare keys and foreign keys

CSE 414 - 2019sp 36

Review
• Tables are NOT ordered

– they are sets or multisets (bags)
– arity: # of attributes in a relation
– cardinality: # of records in a relation

• Tables are FLAT
– No nested attributes

• Tables DO NOT prescribe how they are
implemented / stored on disk
– This is called physical data independence37

SQL

• Structured Query Language
• Most widely used language to query

relational data
• One of the many languages for querying

relational data

• A declarative programming language

CSE 414 - 2019sp 38

Selections in SQL

CSE 414 - 2019sp 39

SELECT *
FROM Product
WHERE price > 100.0

Demo 2

CSE 414 - 2019sp 40

Joins in SQL

CSE 414 - 2019sp 41

Retrieve all Japanese products that cost < $150

Product(pname, price, category, manufacturer)
Company(cname, country)

pname price category manufacturer
MultiTouch 199.99 gadget Canon
SingleTouch 49.99 photography Canon
Gizom 50 gadget GizmoWorks
SuperGizmo 250.00 gadget GizmoWorks

cname country
GizmoWorks USA
Canon Japan
Hitachi Japan

Joins in SQL

CSE 414 - 2019sp 42

Retrieve all Japanese products that cost < $150

Product(pname, price, category, manufacturer)
Company(cname, country)

SELECT pname, price
FROM Product, Company
WHERE ...

pname price category manufacturer
MultiTouch 199.99 gadget Canon
SingleTouch 49.99 photography Canon
Gizom 50 gadget GizmoWorks
SuperGizmo 250.00 gadget GizmoWorks

cname country
GizmoWorks USA
Canon Japan
Hitachi Japan

Joins in SQL

CSE 414 - 2019sp 43

Retrieve all Japanese products that cost < $150

Product(pname, price, category, manufacturer)
Company(cname, country)

SELECT pname, price
FROM Product, Company
WHERE manufacturer=cname AND

country='Japan' AND price < 150

pname price category manufacturer
MultiTouch 199.99 gadget Canon
SingleTouch 49.99 photography Canon
Gizom 50 gadget GizmoWorks
SuperGizmo 250.00 gadget GizmoWorks

cname country
GizmoWorks USA
Canon Japan
Hitachi Japan

Joins in SQL

CSE 414 - 2019sp 44

Product(pname, price, category, manufacturer)
Company(cname, country)

Retrieve all USA companies
that manufacture “gadget” products

pname price category manufacturer
MultiTouch 199.99 gadget Canon
SingleTouch 49.99 photography Canon
Gizom 50 gadget GizmoWorks
SuperGizmo 250.00 gadget GizmoWorks

cname country
GizmoWorks USA
Canon Japan
Hitachi Japan

Joins in SQL

CSE 414 - 2019sp 45

Product(pname, price, category, manufacturer)
Company(cname, country)

pname price category manufacturer
MultiTouch 199.99 gadget Canon
SingleTouch 49.99 photography Canon
Gizom 50 gadget GizmoWorks
SuperGizmo 250.00 gadget GizmoWorks

cname country
GizmoWorks USA
Canon Japan
Hitachi Japan

Retrieve all USA companies
that manufacture “gadget” products

SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

Why
DISTINCT?

Joins in SQL

• The standard join in SQL is sometimes
called an inner join
– Each row in the result must come from

both tables in the join
• Sometimes we want to include rows

from only one of the two table: outer join

CSE 414 - 2019sp 46

Inner Join

CSE 414 - 2019sp 47

Employee
id name
1 Joe
2 Jack
3 Jill

Sales
employeeID productID
1 344
1 355
2 544

Retrieve employees and their sales

Employee(id, name)
Sales(employeeID, productID)

Inner Join

CSE 414 - 2019sp 48

Employee
id name
1 Joe
2 Jack
3 Jill

Sales
employeeID productID
1 344
1 355
2 544

Retrieve employees and their sales

SELECT *
FROM Employee E, Sales S
WHERE E.id = S.employeeID

Employee(id, name)
Sales(employeeID, productID)

Inner Join
Employee
id name
1 Joe
2 Jack
3 Jill

Sales
employeeID productID
1 344
1 355
2 544

Retrieve employees and their sales

SELECT *
FROM Employee E, Sales S
WHERE E.id = S.employeeID

Employee(id, name)
Sales(employeeID, productID)

id name empolyeeID productID
1 Joe 1 344
1 Joe 1 355
2 Jack 2 544

CSE 414 - 2019sp 49

Inner Join
Employee
id name
1 Joe
2 Jack
3 Jill

Sales
employeeID productID
1 344
1 355
2 544

Retrieve employees and their sales

SELECT *
FROM Employee E, Sales S
WHERE E.id = S.employeeID

Employee(id, name)
Sales(employeeID, productID)

id name empolyeeID productID
1 Joe 1 344
1 Joe 1 355
2 Jack 2 544

Jill is
missing

CSE 414 - 2019sp 50

Inner Join
Employee
id name
1 Joe
2 Jack
3 Jill

Sales
employeeID productID
1 344
1 355
2 544

Retrieve employees and their sales

SELECT *
FROM Employee E

INNER JOIN
Sales S

ON E.id = S.employeeID

Employee(id, name)
Sales(employeeID, productID)

id name empolyeeID productID
1 Joe 1 344
1 Joe 1 355
2 Jack 2 544

Jill is
missing

Alternative
syntax

51

Outer Join
Employee
id name
1 Joe
2 Jack
3 Jill

Sales
employeeID productID
1 344
1 355
2 544

Retrieve employees and their sales

SELECT *
FROM Employee E

LEFT OUTER JOIN
Sales S

ON E.id = S.employeeID

Employee(id, name)
Sales(employeeID, productID)

id name empolyeeID productID
1 Joe 1 344
1 Joe 1 355
2 Jack 2 544
3 Jill NULL NULL

Jill is
present

Introduction to Data Management
CSE 414

Lecture 4: Joins and Aggregates

CSE 414 - 2019sp 53

Review: Our SQL Toolchest

• Selection
• Projection
• Ordering and distinct

• Inner Join
• Outer Join

CSE 414 - 2019sp 54

(Inner) joins

55CSE 414 - 2019sp

Product(pname, price, category, manufacturer)
Company(cname, country)

manufacturer = foreign key to Company.cname

Return all companies in the ‘USA’ that manufacture
some product in the ‘gadget’ category.

(Inner) joins
SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

56CSE 414 - 2019sp

Product(pname, price, category, manufacturer)
Company(cname, country)

(Inner) joins
SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

57CSE 414 - 2019sp

pname category manufacturer

Gizmo gadget GizmoWorks

Camera Photo Hitachi

OneClick Photo Hitachi

cname country

GizmoWorks USA

Canon Japan

Hitachi Japan

Product Company

Product(pname, price, category, manufacturer)
Company(cname, country)

(Inner) joins

58CSE 414 - 2019sp

pname category manufacturer

Gizmo gadget GizmoWorks

Camera Photo Hitachi

OneClick Photo Hitachi

cname country

GizmoWorks USA

Canon Japan

Hitachi Japan

SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

Product Company

Product(pname, price, category, manufacturer)
Company(cname, country)

(Inner) joins

59CSE 414 - 2019sp

pname category manufacturer

Gizmo gadget GizmoWorks

Camera Photo Hitachi

OneClick Photo Hitachi

cname country

GizmoWorks USA

Canon Japan

Hitachi Japan

SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

Product Company

Product(pname, price, category, manufacturer)
Company(cname, country)

(Inner) joins

60

pname category manufacturer

Gizmo gadget GizmoWorks

Camera Photo Hitachi

OneClick Photo Hitachi

cname country

GizmoWorks USA

Canon Japan

Hitachi Japan

pname category manufacturer cname country

Gizmo gadget GizmoWorks GizmoWorks USA

SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

Product Company

Product(pname, price, category, manufacturer)
Company(cname, country)

(Inner) joins

61CSE 414 - 2019sp

pname category manufacturer

Gizmo gadget GizmoWorks

Camera Photo Hitachi

OneClick Photo Hitachi

cname country

GizmoWorks USA

Canon Japan

Hitachi Japan

SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

Product Company

Product(pname, price, category, manufacturer)
Company(cname, country)

(Inner) joins

62CSE 414 - 2019sp

pname category manufacturer

Gizmo gadget GizmoWorks

Camera Photo Hitachi

OneClick Photo Hitachi

cname country

GizmoWorks USA

Canon Japan

Hitachi Japan

Product Company

SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

Product(pname, price, category, manufacturer)
Company(cname, country)

(Inner) joins

63CSE 414 - 2019sp

pname category manufacturer

Gizmo gadget GizmoWorks

Camera Photo Hitachi

OneClick Photo Hitachi

cname country

GizmoWorks USA

Canon Japan

Hitachi Japan

Product Company

SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

Product(pname, price, category, manufacturer)
Company(cname, country)

(Inner) joins

64CSE 414 - 2019sp

pname category manufacturer

Gizmo gadget GizmoWorks

Camera Photo Hitachi

OneClick Photo Hitachi

cname country

GizmoWorks USA

Canon Japan

Hitachi Japan

Product Company

SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

Product(pname, price, category, manufacturer)
Company(cname, country)

(Inner) joins

65CSE 414 - 2019sp

pname category manufacturer

Gizmo gadget GizmoWorks

Camera Photo Hitachi

OneClick Photo Hitachi

cname country

GizmoWorks USA

Canon Japan

Hitachi Japan

Product Company

SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

Product(pname, price, category, manufacturer)
Company(cname, country)

(Inner) joins

66CSE 414 - 2019sp

pname category manufacturer

Gizmo gadget GizmoWorks

Camera Photo Hitachi

OneClick Photo Hitachi

cname country

GizmoWorks USA

Canon Japan

Hitachi Japan

Product Company

SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

And son on…

Product(pname, price, category, manufacturer)
Company(cname, country)

(Inner) joins
SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

67CSE 414 - 2019sp

SELECT DISTINCT cname
FROM Product JOIN Company ON

country = 'USA' AND category = 'gadget'
AND manufacturer = cname

SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

Product(pname, price, category, manufacturer)
Company(cname, country)

(Inner) joins
SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

68CSE 414 - 2019sp

SELECT DISTINCT cname
FROM Product JOIN Company ON

country = 'USA' AND category = 'gadget'
AND manufacturer = cname

SELECT DISTINCT cname
FROM Product, Company
WHERE country='USA' AND category = 'gadget'

AND manufacturer = cname

Same thing,
different syntax

Product(pname, price, category, manufacturer)
Company(cname, country)

for x1 in R1:
for x2 in R2:
...

for xm in Rm:
if Cond(x1, x2…):
output(x1.a1, x2.a2, … xm.am)

(Inner) Joins
SELECT x1.a1, x2.a2, … xm.am
FROM R1 as x1, R2 as x2, … Rm as xm
WHERE Cond

69
This is called nested loop semantics since we are
interpreting what a join means using a nested loop

Another example

CSE 414 - 2019sp 70

Retrieve all USA companies that manufacture products
in both ‘gadget’ and ‘photography’ categories

Product(pname, price, category, manufacturer)
Company(cname, country)

Another example

CSE 414 - 2019sp 71

SELECT DISTINCT z.cname
FROM Product x, Company z
WHERE z.country = ’USA’

AND x.manufacturer = z.cname
AND x.category = 'gadget’
AND x.category = 'photography;

Does this
work?

Product(pname, price, category, manufacturer)
Company(cname, country)

Retrieve all USA companies that manufacture products
in both ‘gadget’ and ‘photography’ categories

Another example

CSE 414 - 2019sp 72

Does this
work?

Product(pname, price, category, manufacturer)
Company(cname, country)

Returns the
empty set

SELECT DISTINCT z.cname
FROM Product x, Company z
WHERE z.country = ’USA’

AND x.manufacturer = z.cname
AND x.category = 'gadget’
AND x.category = 'photography;

Retrieve all USA companies that manufacture products
in both ‘gadget’ and ‘photography’ categories

Another example

CSE 414 - 2019sp 73

SELECT DISTINCT z.cname
FROM Product x, Company z
WHERE z.country = ’USA’

AND x.manufacturer = z.cname
AND (x.category = 'gadget’

OR x.category = 'photography);

What about
this?

Product(pname, price, category, manufacturer)
Company(cname, country)

Retrieve all USA companies that manufacture products
in both ‘gadget’ and ‘photography’ categories

Another example

CSE 414 - 2019sp 74

SELECT DISTINCT z.cname
FROM Product x, Company z
WHERE z.country = ’USA’

AND x.manufacturer = z.cname
AND (x.category = 'gadget’

OR x.category = 'photography);

What about
this?

Product(pname, price, category, manufacturer)
Company(cname, country)

Returns too much

Retrieve all USA companies that manufacture products
in both ‘gadget’ and ‘photography’ categories

Another example

CSE 414 - 2019sp 75

SELECT DISTINCT z.cname
FROM Product x, Product y, Company z
WHERE z.country = ’USA’

AND x.manufacturer = z.cname
AND y.manufacturer = z.cname
AND x.category = 'gadget’
AND y.category = 'photography;

Product(pname, price, category, manufacturer)
Company(cname, country)

Need to include
Product twice!

Retrieve all USA companies that manufacture products
in both ‘gadget’ and ‘photography’ categories

Self-Joins and Tuple Variables

• Find USA companies that manufacture both
products in the ‘gadgets’ and ‘photo’ category

• Joining Product with Company is insufficient:
need to join Product, with Product, and with
Company

• When a relation occurs twice in the FROM
clause we call it a self-join; in that case we
must use tuple variables (why?) 76

Self-joins

CSE 414 - 2019sp 77

SELECT DISTINCT z.cname
FROM Product x, Product y, Company z
WHERE z.country = ‘USA’

AND x.category = ‘gadget’
AND y.category = ‘photo’
AND x.manufacturer = z.cname
AND y.manufacturer = z.cname;

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

Product Company

Self-joins

CSE 414 - 2019sp 78

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

Product Company
x

SELECT DISTINCT z.cname
FROM Product x, Product y, Company z
WHERE z.country = ‘USA’

AND x.category = ‘gadget’
AND y.category = ‘photo’
AND x.manufacturer = z.cname
AND y.manufacturer = z.cname;

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

Self-joins

CSE 414 - 2019sp 79

Product Company
x
y

SELECT DISTINCT z.cname
FROM Product x, Product y, Company z
WHERE z.country = ‘USA’

AND x.category = ‘gadget’
AND y.category = ‘photo’
AND x.manufacturer = z.cname
AND y.manufacturer = z.cname;

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

Self-joins

CSE 414 - 2019sp 80

Product Company
x
y

z

SELECT DISTINCT z.cname
FROM Product x, Product y, Company z
WHERE z.country = ‘USA’

AND x.category = ‘gadget’
AND y.category = ‘photo’
AND x.manufacturer = z.cname
AND y.manufacturer = z.cname;

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

Self-joins

CSE 414 - 2019sp 81

Product Company
x
y

z

SELECT DISTINCT z.cname
FROM Product x, Product y, Company z
WHERE z.country = ‘USA’

AND x.category = ‘gadget’
AND y.category = ‘photo’
AND x.manufacturer = z.cname
AND y.manufacturer = z.cname;

Self-joins

CSE 414 - 2019sp 82

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

Product Company
x

y

z

SELECT DISTINCT z.cname
FROM Product x, Product y, Company z
WHERE z.country = ‘USA’

AND x.category = ‘gadget’
AND y.category = ‘photo’
AND x.manufacturer = z.cname
AND y.manufacturer = z.cname;

Self-joins

CSE 414 - 2019sp 83

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

Product Company
x

y

z

SELECT DISTINCT z.cname
FROM Product x, Product y, Company z
WHERE z.country = ‘USA’

AND x.category = ‘gadget’
AND y.category = ‘photo’
AND x.manufacturer = z.cname
AND y.manufacturer = z.cname;

Self-joins

CSE 414 - 2019sp 84

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

Product Company
x

y

z

SELECT DISTINCT z.cname
FROM Product x, Product y, Company z
WHERE z.country = ‘USA’

AND x.category = ‘gadget’
AND y.category = ‘photo’
AND x.manufacturer = z.cname
AND y.manufacturer = z.cname;

Self-joins

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

Product Company

x.pname x.category x.manufacturer y.pname y.category y.manufacturer z.cname z.country

Gizmo gadget GizmoWorks MultiTouch Photo GizmoWorks GizmoWorks USA

x

y

z

SELECT DISTINCT z.cname
FROM Product x, Product y, Company z
WHERE z.country = ‘USA’

AND x.category = ‘gadget’
AND y.category = ‘photo’
AND x.manufacturer = z.cname
AND y.manufacturer = z.cname;

Self-joins

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

Product Company

x.pname x.category x.manufacturer y.pname y.category y.manufacturer z.cname z.country

Gizmo gadget GizmoWorks MultiTouch Photo GizmoWorks GizmoWorks USA

x

y

z

SELECT DISTINCT z.cname
FROM Product x, Product y, Company z
WHERE z.country = ‘USA’

AND x.category = ‘gadget’
AND y.category = ‘photo’
AND x.manufacturer = z.cname
AND y.manufacturer = z.cname;

Outer joins

87

Product(name, category)
Purchase(prodName, store)

-- prodName is foreign key

Retrieve all product
names and the stores
where they were
purchased.
Include products
that never sold

Outer joins

88

SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

Product(name, category)
Purchase(prodName, store)

-- prodName is foreign key

Retrieve all product
names and the stores
where they were
purchased.
Include products
that never sold

Outer joins

89

SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

Product(name, category)
Purchase(prodName, store)

-- prodName is foreign key

Retrieve all product
names and the stores
where they were
purchased.
Include products
that never sold

Does not include products
that never sold! (why?)

Outer joins

90

SELECT Product.name, Purchase.store
FROM Product LEFT OUTER JOIN Purchase ON

Product.name = Purchase.prodName

Product(name, category)
Purchase(prodName, store)

-- prodName is foreign key

Retrieve all product
names and the stores
where they were
purchased.
Include products
that never sold

Outer joins

91

SELECT Product.name, Purchase.store
FROM Product LEFT OUTER JOIN Purchase ON

Product.name = Purchase.prodName

Product(name, category)
Purchase(prodName, store)

-- prodName is foreign key

Now they show up!

Retrieve all product
names and the stores
where they were
purchased.
Include products
that never sold

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

CSE 414 - 2019sp 92

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

CSE 414 - 2019sp 93

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

CSE 414 - 2019sp 94

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

Name Store

Gizmo WizOutput

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

CSE 414 - 2019sp 95

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

Name Store

Gizmo WizOutput

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

CSE 414 - 2019sp 96

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

Name Store

Gizmo WizOutput

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

CSE 414 - 2019sp 97

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

Name Store

Gizmo WizOutput

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Name Store

Gizmo Wiz

Camera Ritz

Product Purchase

CSE 414 - 2019sp 98

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

Output

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Name Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

CSE 414 - 2019sp 99

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

Output

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Name Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

CSE 414 - 2019sp 100

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

Output

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Name Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

CSE 414 - 2019sp 101

SELECT Product.name, Purchase.store
FROM Product LEFT OUTER JOIN Purchase ON

Product.name = Purchase.prodName

Output

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Name Store

Gizmo Wiz

Camera Ritz

Camera Wiz

OneClick NULL

Product Purchase

CSE 414 - 2019sp 102

SELECT Product.name, Purchase.store
FROM Product LEFT OUTER JOIN Purchase ON

Product.name = Purchase.prodName

Output

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Phone FooName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

OneClick NULL

NULL Foo

Product Purchase

103

SELECT Product.name, Purchase.store
FROM Product FULL OUTER JOIN Purchase ON

Product.name = Purchase.prodName

Output

Outer Joins

• Left outer join:
– Include tuples from tableA even if no match

• Right outer join:
– Include tuples from tableB even if no match

• Full outer join:
– Include tuples from both even if no match

• In all cases:
– Patch tuples without matches using NULL

CSE 414 - 2019sp 104

tableA (LEFT/RIGHT/FULL) OUTER JOIN tableB ON p

Loading Data into SQLite

CSE 414 - 2019sp 105

Other DBMSs have
other ways of

importing data

Specify a filename
where the database

will be stored
>sqlite3 lecture04

sqlite> create table Purchase
(pid int primary key,
product text,
price float,
quantity int,
month varchar(15));

sqlite> -- download data.txt
sqlite> .import lec04-data.txt Purchase

Comment about SQLite

• Cannot load NULL values such that they are
actually loaded as null values

• So we need to use two steps:
– Load null values using some type of special value
– Update the special values to actual null values

CSE 414 - 2019sp 106

update Purchase
set price = null
where price = ‘null’

Simple Aggregations

Five basic aggregate operations in SQL

CSE 414 - 2019sp 107

Except count, all aggregations apply to a single attribute

select count(*) from Purchase
select sum(quantity) from Purchase
select avg(price) from Purchase
select max(quantity) from Purchase
select min(quantity) from Purchase

count of an
empty table is 0

Aggregates and NULL Values

108

insert into Purchase
values(12, 'gadget', NULL, NULL, 'april')

select count(*) from Purchase
select count(quantity) from Purchase

select sum(quantity) from Purchase

select count(*)
from Purchase
where quantity is not null;

Null values are not used in aggregates

Let’s try the following

COUNT applies to duplicates, unless otherwise stated:

SELECT count(product)
FROM Purchase
WHERE price > 4.99

same as count(*) if no nulls

We probably want:

SELECT count(DISTINCT product)
FROM Purchase
WHERE price > 4.99

Counting Duplicates

CSE 414 - 2019sp 109

More Examples

CSE 414 - 2019sp 110

SELECT Sum(price * quantity)
FROM Purchase

SELECT Sum(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

What do
they mean ?

Introduction to Data Management
CSE 414

Lecture 5: Grouping and
Query Evaluation

CSE 414 - 2019sp 111

Announcements

• Welcome new TA: Esteban Posada!
• New section AG, starting next week
• Webquiz due tonight
• Homework 2 due on Monday
• No lecture on Monday!

Makeup lecture Thursday, 4/18, 5:30pm

112

Grouping and Aggregation

CSE 414 - 2019sp 113

Purchase(product, price, quantity)

Find total quantities for all sales over $1, by product.

Grouping and Aggregation

114

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Product Price Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50
Banana 2 10
Banana 4 10

Grouping and Aggregation

115

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Product Price Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50
Banana 2 10
Banana 4 10

Grouping and Aggregation

116

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Product TotalSales
Bagel 40

Banana 20

Product Price Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50
Banana 2 10
Banana 4 10

Other Examples

CSE 414 - 2019sp 117

SELECT product, count(*)
FROM Purchase
GROUP BY product

SELECT month, count(*)
FROM Purchase
GROUP BY month

Compare these
two queries:

Other Examples

CSE 414 - 2019sp 118

SELECT product, count(*)
FROM Purchase
GROUP BY product

SELECT month, count(*)
FROM Purchase
GROUP BY month

Compare these
two queries:

One answer for each product. One answer for each month.

Other Examples

CSE 414 - 2019sp 119

SELECT product,
sum(quantity) AS SumQuantity,
max(price) AS MaxPrice

FROM Purchase
GROUP BY product

Mutliple aggregates OK

Need to be Careful…

CSE 414 - 2019sp 120

Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

SELECT product,
max(quantity)

FROM Purchase
GROUP BY product

Need to be Careful…

CSE 414 - 2019sp 121

Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

SELECT product,
max(quantity)

FROM Purchase
GROUP BY product

Product Max(quantity)

Bagel 20

Banana 50

Need to be Careful…

CSE 414 - 2019sp 122

SELECT product, quantity
FROM Purchase
GROUP BY product
-- what does this mean?

Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

SELECT product,
max(quantity)

FROM Purchase
GROUP BY product

Product Max(quantity)

Bagel 20

Banana 50

Need to be Careful…

CSE 414 - 2019sp 123

SELECT product, quantity
FROM Purchase
GROUP BY product
-- what does this mean?

Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

SELECT product,
max(quantity)

FROM Purchase
GROUP BY product

Product Max(quantity)

Bagel 20

Banana 50

Product Quantity

Bagel 20

Banana ??

Need to be Careful…

CSE 414 - 2019sp 124

SELECT product, quantity
FROM Purchase
GROUP BY product
-- what does this mean?

Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

SELECT product,
max(quantity)

FROM Purchase
GROUP BY product

Product Max(quantity)

Bagel 20

Banana 50

Product Quantity

Bagel 20

Banana ??

Need to be Careful…

CSE 414 - 2019sp 125

SELECT product, quantity
FROM Purchase
GROUP BY product
-- what does this mean?

Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

SELECT product,
max(quantity)

FROM Purchase
GROUP BY product

Product Max(quantity)

Bagel 20

Banana 50

Product Quantity

Bagel 20

Banana ??

Everything in SELECT must be
either a GROUP-BY attribute, or an aggregate

Number of Groups
Purchase(product, price, quantity)

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Find total quantities for all sales over $1, by product.

Number of Groups
Purchase(product, price, quantity)

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Find total quantities for all sales over $1, by product.

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
GROUP BY product

Cleary, queries return different answers. What about # groups?

Number of Groups
Purchase(product, price, quantity)

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Find total quantities for all sales over $1, by product.

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
GROUP BY product

Cleary, queries return different answers. What about # groups?

Empty groups are removed, hence
first query may return fewer groups

Grouping and Aggregation

CSE 414 - 2019sp 129

1. Compute the FROM and WHERE clauses.

2. Group by the attributes in the GROUPBY

3. Compute the SELECT clause:
grouped attributes and aggregates.

FWGS
TM

1,2: From, Where

130

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Product Price Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50
Banana 2 10
Banana 4 10

FWGS

WHERE price > 1

3,4. Grouping, Select

131

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Product TotalSales
Bagel 40

Banana 20

Product Price Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50
Banana 2 10
Banana 4 10

FWGS

Ordering Results

CSE 414 - 2019sp 132

SELECT product, sum(price*quantity) as rev
FROM Purchase
GROUP BY product
ORDER BY rev DESC

FWGOS

Purchase(pid, product, price, quantity, month)

Note: some SQL engines want you to say
ORDER BY sum(price*quantity) DESC

TM

HAVING Clause

CSE 414 - 2019sp 133

SELECT product, sum(price*quantity)
FROM Purchase
WHERE price > 1
GROUP BY product
HAVING sum(quantity) > 30

Same query as before, except that we consider only products
that had at least 30 sales.

HAVING clause contains conditions on aggregates.

Purchase(pid, product, price, quantity, month)

General form of Grouping
and Aggregation

S = may contain attributes a1,…,ak and/or any
aggregates but NO OTHER ATTRIBUTES

C1 = is any condition on the attributes in R1,…,Rn
C2 = is any condition on aggregate expressions

and on attributes a1,…,ak

CSE 414 - 2019sp 134

Why ?

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

Semantics of SQL With
Group-By

CSE 414 - 2019sp
135

Evaluation steps:
1. Evaluate FROM-WHERE using Nested Loop Semantics

2. Group by the attributes a1,…,ak

3. Apply condition C2 to each group (may have aggregates)
4. Compute aggregates in S and return the result

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

FWGHOS

Exercise

CSE 414 - 2019sp 136

Compute the total income per month
Show only months with less than 10 items sold
Order by quantity sold and display as “TotalSold”

Purchase(pid, product, price, quantity, month)

Exercise

CSE 414 - 2019sp 137

FROM Purchase

Compute the total income per month
Show only months with less than 10 items sold
Order by quantity sold and display as “TotalSold”

Purchase(pid, product, price, quantity, month)

Exercise

CSE 414 - 2019sp 138

Compute the total income per month
Show only months with less than 10 items sold
Order by quantity sold and display as “TotalSold”

FROM Purchase
GROUP BY month

Purchase(pid, product, price, quantity, month)

Exercise

CSE 414 - 2019sp 139

Compute the total income per month
Show only months with less than 10 items sold
Order by quantity sold and display as “TotalSold”

FROM Purchase
GROUP BY month
HAVING sum(quantity) < 10

Purchase(pid, product, price, quantity, month)

Exercise

CSE 414 - 2019sp 140

Compute the total income per month
Show only months with less than 10 items sold
Order by quantity sold and display as “TotalSold”

SELECT month, sum(price*quantity),
sum(quantity) as TotalSold

FROM Purchase
GROUP BY month
HAVING sum(quantity) < 10

Purchase(pid, product, price, quantity, month)

Exercise

CSE 414 - 2019sp 141

Compute the total income per month
Show only months with less than 10 items sold
Order by quantity sold and display as “TotalSold”

SELECT month, sum(price*quantity),
sum(quantity) as TotalSold

FROM Purchase
GROUP BY month
HAVING sum(quantity) < 10
ORDER BY sum(quantity)

Purchase(pid, product, price, quantity, month)

WHERE vs HAVING

• WHERE condition is applied to individual rows
– The rows may or may not contribute to the aggregate
– No aggregates allowed here
– Occasionally, some groups become empty and are

removed

• HAVING condition is applied to the entire group
– Entire group is returned, or removed
– May use aggregate functions on the group

CSE 414 - 2019sp 142

Mystery Query

143

SELECT month, sum(quantity), max(price)
FROM Purchase
GROUP BY month

What do they compute?

SELECT month, sum(quantity)
FROM Purchase
GROUP BY month

SELECT month
FROM Purchase
GROUP BY month

Purchase(pid, product, price, quantity, month)

Mystery Query

144

SELECT month, sum(quantity), max(price)
FROM Purchase
GROUP BY month

What do they compute?

SELECT month, sum(quantity)
FROM Purchase
GROUP BY month

SELECT month
FROM Purchase
GROUP BY month

Lesson:
DISTINCT is
a special case
of GROUP BY

Purchase(pid, product, price, quantity, month)

Aggregate + Join

Product(product_id,pname,manufacturer)
Purchase(pid,product_id,price,month)

For each manufacturer, compute how many products
with price > $100 they sold

Aggregate + Join
For each manufacturer, compute how many products
with price > $100 they sold
Problem: manufacturer is in Product, price is in Purchase...

Product(product_id,pname,manufacturer)
Purchase(pid,product_id,price,month)

Aggregate + Join
For each manufacturer, compute how many products
with price > $100 they sold
Problem: manufacturer is in Product, price is in Purchase...

-- step 1: think about their join
SELECT ...
FROM Product x, Purchase y
WHERE x.product_id = y.product_id
and y.price > 100

manu
facturer ... price ...

Hitachi 150

Canon 300

Hitachi 180

Product(product_id,pname,manufacturer)
Purchase(pid,product_id,price,month)

Aggregate + Join

-- step 2: do the group-by on the join
SELECT x.manufacturer, count(*)
FROM Product x, Purchase y
WHERE x.product_id = y.product_id
and y.price > 100

GROUP BY x.manufacturer

manu
facturer count(*)

Hitachi 2

Canon 1

...

For each manufacturer, compute how many products
with price > $100 they sold
Problem: manufacturer is in Product, price is in Purchase...

-- step 1: think about their join
SELECT ...
FROM Product x, Purchase y
WHERE x.product_id = y.product_id
and y.price > 100

manu
facturer ... price ...

Hitachi 150

Canon 300

Hitachi 180

Product(product_id,pname,manufacturer)
Purchase(pid,product_id,price,month)

Aggregate + Join

SELECT x.manufacturer, y.month, count(*)
FROM Product x, Purchase y
WHERE x.product_id = y.product_id
and y.price > 100

GROUP BY x.manufacturer, y.month
manu

facturer month count(*)

Hitachi Jan 2

Hitachi Feb 1

Canon Jan 3

...

Variant:
For each manufacturer, compute how many products
with price > $100 they sold in each month

Product(product_id,pname,manufacturer)
Purchase(pid,product_id,price,month)

Including Empty Groups

• In the result of a group by query, there
is one row per group in the result

CSE 414 - 2019sp 150

SELECT x.manufacturer, count(*)
FROM Product x, Purchase y
WHERE x.product_id= y.product_id
GROUP BY x.manufacturer

Count(*) is
never 0

FWGHOS
Product(product_id,pname,manufacturer)
Purchase(pid,product_id,price,month)

Including Empty Groups

pname manufacturer …

Gizmo GizmoWorks

Camera Canon

OneClick Hitachi

product price ...

Camera 150

Camera 300

OneClick 180

pname manu
facturer … manu

facturer price …

Camera Canon Canon 150

Camera Canon Canon 300

OneClick Hitachi Hitachi 180

SELECT x.manufacturer, count(*)
FROM Product x, Purchase y
WHERE x.product_id= y.product_id
GROUP BY x.manufacturer

Product Purchase

Join(Product, Purchase)

manufacturer Count(*)

Canon 2

Hitachi 1

Final results

No
GizmoWorks!

Including Empty Groups

CSE 414 - 2019sp 152

SELECT x.manufacturer, count(y.pid)
FROM Product x LEFT OUTER JOIN Purchase y
ON x.product_id = y.product_id
GROUP BY x.manufacturer

Count(pid) is 0
when all pid’s in

the group are
NULL

Including Empty Groups

prod_id manufacturer …

Gizmo GizmoWorks

Camera Canon

OneClick Hitachi

prod_id price ...

Camera 150

Camera 300

OneClick 180

prod_id manufacturer … prod_id price …

Camera Canon Camera 150

Camera Canon Camera 300

OneClick Hitachi OneClick 180

Gizmo GizmoWorks … NULL NULL NULL

SELECT x.manufacturer, count(y.pid)
FROM Product x LEFT OUTER JOIN Purchase y
ON x.product_id = y.product_id
GROUP BY x.manufacturer

Product Purchase

Left Outer Join(Product, Purchase)

manufacturer Count(y.pid)

Canon 2

Hitachi 1

GizmoWorks 0

Final results

GizmoWorks
is paired with

NULLs

Why 0 for
GizmoWorks?

Including Empty Groups

prod_id manufacturer …

Gizmo GizmoWorks

Camera Canon

OneClick Hitachi

product price ...

Camera 150

Camera 300

OneClick 180

prod_id manufacturer … product price …

Camera Canon Camera 150

Camera Canon Camera 300

OneClick Hitachi OneClick 180

Gizmo GizmoWorks … NULL NULL NULL

SELECT x.manufacturer, count(*)
FROM Product x LEFT OUTER JOIN Purchase y
ON x.product_id = y.product_id
GROUP BY x.manufacturer

Product Purchase

Left Outer Join(Product, Purchase)

manufacturer Count(*)

Canon 2

Hitachi 1

GizmoWorks 1

Final results

Probably not
what we want!

Introduction to Data Management
CSE 414

Lecture 6: Nested Queries in SQL

CSE 414 - 2019sp 155

Announcements

• No lecture on Monday, 4/15
• Makeup lecture on Thursday, 4/18,

5:30-6:20, in G20

• Webquiz tomorrow

• Homework 2 due on Monday
CSE 414 - 2019sp 156

What have we learned so far

• Data models
• Relational data model

– Instance: relations
– Schema: table with attribute names
– Language: SQL

CSE 414 - 2019sp 157

What have we learned so far
SQL features
• Projections
• Selections
• Joins (inner and outer)
• Aggregates
• Group by
• Inserts, updates, and deletes

Make sure you read the textbook!

158

Lecture Goals

• Today we will learn how to write (even)
more powerful SQL queries

• Reading: Ch. 6.3

CSE 414 - 2019sp 159

Subqueries
• A subquery is a SQL query nested inside a larger query
• Such inner-outer queries are called nested queries
• A subquery may occur in:

– A SELECT clause
– A FROM clause
– A WHERE clause

• Rule of thumb: avoid nested queries when possible
– But sometimes it’s impossible, as we will see

CSE 414 - 2019sp 160

Subqueries…
• Can return a single value to be included in a SELECT

clause
• Can return a relation to be included in the FROM

clause, aliased using a tuple variable
• Can return a single value to be compared with

another value in a WHERE clause
• Can return a relation to be used in the WHERE or

HAVING clause under an existential quantifier

CSE 414 - 2019sp 161

1. Subqueries in SELECT

CSE 414 - 2019sp 162

Product (pname, price, cid)
Company (cid, cname, city)

For each product return the city where it is manufactured

SELECT X.pname, (SELECT Y.city
FROM Company Y
WHERE Y.cid=X.cid) as City

FROM Product X

What happens if the subquery returns more than one city?
We get a runtime error

(and SQLite simply ignores the extra values…)

“correlated
subquery”

1. Subqueries in SELECT

CSE 414 - 2019sp 163

Whenever possible, don’t use a nested queries:

SELECT X.pname, Y.city
FROM Product X, Company Y
WHERE X.cid=Y.cid

=

SELECT X.pname, (SELECT Y.city
FROM Company Y
WHERE Y.cid=X.cid) as City

FROM Product X

Product (pname, price, cid)
Company (cid, cname, city)

We have
“unnested”
the query

1. Subqueries in SELECT

CSE 414 - 2019sp 164

Compute the number of products made by each company

Product (pname, price, cid)
Company (cid, cname, city)

1. Subqueries in SELECT

CSE 414 - 2019sp 165

Compute the number of products made by each company

SELECT C.cid, C.cname, (SELECT count(*)
FROM Product P
WHERE P.cid=C.cid)

FROM Company C

Product (pname, price, cid)
Company (cid, cname, city)

1. Subqueries in SELECT

CSE 414 - 2019sp 166

Compute the number of products made by each company

SELECT C.cid, C.cname, (SELECT count(*)
FROM Product P
WHERE P.cid=C.cid)

FROM Company C

Better: we can
unnest using a
GROUP BY

SELECT C.cid, C.cname, count(*)
FROM Company C, Product P
WHERE C.cid=P.cid
GROUP BY C.cid, C.cname

Product (pname, price, cid)
Company (cid, cname, city)

1. Subqueries in SELECT

CSE 414 - 2019sp 167

But are these really equivalent?
SELECT C.cid, C.cname, (SELECT count(*)

FROM Product P
WHERE P.cid=C.cid)

FROM Company C

SELECT C.cid, C.cname, count(*)
FROM Company C, Product P
WHERE C.cid=P.cid
GROUP BY C.cid, C.cname

Product (pname, price, cid)
Company (cid, cname, city)

1. Subqueries in SELECT

CSE 414 - 2019sp 168

But are these really equivalent?
SELECT C.cid, C.cname, (SELECT count(*)

FROM Product P
WHERE P.cid=C.cid)

FROM Company C

No! Different results if a
company has no products

SELECT C.cid, C.cname, count(*)
FROM Company C, Product P
WHERE C.cid=P.cid
GROUP BY C.cid, C.cname

SELECT C.cid, C.cname, count(pname)
FROM Company C LEFT OUTER JOIN Product P
ON C.cid=P.cid
GROUP BY C.cid, C.cname

Product (pname, price, cid)
Company (cid, cname, city)

Recall: count
of an empty

table is 0

2. Subqueries in FROM

CSE 414 - 2019sp 169

Find all products whose prices is > 20 and < 500

Product (pname, price, cid)
Company (cid, cname, city)

2. Subqueries in FROM

CSE 414 - 2019sp 170

Find all products whose prices is > 20 and < 500

SELECT X.pname
FROM (SELECT *

FROM Product AS Y
WHERE price > 20) as X

WHERE X.price < 500

Product (pname, price, cid)
Company (cid, cname, city)

2. Subqueries in FROM

CSE 414 - 2019sp 171

Find all products whose prices is > 20 and < 500

SELECT X.pname
FROM (SELECT *

FROM Product AS Y
WHERE price > 20) as X

WHERE X.price < 500

Try unnest this query !

Product (pname, price, cid)
Company (cid, cname, city)

2. Subqueries in FROM

CSE 414 - 2019sp 172

Find all products whose prices is > 20 and < 500

SELECT X.pname
FROM (SELECT *

FROM Product AS Y
WHERE price > 20) as X

WHERE X.price < 500

Try unnest this query !

Product (pname, price, cid)
Company (cid, cname, city)

Side note: This is not a
correlated subquery. (why?)

2. Subqueries in FROM

Sometimes we need to compute an
intermediate table only to use it later in a
SELECT-FROM-WHERE
• Option 1: use a subquery in the FROM

clause
• Option 2: use the WITH clause

CSE 414 - 2019sp 173

2. Subqueries in FROM

CSE 414 - 2019sp 174

SELECT X.pname
FROM (SELECT *

FROM Product AS Y
WHERE price > 20) as X

WHERE X.price < 500

Product (pname, price, cid)
Company (cid, cname, city)

=
WITH myTable AS (SELECT * FROM Product AS Y WHERE price > 20)
SELECT X.pname
FROM myTable as X
WHERE X.price < 500

A subquery whose
result we called myTable

3. Subqueries in WHERE

CSE 414 - 2019sp 175

Find all companies that make some products with price < 200

Product (pname, price, cid)
Company (cid, cname, city)

3. Subqueries in WHERE

CSE 414 - 2019sp 176

Find all companies that make some products with price < 200

Existential quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

3. Subqueries in WHERE

CSE 414 - 2019sp 177

Find all companies that make some products with price < 200

SELECT C.cid, C.cname
FROM Company C
WHERE EXISTS (SELECT *

FROM Product P
WHERE C.cid = P.cid and P.price < 200)

Existential quantifiers

Using EXISTS:

Product (pname, price, cid)
Company (cid, cname, city)

3. Subqueries in WHERE

CSE 414 - 2019sp 178

SELECT C.cid, C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price < 200)

Using IN

Find all companies that make some products with price < 200

Existential quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

3. Subqueries in WHERE

CSE 414 - 2019sp 179

SELECT C.cid, C.cname
FROM Company C
WHERE 200 > ANY (SELECT price

FROM Product P
WHERE P.cid = C.cid)

Using ANY:

Find all companies that make some products with price < 200

Existential quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

3. Subqueries in WHERE

CSE 414 - 2019sp 180

SELECT C.cid, C.cname
FROM Company C
WHERE 200 > ANY (SELECT price

FROM Product P
WHERE P.cid = C.cid)

Using ANY:

Find all companies that make some products with price < 200

Existential quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

Not supported
in sqlite

3. Subqueries in WHERE

CSE 414 - 2019sp 181

SELECT DISTINCT C.cid, C.cname
FROM Company C, Product P
WHERE C.cid = P.cid and P.price < 200

Now let’s unnest it:

Find all companies that make some products with price < 200

Existential quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

3. Subqueries in WHERE

CSE 414 - 2019sp 182

SELECT DISTINCT C.cid, C.cname
FROM Company C, Product P
WHERE C.cid = P.cid and P.price < 200

Existential quantifiers are easy! J

Now let’s unnest it:

Find all companies that make some products with price < 200

Existential quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

3. Subqueries in WHERE

CSE 414 - 2019sp 183

same as:

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies that make only products with price < 200

Find all companies s.t. all their products have price < 200

3. Subqueries in WHERE

CSE 414 - 2019sp 184

same as:

Universal quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies that make only products with price < 200

Find all companies s.t. all their products have price < 200

3. Subqueries in WHERE

CSE 414 - 2019sp 185

Universal quantifiers are hard! L

same as:

Universal quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies that make only products with price < 200

Find all companies s.t. all their products have price < 200

3. Subqueries in WHERE

CSE 414 - 2019sp 186

1. Find the other companies that make some product ≥ 200

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies s.t. all their products have price < 200

… …which ones?

3. Subqueries in WHERE

CSE 414 - 2019sp 187

1. Find the other companies that make some product ≥ 200

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies s.t. all their products have price < 200

3. Subqueries in WHERE

CSE 414 - 2019sp 188

1. Find the other companies that make some product ≥ 200
SELECT C.cid, C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price >= 200)

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies s.t. all their products have price < 200

3. Subqueries in WHERE

CSE 414 - 2019sp 189

2. Find all companies s.t. all their products have price < 200

1. Find the other companies that make some product ≥ 200
SELECT C.cid, C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price >= 200)

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies s.t. all their products have price < 200

SELECT C.cid, C.cname
FROM Company C
WHERE C.cid NOT IN (SELECT P.cid

FROM Product P
WHERE P.price >= 200)

3. Subqueries in WHERE

CSE 414 - 2019sp 190

SELECT C.cid, C.cname
FROM Company C
WHERE NOT EXISTS (SELECT *

FROM Product P
WHERE P.cid = C.cid and P.price >= 200)

Using EXISTS:

Universal quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies s.t. all their products have price < 200

3. Subqueries in WHERE

CSE 414 - 2019sp 191

SELECT C.cid, C.cname
FROM Company C
WHERE 200 >= ALL (SELECT price

FROM Product P
WHERE P.cid = C.cid)

Using ALL:

Universal quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies s.t. all their products have price < 200

3. Subqueries in WHERE

CSE 414 - 2019sp 192

SELECT C.cid, C.cname
FROM Company C
WHERE 200 >= ALL (SELECT price

FROM Product P
WHERE P.cid = C.cid)

Using ALL:

Universal quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies s.t. all their products have price < 200

Not supported
in sqlite

Question for Database Theory
Fans and their Friends

• Can we unnest the universal quantifier
query?

• We need to first discuss the concept of
monotonicity

CSE 414 - 2019sp 193

Monotone Queries
• Definition A query Q is monotone if:

– Whenever we add tuples to one or more input tables, the
answer to the query will not lose any output tuple

CSE 414 - 2019sp 194

Product (pname, price, cid)
Company (cid, cname, city)

Monotone Queries
• Definition A query Q is monotone if:

– Whenever we add tuples to one or more input tables, the
answer to the query will not lose any output tuple

CSE 414 - 2019sp 195

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c004

Camera 149.99 c003

Product (pname, price, cid)
Company (cid, cname, city)

cid cname city

c002 Sunworks Bonn

c001 DB Inc. Lyon

c003 Builder Lodtz

Product Company

Q pname city

Gizmo Lyon

Camera Lodtz

Monotone Queries
• Definition A query Q is monotone if:

– Whenever we add tuples to one or more input tables, the
answer to the query will not lose any output tuple

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c004

Camera 149.99 c003

Product (pname, price, cid)
Company (cid, cname, city)

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c004

Camera 149.99 c003

iPad 499.99 c001

cid cname city

c002 Sunworks Bonn

c001 DB Inc. Lyon

c003 Builder Lodtz

Product Company
pname city

Gizmo Lyon

Camera Lodtz

pname city

Gizmo Lyon

Camera Lodtz

iPad Lyon

Product Company

Q

Qcid cname city

c002 Sunworks Bonn

c001 DB Inc. Lyon

c003 Builder Lodtz

So far it looks monotone...

Monotone Queries
• Definition A query Q is monotone if:

– Whenever we add tuples to one or more input tables, the
answer to the query will not lose any output tuple

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c004

Camera 149.99 c003

Product (pname, price, cid)
Company (cid, cname, city)

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c004

Camera 149.99 c003

iPad 499.99 c001

cid cname city

c002 Sunworks Bonn

c001 DB Inc. Lyon

c003 Builder Lodtz

Product Company
pname city

Gizmo Lyon

Camera Lodtz

pname city

Gizmo Lodtz

Camera Lodtz

iPad Lyon

Product Company

Q

Qcid cname city

c002 Sunworks Bonn

c001 DB Inc. Lyon

c003 Builder Lodtz

c004 Crafter Lodtz

Q is not monotone!

Monotone Queries
• Theorem: If Q is a SELECT-FROM-WHERE query

that does not have subqueries, and no aggregates,
then it is monotone.

CSE 414 - 2019sp 198

Monotone Queries
• Theorem: If Q is a SELECT-FROM-WHERE query

that does not have subqueries, and no aggregates,
then it is monotone.

• Proof. We use the nested loop semantics: if we
insert a tuple in a relation Ri, this will not remove any
tuples from the answer

CSE 414 - 2019sp 199

SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

for x1 in R1 do
for x2 in R2 do

…
for xn in Rn do
if Conditions
output (a1,…,ak)

Monotone Queries
• Theorem: If Q is a SELECT-FROM-WHERE query

that does not have subqueries, and no aggregates,
then it is monotone.

• Proof. We use the nested loop semantics: if we
insert a tuple in a relation Ri, this will not remove any
tuples from the answer

CSE 414 - 2019sp 200

SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

for x1 in R1 do
for x2 in R2 do

…
for xn in Rn do
if Conditions
output (a1,…,ak)

Add a tuple to R2…

Monotone Queries
• Theorem: If Q is a SELECT-FROM-WHERE query

that does not have subqueries, and no aggregates,
then it is monotone.

• Proof. We use the nested loop semantics: if we
insert a tuple in a relation Ri, this will not remove any
tuples from the answer

CSE 414 - 2019sp

SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

for x1 in R1 do
for x2 in R2 do

…
for xn in Rn do
if Conditions
output (a1,…,ak)

Add a tuple to R2…

…can’t lose anything here.

Monotone Queries
• The query:

is not monotone

202

Find all companies s.t. all their products have price < 200

Product (pname, price, cid)
Company (cid, cname, city)

Monotone Queries
• The query:

is not monotone

203

Find all companies s.t. all their products have price < 200

pname price cid

Gizmo 19.99 c001

cid cname city

c001 Sunworks Bonn

cname

Sunworks

Product (pname, price, cid)
Company (cid, cname, city)

Monotone Queries
• The query:

is not monotone

• Consequence: If a query is not monotone, then we
cannot write it as a SELECT-FROM-WHERE query
without nested subqueries

204

Find all companies s.t. all their products have price < 200

pname price cid

Gizmo 19.99 c001

cid cname city

c001 Sunworks Bonn

cname

Sunworks

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c001

cid cname city

c001 Sunworks Bonn

cname

Product (pname, price, cid)
Company (cid, cname, city)

Queries that must be nested

• Queries with universal quantifiers or with
negation

CSE 414 - 2019sp 205

Queries that must be nested

• Queries with universal quantifiers or with
negation

• Queries with aggregates are usually not
monotone
– sum(..) and count(*) are NOT monotone,

because they do not satisfy set containment
– select count(*) from R is not monotone!

CSE 414 - 2019sp 206

Introduction to Data Management
CSE 414

Lecture 7-8: SQL Wrap-up
Relational Algebra

CSE 414 - 2019sp 207

Announcements

• Webquiz tonight

• Makeup lecture tomorrow, 5:30pm, this
room

208

GROUP BY v.s. Nested
Queries

CSE 414 - 2019sp 209

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

SELECT DISTINCT x.product, (SELECT Sum(y.quantity)
FROM Purchase y
WHERE x.product = y.product
AND y.price > 1)

AS TotalSales
FROM Purchase x
WHERE x.price > 1

Why twice ?

Purchase(pid, product, quantity, price)

More Unnesting

CSE 414 - 2019sp 210

Author(login,name)
Wrote(login,url)

Find authors who wrote ≥ 10 documents:

More Unnesting

CSE 414 - 2019sp 211

SELECT DISTINCT Author.name
FROM Author
WHERE (SELECT count(Wrote.url)

FROM Wrote
WHERE Author.login=Wrote.login)

>= 10

This is
SQL by
a novice

Attempt 1: with nested queries

Author(login,name)
Wrote(login,url)

Find authors who wrote ≥ 10 documents:

More Unnesting

CSE 414 - 2019sp 212

Attempt 1: with nested queries

Author(login,name)
Wrote(login,url)

Find authors who wrote ≥ 10 documents:

SELECT Author.name
FROM Author, Wrote
WHERE Author.login=Wrote.login
GROUP BY Author.name
HAVING count(wrote.url) >= 10

This is
SQL by

an expert

Attempt 2: using GROUP BY and HAVING

Finding Witnesses

CSE 414 - 2019sp 213

Product (pname, price, cid)
Company (cid, cname, city)

For each city, find the most expensive product made in that city

Finding Witnesses

CSE 414 - 2019sp 214

SELECT x.city, max(y.price)
FROM Company x, Product y
WHERE x.cid = y.cid
GROUP BY x.city;

Finding the maximum price is easy…

But we need the witnesses, i.e., the products with max price

For each city, find the most expensive product made in that city

Product (pname, price, cid)
Company (cid, cname, city)

Finding Witnesses

CSE 414 - 2019sp 215

To find the witnesses, compute the maximum price
in a subquery (in FROM or in WITH)

Product (pname, price, cid)
Company (cid, cname, city)

WITH CityMax AS
(SELECT x.city, max(y.price) as maxprice
FROM Company x, Product y
WHERE x.cid = y.cid
GROUP BY x.city)

Finding Witnesses

CSE 414 - 2019sp 216

To find the witnesses, compute the maximum price
in a subquery (in FROM or in WITH)

Product (pname, price, cid)
Company (cid, cname, city)

WITH CityMax AS
(SELECT x.city, max(y.price) as maxprice
FROM Company x, Product y
WHERE x.cid = y.cid
GROUP BY x.city)

SELECT DISTINCT u.city, v.pname, v.price
FROM Company u, Product v, CityMax w
WHERE u.cid = v.cid

and u.city = w.city
and v.price = w.maxprice;

Finding Witnesses

CSE 414 - 2019sp 217

To find the witnesses, compute the maximum price
in a subquery (in FROM or in WITH)

SELECT DISTINCT u.city, v.pname, v.price
FROM Company u, Product v,

(SELECT x.city, max(y.price) as maxprice
FROM Company x, Product y
WHERE x.cid = y.cid
GROUP BY x.city) w

WHERE u.cid = v.cid
and u.city = w.city
and v.price = w.maxprice;

Product (pname, price, cid)
Company (cid, cname, city)

Finding Witnesses

CSE 414 - 2019sp 218

Or we can use a subquery in where clause

SELECT u.city, v.pname, v.price
FROM Company u, Product v
WHERE u.cid = v.cid

and v.price >= ALL (SELECT y.price
FROM Company x, Product y
WHERE u.city=x.city
and x.cid=y.cid);

Product (pname, price, cid)
Company (cid, cname, city)

Finding Witnesses

CSE 414 - 2019sp 219

There is a more concise solution here:

SELECT u.city, v.pname, v.price
FROM Company u, Product v, Company x, Product y
WHERE u.cid = v.cid

and u.city = x.city
and x.cid = y.cid

GROUP BY u.city, v.pname, v.price
HAVING v.price = max(y.price)

Product (pname, price, cid)
Company (cid, cname, city)

SQL: Our first language for
the relational model

• Projections
• Selections
• Joins (inner and outer)
• Inserts, updates, and deletes
• Aggregates
• Grouping
• Ordering
• Nested queries

CSE 414 - 2019sp 220

Relational Algebra

CSE 414 - 2019sp 221

Relational Algebra

• In SQL we say what we want
• In RA we can express how to get it
• RA = set-at-a-time algebra for relations

• Every DBMS implementations converts
a SQL query to RA in order to execute it

• An RA expression is called a query plan
CSE 414 - 2019sp 222

Basics

• Inputs: Relations (with attributes)
• RA: defines a function on relations

– Returns a relation
– Can be composed together
– Often displayed using a tree rather than

linearly
– Use Greek symbols: σ, p, δ, etc

CSE 414 - 2019sp 223

Sets v.s. Bags

• Sets: {a,b,c}, {a,d,e,f}, { }, . . .
• Bags: {a, a, b, c}, {b, b, b, b, b}, . . .

Relational Algebra has two flavors:
• Set semantics = standard Relational Algebra
• Bag semantics = extended Relational Algebra

DB systems implement bag semantics (Why?)
CSE 414 - 2019sp 224

Relational Algebra Operators
• Union ∪, intersection ∩, difference -
• Selection σ
• Projection π
• Cartesian product ×, join ⨝
• (Rename ρ)
• Duplicate elimination δ
• Grouping and aggregation ɣ
• Sorting 𝛕

CSE 414 - 2019sp 225

RA

Extended RA

All operators take in 1 or 2 relations as inputs
and return another relation

Union and Difference

CSE 414 - 2019sp 226

What do they mean over bags ?

R1 ∪ R2
R1 – R2

Only make sense if R1, R2 have the same schema

What about Intersection ?

• Derived operator using minus

• Derived using join

CSE 414 - 2019sp 227

R1 ∩ R2 = R1 – (R1 – R2)

R1 ∩ R2 = R1 ⨝ R2

Selection
• Returns all tuples which satisfy a condition

• Examples
– σSalary > 40000 (Employee)
– σname = “Smith” (Employee)

• The condition c can be =, <, <=, >, >=, <>
combined with AND, OR, NOT

CSE 414 - 2019sp 228

σc(R)

σSalary > 40000 (Employee)

SSN Name Salary
1234545 John 20000
5423341 Smith 60000
4352342 Fred 50000

SSN Name Salary
5423341 Smith 60000
4352342 Fred 50000

Employee

CSE 414 - 2019sp 229

Projection
• Eliminates columns

• Example: project social-security number
and names:
– πSSN, Name (Employee) à Answer(SSN, Name)

CSE 414 - 2019sp 230

π A1,…,An (R)

Different semantics over sets or bags! Why?

π Name,Salary (Employee)

SSN Name Salary
1234545 John 20000
5423341 John 60000
4352342 John 20000

Name Salary
John 20000
John 60000
John 20000

Employee

Name Salary
John 20000
John 60000

Bag semantics Set semantics

CSE 414 - 2019sp 231Which is more efficient?

Composing RA Operators

CSE 414 - 2019sp 232

no name zip disease
1 p1 98125 flu
2 p2 98125 heart
3 p3 98120 lung
4 p4 98120 heart

Patient

σdisease=‘heart’(Patient)
no name zip disease
2 p2 98125 heart
4 p4 98120 heart

zip disease
98125 flu
98125 heart
98120 lung
98120 heart

πzip,disease(Patient)

πzip,disease(σdisease=‘heart’(Patient))
zip disease
98125 heart
98120 heart

Cartesian Product

• Each tuple in R1 with each tuple in R2

• Rare in practice; mainly used to express joins

CSE 414 - 2019sp 233

R1 × R2

Name SSN
John 999999999
Tony 777777777

Employee
EmpSSN DepName
999999999 Emily
777777777 Joe

Dependent

Employee × Dependent
Name SSN EmpSSN DepName
John 999999999 999999999 Emily
John 999999999 777777777 Joe
Tony 777777777 999999999 Emily
Tony 777777777 777777777 Joe

Cross-Product Example

CSE 414 - 2019sp 234

Renaming

• Changes the schema, not the instance

• Example:
– Given Employee(Name, SSN)
– ρN, S(Employee) à Answer(N, S)

CSE 414 - 2019sp 235

ρB1,…,Bn (R)

Natural Join

• Meaning: R1⨝R2 = PA(sq (R1 × R2))

• Where:
– Selection sq checks equality of all common

attributes (i.e., attributes with same names)
– Projection PA eliminates duplicate common

attributes
CSE 414 - 2019sp 236

R1 ⨝R2

Natural Join Example

CSE 414 - 2019sp 237

A B
X Y
X Z
Y Z
Z V

B C
Z U
V W
Z V

A B C
X Z U
X Z V
Y Z U
Y Z V
Z V W

R S

R ⨝ S =
PABC(sR.B=S.B(R × S))

Natural Join Example 2

CSE 414 - 2019sp 238

age zip disease
54 98125 heart
20 98120 flu

AnonPatient P Voters V

P V

name age zip
Alice 54 98125
Bob 20 98120

age zip disease name

54 98125 heart Alice

20 98120 flu Bob

Natural Join
• Given schemas R(A, B, C, D), S(A, C, E),

what is the schema of R ⨝ S ?

• Given R(A, B, C), S(D, E), what is R ⨝ S?

• Given R(A, B), S(A, B), what is R ⨝ S?

CSE 414 - 2019sp 239

Theta Join

• A join that involves a predicate

• Here q can be any condition
• No projection in this case!
• For our voters/patients example:

240

R1 ⨝q R2 = sq (R1× R2)

P ⨝ P.zip = V.zip and P.age >= V.age -1 and P.age <= V.age +1 V

AnonPatient (age, zip, disease)
Voters (name, age, zip)

Equijoin
• A theta join where q is an equality predicate

• By far the most used variant of join in practice
• What is the relationship with natural join?

CSE 414 - 2019sp 241

R1 ⨝q R2 = sq (R1 × R2)

Equijoin Example

CSE 414 - 2019sp 242

age zip disease
54 98125 heart
20 98120 flu

AnonPatient P Voters V

P P.age=V.age V

name age zip
p1 54 98125
p2 20 98120

P.age P.zip P.disease V.name V.age V.zip

54 98125 heart p1 54 98125

20 98120 flu p2 20 98120

Natural Join Example

CSE 414 - 2019sp 243

age zip disease
54 98125 heart
20 98120 flu

AnonPatient P Voters V

P V

name age zip
p1 54 98125
p2 20 98120

age zip disease name V.age V.zip

54 98125 heart p1 54 98125

20 98120 flu p2 20 98120

Join Summary
• Theta-join: R ⨝q S = σq (R × S)

– Join of R and S with a join condition θ
– Cross-product followed by selection θ
– No projection

• Equijoin: R ⨝θ S = σθ (R × S)
– Join condition θ consists only of equalities
– No projection

• Natural join: R ⨝ S = πA (σθ (R × S))
– Equality on all fields with same name in R and in S
– Projection πA drops all redundant attributes

CSE 414 - 2019sp 244

So Which Join Is It ?

When we write R ⨝ S we usually mean an
equijoin, but we often omit the equality
predicate when it is clear from the context

CSE 414 - 2019sp 245

More Joins

• Outer join
– Include tuples with no matches in the output
– Use NULL values for missing attributes
– Does not eliminate duplicate columns

• Variants
– Left outer join
– Right outer join
– Full outer join

CSE 414 - 2019sp 246

Outer Join Example

CSE 414 - 2019sp 247

age zip disease
54 98125 heart
20 98120 flu
33 98120 lung

AnonPatient P

P ⋊ J

P.age P.zip P.disease J.job J.age J.zip

54 98125 heart lawyer 54 98125

20 98120 flu cashier 20 98120

33 98120 lung null null null

AnnonJob J
job age zip
lawyer 54 98125
cashier 20 98120

Some Examples
Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)

Name of supplier of parts with size greater than 10
πsname(Supplier ⨝ (Supply ⨝ (σpsize>10 (Part)))

Name of supplier of red parts or parts with size greater than 10
πsname(Supplier ⨝ (Supply ⨝ (σ psize>10 (Part) ∪ σpcolor=‘red’ (Part))))
πsname(Supplier ⨝ (Supply ⨝ (σ psize>10 ∨ pcolor=‘red’ (Part))))

Can be represented as trees as well
CSE 414 - 2019sp 248

Some Examples
Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)

Name of supplier of parts with size greater than 10
Project[sname](Supplier Join[sno=sno]

(Supply Join[pno=pno] (Select[psize>10](Part))))

Name of supplier of red parts or parts with size greater than 10
Project[sname](Supplier Join[sno=sno]

(Supply Join[pno=pno]
((Select[psize>10](Part)) Union

(Select[pcolor=‘red’](Part)))

Project[sname](Supplier Join[sno=sno] (Supply Join[pno=pno]
(Select[psize>10 OR pcolor=‘red’](Part))))

Can be represented as trees as well 249

Representing RA Queries as Trees
Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)

250

Part

Supplyσpsize>10

πsname

Answer

Supplier

SELECT z.sname
FROM Part x, Supply y, Supplier z
WHERE x.psize > 10
and x.pno = y.pno
and y.sno = z.sno

πsname(Supplier ⨝ Supply ⨝ (σpsize>10 (Part))

Relational Algebra Operators
• Union ∪, intersection ∩, difference -
• Selection σ
• Projection π
• Cartesian product X, join ⨝
• (Rename ρ)
• Duplicate elimination δ
• Grouping and aggregation ɣ
• Sorting 𝛕

CSE 414 - 2019sp 251

RA

Extended RA

All operators take in 1 or 2 relations as inputs
and return another relation

Extended RA: Operators on
Bags

• Duplicate elimination d
• Grouping g

– Takes in relation and a list of grouping operations
(e.g., aggregates). Returns a new relation.

• Sorting t
– Takes in a relation, a list of attributes to sort on,

and an order. Returns a new relation.

CSE 414 - 2019sp 252

Using Extended RA Operators

CSE 414 - 2019sp 253

SELECT city, sum(quantity)
FROM sales
GROUP BY city
HAVING count(*) > 100

T1, T2 = temporary tables sales(product, city, quantity)

g city, sum(quantity)→q, count(*) → c

s c > 100

P city, q

Answer

T1(city,q,c)

T2(city,q,c)

Typical Plan for a Query (1/2)

CSE 414 - 2019sp 254

R S

join-condition

σselection-condition

πfields

join-condition

…

Answer
SELECT fields
FROM R, S, …
WHERE condition

Typical Plan for a Query (1/2)

255

πfields

ɣgroups, sum/count/min/max(fields)

σhaving-condition

σselection-condition

Join-condition

… …

SELECT fields
FROM R, S, …
WHERE condition
GROUP BY groups
HAVING condition

How about Subqueries?

CSE 414 - 2019sp 256

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’

and not exists
(SELECT *
FROM Supply P
WHERE P.sno = Q.sno

and P.price > 100)

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’

and not exists
(SELECT *
FROM Supply P
WHERE P.sno = Q.sno

and P.price > 100)

How about Subqueries?

CSE 414 - 2019sp 257

Correlation !

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’

and not exists
(SELECT *
FROM Supply P
WHERE P.sno = Q.sno

and P.price > 100)

How about Subqueries?

CSE 414 - 2019sp 258

De-Correlation

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’

and Q.sno not in
(SELECT P.sno
FROM Supply P
WHERE P.price > 100)

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’

and Q.sno not in
(SELECT P.sno
FROM Supply P
WHERE P.price > 100)

How about Subqueries?

CSE 414 - 2019sp 259

(SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’)

EXCEPT
(SELECT P.sno

FROM Supply P
WHERE P.price > 100)

EXCEPT = set difference

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

Un-nesting

(SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’)

EXCEPT
(SELECT P.sno

FROM Supply P
WHERE P.price > 100)

How about Subqueries?

CSE 414 - 2019sp 260

Supply

σsstate=‘WA’

Supplier

σPrice > 100

−
Finally…

πsnoπsno

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

Summary of RA and SQL

• SQL = a declarative language where we
say what data we want to retrieve

• RA = an algebra where we say how we
want to retrieve the data

• Theorem: SQL and RA can express
exactly the same class of queries

RDBMS translate SQL à RA, then optimize RA

Introduction to Data Management
CSE 414

Lectures 9-10: Datalog

CSE 414 - 2019sp 262

Class Overview

• Unit 1: Intro
• Unit 2: Relational Data Models and Query Languages

– Data models, SQL, Datalog, Relational Algebra
• Unit 3: Non-relational data
• Unit 4: RDMBS internals and query optimization
• Unit 5: Parallel query processing
• Unit 6: DBMS usability, conceptual design
• Unit 7: Transactions

CSE 414 - 2019sp 263

What is Datalog?
• Another query language for relational model

– Designed in the 80’s
– Simple, concise, elegant
– Extends relational queries with recursion

• Today is a hot topic:
– Souffle (we will use in HW4)
– Beyond databases in many research projects:

network protocols, static program analysis

264

• Open-source implementation of Datalog DBMS
• Under active development
• Commercial implementations are available

– More difficult to set up and use
• “sqlite” of Datalog

– Set-based rather than bag-based

• Install in your VM
– Run sudo yum install souffle in terminal
– More details in upcoming HW4

265

Why bother with yet another
relational query language?

266CSE 414 - 2019sp

Example: storing FB friends

CSE 414 - 2019sp 267

Peter

Mary John

Phil

As a graph

Or

Person1 Person2 is_friend
Peter John 1
John Mary 0
Mary Phil 1
Phil Peter 1
… … …

As a relation

We will learn the tradeoffs of different
data models later this quarter

Compute your friends graph

268

p1 p2 isFriend
Peter John 1
John Mary 0
Mary Phil 1
Phil Peter 1
… … …

Friends(p1, p2, isFriend)

SELECT f.p2
FROM Friends as f
WHERE f.p1 = ‘me’ AND f.isFriend = 1

My own friends
SELECT f1.p2
FROM Friends as f1,

(SELECT f.p2
FROM Friends as f
WHERE f.p1 = ‘me’ AND
f.isFriend = 1) as f2

WHERE f1.p1 = f2.p2 AND
f1.isFriend = 1

My FoF

When does it end???

Datalog allows us to write
recursive queries easily

My FoFoF… My FoFoFoF…

Datalog: Facts and Rules

CSE 414 - 2019sp 269

Facts = tuples in the database Rules = queries

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Schema

Datalog: Facts and Rules

CSE 414 - 2019sp 270

Facts = tuples in the database Rules = queries

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

.decl Actor(id:number, fname:symbol, lname:symbol)

.decl Casts(id:number, mid:number)

.decl Movie(id:number, name:symbol, year:number)

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Table declaration

Types in Souffle:
number

symbol (aka varchar)

Insert data

Datalog: Facts and Rules

CSE 414 - 2019sp 271

Facts = tuples in the database Rules = queries

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Q1(y) :- Movie(x,y,z), z=1940.

Datalog: Facts and Rules

CSE 414 - 2019sp 272

Facts = tuples in the database Rules = queries

Find Movies made in 1940

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Q1(y) :- Movie(x,y,z), z=1940.

Datalog: Facts and Rules

CSE 414 - 2019sp 273

Facts = tuples in the database Rules = queries

Find Movies made in 1940

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Q1(y) :- Movie(x,y,z), z=1940.

SELECT name
FROM Movie
WHERE year = 1940

SQL

Datalog: Facts and Rules

CSE 414 - 2019sp 274

Facts = tuples in the database Rules = queries

Find Movies made in 1940

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Q1(y) :- Movie(x,y,z), z=1940.

Order of variable matters!

Datalog: Facts and Rules

CSE 414 - 2019sp 275

Facts = tuples in the database Rules = queries

Find Movies made in 1940

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Q1(y) :- Movie(iDontCare,y,z),
z=1940.

Datalog: Facts and Rules

CSE 414 - 2019sp 276

Facts = tuples in the database Rules = queries

Find Movies made in 1940

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Q1(y) :- Movie(_,y,z), z=1940.

_ = “don’t care” variables

Datalog: Facts and Rules

CSE 414 - 2019sp 277

Facts = tuples in the database Rules = queries

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Q1(y) :- Movie(x,y,z), z=1940.

Q2(f,l) :- Actor(z,f,l), Casts(z,x),
Movie(x,y,1940).

Datalog: Facts and Rules

CSE 414 - 2019sp 278

Facts = tuples in the database Rules = queries

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Q1(y) :- Movie(x,y,z), z=1940.

Q2(f,l) :- Actor(z,f,l), Casts(z,x),
Movie(x,y,1940).

Datalog: Facts and Rules

CSE 414 - 2019sp 279

Facts = tuples in the database Rules = queries

Find Actors who acted in Movies made in 1940

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Q1(y) :- Movie(x,y,z), z=1940.

Q2(f,l) :- Actor(z,f,l), Casts(z,x),
Movie(x,y,1940).

Datalog: Facts and Rules

CSE 414 - 2019sp 280

Facts = tuples in the database Rules = queries

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Q3(f,l) :- Actor(z,f,l), Casts(z,x1), Movie(x1,y1,1910),
Casts(z,x2), Movie(x2,y2,1940).

Q1(y) :- Movie(x,y,z), z=1940.

Q2(f,l) :- Actor(z,f,l), Casts(z,x),
Movie(x,y,1940).

Datalog: Facts and Rules

CSE 414 - 2019sp 281

Facts = tuples in the database Rules = queries

Find Actors who acted in a Movie in 1940 and in one in 1910

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Q3(f,l) :- Actor(z,f,l), Casts(z,x1), Movie(x1,y1,1910),
Casts(z,x2), Movie(x2,y2,1940).

Q1(y) :- Movie(x,y,z), z=1940.

Q2(f,l) :- Actor(z,f,l), Casts(z,x),
Movie(x,y,1940).

Datalog: Facts and Rules

CSE 414 - 2019sp 282

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q3(f,l) :- Actor(z,f,l), Casts(z,x1), Movie(x1,y1,1910),
Casts(z,x2), Movie(x2,y2,1940).

Extensional Database Predicates = EDB = Actor, Casts, Movie
Intensional Database Predicates = IDB = Q1, Q2, Q3

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Q1(y) :- Movie(x,y,z), z=1940.

Q2(f,l) :- Actor(z,f,l), Casts(z,x),
Movie(x,y,1940).

Datalog: Terminology

CSE 414 - 2019sp 283

Q2(f, l) :- Actor(z,f,l), Casts(z,x), Movie(x,y,1940).

bodyhead

atom atom atom (aka subgoal)

f, l = head variables
x,y,z = existential variables

More Datalog Terminology

• Ri(argsi) called an atom, or a relational predicate
• Ri(argsi) evaluates to true when relation Ri

contains the tuple described by argsi.
– Example: Actor(344759, ‘Douglas’, ‘Fowley’) is true

• In addition we can also have arithmetic predicates
– Example: z > 1940.

• Book uses AND instead of ,

Q(args) :- R1(args), R2(args), ...

Q(args) :- R1(args) AND R2(args) ...

Datalog program
• A Datalog program consists of several

rules
• Importantly, rules may be recursive!

– Recall CSE 143!
• Usually there is one distinguished

predicate that’s the output
• We will show an example first, then give

the general semantics.
CSE 414 - 2019sp 285

Example

1

2

4

3

R encodes a graph
e.g., connected cities

1 2
2 1
2 3

1 4

3 4
4 5

R=

5

Example

1

2

4

3

1 2
2 1
2 3

1 4

3 4
4 5

R=

T(x,y) :- R(x,y).
T(x,y) :- R(x,z), T(z,y).

What does
it compute?

5

R encodes a graph
e.g., connected cities

Multiple rules for the
same IDB means OR

Example

1

2

4

3

1 2
2 1
2 3

1 4

3 4
4 5

R=

T(x,y) :- R(x,y).
T(x,y) :- R(x,z), T(z,y).

Initially:
T is empty.

5 What does
it compute?

R encodes a graph
e.g., connected cities

Example

1

2

4

3

1 2
2 1
2 3

1 4

3 4
4 5

R= Initially:
T is empty.

1 2

2 1

2 3

1 4

3 4

4 5

First iteration:
T =

5

Second rule
generates nothing
(because T is empty)

First rule generates this

T(x,y) :- R(x,y).
T(x,y) :- R(x,z), T(z,y).

What does
it compute?

R encodes a graph
e.g., connected cities

Example

1

2

4

3

1 2
2 1
2 3

1 4

3 4
4 5

R=

T(x,y) :- R(x,y).
T(x,y) :- R(x,z), T(z,y).

Initially:
T is empty.

1 2

2 1

2 3

1 4

3 4

4 5

Second iteration:
T =

1 2

2 1

2 3

1 4

3 4

4 5

1 1

2 2

1 3

2 4

1 5

3 5

First iteration:
T =

5 What does
it compute?

New facts

First rule generates this

Second rule generates this

R encodes a graph
e.g., connected cities

Example

1

2

4

3

1 2
2 1
2 3

1 4

3 4
4 5

R=

T(x,y) :- R(x,y).
T(x,y) :- R(x,z), T(z,y).

Initially:
T is empty.

1 2

2 1

2 3

1 4

3 4

4 5

Second iteration:
T =

1 2

2 1

2 3

1 4

3 4

4 5

1 1

2 2

1 3

2 4

1 5

3 5

First iteration:
T =

5

Third iteration:
T =

1 2

2 1

2 3

1 4

3 4

4 5

1 1

2 2

1 3

2 4

1 5

3 5

2 5

What does
it compute?

New fact

First rule

Second
rule

Both rules

R encodes a graph
e.g., connected cities

Example

1

2

4

3

1 2
2 1
2 3

1 4

3 4
4 5

R=

T(x,y) :- R(x,y).
T(x,y) :- R(x,z), T(z,y).

Initially:
T is empty.

1 2

2 1

2 3

1 4

3 4

4 5

Second iteration:
T =

1 2

2 1

2 3

1 4

3 4

4 5

1 1

2 2

1 3

2 4

1 5

3 5

First iteration:
T =

5

Third iteration:
T =

1 2

2 1

2 3

1 4

3 4

4 5

1 1

2 2

1 3

2 4

1 5

3 5

2 5

What does
it compute?

No
new
facts.
DONE

Fourth
iteration
T =
(same)

R encodes a graph
e.g., connected cities

Datalog Semantics
Fixpoint semantics
• Start:

IDB0 = empty relations
t = 0

Repeat:
IDBt+1 = Compute Rules(EDB, IDBt)
t = t+1

Until IDBt = IDBt-1

• Remark: since rules are monotone:
∅ = IDB0 ⊆IDB1 ⊆ IDB2 ⊆ ...

• It follows that a datalog program w/o functions
(+, *, ...) always terminates. (Why?)

Model of Datalog Program
1

2
3

1 2
2 3

R=

T(x,y) :- R(x,y).
T(x,y) :- R(x,z), T(z,y).

Model of Datalog Program
1

2
3

1 2
2 3

R=

T(x,y) :- R(x,y).
T(x,y) :- R(x,z), T(z,y).

A relation instance T
is called a model
if it satisfies these
logical formulas:

∀x ∀y (R(x,y) à T(x,y))
∀x ∀y ∀z (R(x,z)∧T(z,y) à T(x,y)

Model of Datalog Program
1

2
3

1 2
2 3

R=

T(x,y) :- R(x,y).
T(x,y) :- R(x,z), T(z,y).

A relation instance T
is called a model
if it satisfies these
logical formulas:

∀x ∀y (R(x,y) à T(x,y))
∀x ∀y ∀z (R(x,z)∧T(z,y) à T(x,y)

Equivalent to:
∀x ∀y (∃z R(x,z)∧T(z,y) à T(x,y)

Model of Datalog Program
1

2
3

1 2
2 3

R=

T(x,y) :- R(x,y).
T(x,y) :- R(x,z), T(z,y).

A relation instance T
is called a model
if it satisfies these
logical formulas:

∀x ∀y (R(x,y) à T(x,y))
∀x ∀y ∀z (R(x,z)∧T(z,y) à T(x,y)

Equivalent to:
∀x ∀y (∃z R(x,z)∧T(z,y) à T(x,y)

Which tables T
are models?

1 2

2 3

T=

Model of Datalog Program
1

2
3

1 2
2 3

R=

T(x,y) :- R(x,y).
T(x,y) :- R(x,z), T(z,y).

A relation instance T
is called a model
if it satisfies these
logical formulas:

∀x ∀y (R(x,y) à T(x,y))
∀x ∀y ∀z (R(x,z)∧T(z,y) à T(x,y)

Equivalent to:
∀x ∀y (∃z R(x,z)∧T(z,y) à T(x,y)

Which tables T
are models?

1 2

2 3

T=

No

Model of Datalog Program
1

2
3

1 2
2 3

R=

T(x,y) :- R(x,y).
T(x,y) :- R(x,z), T(z,y).

A relation instance T
is called a model
if it satisfies these
logical formulas:

∀x ∀y (R(x,y) à T(x,y))
∀x ∀y ∀z (R(x,z)∧T(z,y) à T(x,y)

Equivalent to:
∀x ∀y (∃z R(x,z)∧T(z,y) à T(x,y)

Which tables T
are models?

1 2

2 3

T=
1 2

2 3

1 3

No

Model of Datalog Program
1

2
3

1 2
2 3

R=

T(x,y) :- R(x,y).
T(x,y) :- R(x,z), T(z,y).

A relation instance T
is called a model
if it satisfies these
logical formulas:

∀x ∀y (R(x,y) à T(x,y))
∀x ∀y ∀z (R(x,z)∧T(z,y) à T(x,y)

Equivalent to:
∀x ∀y (∃z R(x,z)∧T(z,y) à T(x,y)

Which tables T
are models?

1 2

2 3

T=
1 2

2 3

1 3

No Yes

Model of Datalog Program
1

2
3

1 2
2 3

R=

T(x,y) :- R(x,y).
T(x,y) :- R(x,z), T(z,y).

A relation instance T
is called a model
if it satisfies these
logical formulas:

∀x ∀y (R(x,y) à T(x,y))
∀x ∀y ∀z (R(x,z)∧T(z,y) à T(x,y)

Equivalent to:
∀x ∀y (∃z R(x,z)∧T(z,y) à T(x,y)

Which tables T
are models?

1 2

2 3

T=
1 2

2 3

1 3

1 2

2 3

1 3

3 1

No Yes

Model of Datalog Program
1

2
3

1 2
2 3

R=

T(x,y) :- R(x,y).
T(x,y) :- R(x,z), T(z,y).

A relation instance T
is called a model
if it satisfies these
logical formulas:

∀x ∀y (R(x,y) à T(x,y))
∀x ∀y ∀z (R(x,z)∧T(z,y) à T(x,y)

Equivalent to:
∀x ∀y (∃z R(x,z)∧T(z,y) à T(x,y)

Which tables T
are models?

1 2

2 3

T=
1 2

2 3

1 3

1 2

2 3

1 3

3 1

No NoYes

Model of Datalog Program
1

2
3

1 2
2 3

R=

T(x,y) :- R(x,y).
T(x,y) :- R(x,z), T(z,y).

A relation instance T
is called a model
if it satisfies these
logical formulas:

∀x ∀y (R(x,y) à T(x,y))
∀x ∀y ∀z (R(x,z)∧T(z,y) à T(x,y)

Equivalent to:
∀x ∀y (∃z R(x,z)∧T(z,y) à T(x,y)

Which tables T
are models?

1 2

2 3

T=
1 2

2 3

1 3

1 2

2 3

1 3

3 1

1 1

1 2

1 3

2 1

2 2

2 3

3 1

3 2

3 3No NoYes

Model of Datalog Program
1

2
3

1 2
2 3

R=

T(x,y) :- R(x,y).
T(x,y) :- R(x,z), T(z,y).

A relation instance T
is called a model
if it satisfies these
logical formulas:

∀x ∀y (R(x,y) à T(x,y))
∀x ∀y ∀z (R(x,z)∧T(z,y) à T(x,y)

Equivalent to:
∀x ∀y (∃z R(x,z)∧T(z,y) à T(x,y)

Which tables T
are models?

1 2

2 3

T=
1 2

2 3

1 3

1 2

2 3

1 3

3 1

1 1

1 2

1 3

2 1

2 2

2 3

3 1

3 2

3 3No NoYes Yes

Model of Datalog Program
1

2
3

1 2
2 3

R=

T(x,y) :- R(x,y).
T(x,y) :- R(x,z), T(z,y).

A relation instance T
is called a model
if it satisfies these
logical formulas:

∀x ∀y (R(x,y) à T(x,y))
∀x ∀y ∀z (R(x,z)∧T(z,y) à T(x,y)

Equivalent to:
∀x ∀y (∃z R(x,z)∧T(z,y) à T(x,y)

Which tables T
are models?

1 2

2 3

T=
1 2

2 3

1 3

1 2

2 3

1 3

3 1

1 1

1 2

1 3

2 1

2 2

2 3

3 1

3 2

3 3

Notice: the datalog program
always computes the minimal model

No NoYes Yes

Three Equivalent Programs

CSE 414 - 2019sp 306

T(x,y) :- R(x,y).
T(x,y) :- R(x,z), T(z,y).

T(x,y) :- R(x,y).
T(x,y) :- T(x,z), R(z,y).

T(x,y) :- R(x,y).
T(x,y) :- T(x,z), T(z,y).

Right linear

Left linear

Non-linear

Question: which terminates in fewest iterations?

1

2

4

3

1 2
2 1
2 3

1 4

3 4
4 5

R=

5
R encodes a graph
e.g., connected cities

More Features

• Aggregates

• Grouping

• Negation

CSE 414 - 2019sp 307

Aggregates

CSE 414 - 2019sp 308

[aggregate name] <var> : { [relation to compute aggregate on] }

SELECT min(id) as minId
FROM Actor as a
WHERE a.name = ‘John’

Meaning (in SQL)

min x : { Actor(x, y, _), y = ‘John’ }

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Aggregates in Souffle:
• count
• min
• max
• sum

Q(minId) :- minId = min x : { Actor(x, y, _), y = ‘John’ }

Assign variable to
the value of the aggregate

Counting

CSE 414 - 2019sp 309

SELECT count(*) as c
FROM Actor as a
WHERE a.name = ‘John’

Meaning (in SQL, assuming no NULLs)

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Q(c) :- c = count : { Actor(_, y, _), y = ‘John’ }

No variable here!

Grouping

CSE 414 - 2019sp 310

SELECT m.year, count(*)
FROM Movie as m
GROUP BY m.year

Meaning (in SQL)

Q(y,c) :- Movie(_,_,y), c = count : { Movie(_,_,y) }

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Examples

CSE 414 - 2019sp 311

A genealogy database (parent/child)

Alice Bob

Carol

David

Eve

Fred
George

p c
Alice Carol
Bob Carol
Bob David
Carol Eve
…

ParentChild(p,c)

ParentChild

Count Descendants
For each person, count his/her descendants

Alice Bob

Carol

David

Eve

Fred
George

ParentChild(p,c)

Count Descendants
For each person, count his/her descendants

Alice Bob

Carol

David

Eve

Fred
George

p cnt
Alice 4
Bob 5
Carol 3
David 2
Fred 1

ParentChild(p,c)

Answer

Count Descendants
For each person, count his/her descendants

Alice Bob

Carol

David

Eve

Fred
George

p cnt
Alice 4
Bob 5
Carol 3
David 2
Fred 1

ParentChild(p,c)

Note: Eve and George do not appear in the answer (why?)

Answer

Count Descendants

CSE 414 - 2019sp 315

For each person, compute the total number of descendants

// for each person, compute his/her descendants

ParentChild(p,c)

Count Descendants

CSE 414 - 2019sp 316

For each person, compute the total number of descendants

// for each person, compute his/her descendants
D(x,y) :- ParentChild(x,y).

ParentChild(p,c)

Count Descendants

CSE 414 - 2019sp 317

For each person, compute the total number of descendants

// for each person, compute his/her descendants
D(x,y) :- ParentChild(x,y).
D(x,z) :- D(x,y), ParentChild(y,z).

ParentChild(p,c)

Count Descendants

CSE 414 - 2019sp 318

ParentChild(p,c)

For each person, compute the total number of descendants

// for each person, compute his/her descendants
D(x,y) :- ParentChild(x,y).
D(x,z) :- D(x,y), ParentChild(y,z).

// For each person, count the number of descendants

Count Descendants

CSE 414 - 2019sp 319

ParentChild(p,c)

For each person, compute the total number of descendants

// for each person, compute his/her descendants
D(x,y) :- ParentChild(x,y).
D(x,z) :- D(x,y), ParentChild(y,z).

// For each person, count the number of descendants
T(p,c) :- D(p,_), c = count : { D(p,y) }.

Count Descendants

CSE 414 - 2019sp 320

ParentChild(p,c)

How many descendants does Alice have?

// for each person, compute his/her descendants
D(x,y) :- ParentChild(x,y).
D(x,z) :- D(x,y), ParentChild(y,z).

// For each person, count the number of descendants
T(p,c) :- D(p,_), c = count : { D(p,y) }.

Count Descendants

CSE 414 - 2019sp 321

ParentChild(p,c)

How many descendants does Alice have?

// for each person, compute his/her descendants
D(x,y) :- ParentChild(x,y).
D(x,z) :- D(x,y), ParentChild(y,z).

// For each person, count the number of descendants
T(p,c) :- D(p,_), c = count : { D(p,y) }.

// Find the number of descendants of Alice

Count Descendants

CSE 414 - 2019sp 322

ParentChild(p,c)

How many descendants does Alice have?

// for each person, compute his/her descendants
D(x,y) :- ParentChild(x,y).
D(x,z) :- D(x,y), ParentChild(y,z).

// For each person, count the number of descendants
T(p,c) :- D(p,_), c = count : { D(p,y) }.

// Find the number of descendants of Alice
Q(d) :- T(p,d), p = “Alice”.

Negation: use “!”
Find all descendants of Bob that are not descendants of Alice

Alice Bob

Carol

David

Eve

Fred
George

ParentChild(p,c)

Negation: use “!”
Find all descendants of Bob that are not descendants of Alice

Alice Bob

Carol

David

Eve

Fred
George

x
David

ParentChild(p,c)

Answer

Negation: use “!”

CSE 414 - 2019sp 325

// for each person, compute his/her descendants
D(x,y) :- ParentChild(x,y).
D(x,z) :- D(x,y), ParentChild(y,z).

ParentChild(p,c)

Find all descendants of Bob that are not descendants of Alice

Negation: use “!”

CSE 414 - 2019sp 326

// for each person, compute his/her descendants
D(x,y) :- ParentChild(x,y).
D(x,z) :- D(x,y), ParentChild(y,z).

// Compute the answer: notice the negation
Q(x) :- D(“Bob”,x), !D(“Alice”,x).

ParentChild(p,c)

Find all descendants of Bob that are not descendants of Alice

Same Generation
Two people are in the same generation if they are descendants
at the same generation of some common ancestor

Alice Bob

Carol

David

Eve

Fred
George

p1 p2
Carol David
Eve George
Fred George
Fred Eve

ParentChild(p,c)

SG

Same Generation

328

ParentChild(p,c)

Compute pairs of people at the same generation

// common parent

Same Generation

329

ParentChild(p,c)

Compute pairs of people at the same generation

// common parent
SG(x,y) :- ParentChild(p,x), ParentChild(p,y)

Same Generation

330

ParentChild(p,c)

Compute pairs of people at the same generation

// common parent
SG(x,y) :- ParentChild(p,x), ParentChild(p,y)

// parents at the same generation

Same Generation

331

ParentChild(p,c)

Compute pairs of people at the same generation

// common parent
SG(x,y) :- ParentChild(p,x), ParentChild(p,y)

// parents at the same generation
SG(x,y) :- ParentChild(p,x), ParentChild(q,y), SG(p,q)

Same Generation

332

ParentChild(p,c)

Compute pairs of people at the same generation

// common parent
SG(x,y) :- ParentChild(p,x), ParentChild(p,y)

// parents at the same generation
SG(x,y) :- ParentChild(p,x), ParentChild(q,y), SG(p,q)

Problem: this includes answers like SG(Carol, Carol)
And also SG(Eve, George), SG(George, Eve)

How to fix?

Same Generation

333

ParentChild(p,c)

Compute pairs of people at the same generation

// common parent
SG(x,y) :- ParentChild(p,x), ParentChild(p,y), x < y

// parents at the same generation
SG(x,y) :- ParentChild(p,x), ParentChild(q,y),

SG(p,q), x < y

Safe Datalog Rules

334

Here are unsafe datalog rules. What’s “unsafe” about them ?

ParentChild(p,c)

U1(x,y) :- ParentChild(“Alice”,x), y != “Bob”

U2(x) :- ParentChild(“Alice”,x), !ParentChild(x,y)

U3(minId, y) :- minId = min x : { Actor(x, y, _) }

Safe Datalog Rules

335

Here are unsafe datalog rules. What’s “unsafe” about them ?

ParentChild(p,c)

U1(x,y) :- ParentChild(“Alice”,x), y != “Bob”

U2(x) :- ParentChild(“Alice”,x), !ParentChild(x,y)

Holds for
every y other than “Bob”

U1 = infinite!

U3(minId, y) :- minId = min x : { Actor(x, y, _) }

336

Here are unsafe datalog rules. What’s “unsafe” about them ?

ParentChild(p,c)

U1(x,y) :- ParentChild(“Alice”,x), y != “Bob”

U2(x) :- ParentChild(“Alice”,x), !ParentChild(x,y)

Want Alice’s childless children,
but we get all children x (because

there exists some y that x is not parent of y)

Safe Datalog Rules
Holds for

every y other than “Bob”
U1 = infinite!

U3(minId, y) :- minId = min x : { Actor(x, y, _) }

337

Here are unsafe datalog rules. What’s “unsafe” about them ?

ParentChild(p,c)

U1(x,y) :- ParentChild(“Alice”,x), y != “Bob”

U2(x) :- ParentChild(“Alice”,x), !ParentChild(x,y)

Want Alice’s childless children,
but we get all children x (because

there exists some y that x is not parent of y)

Safe Datalog Rules
Holds for

every y other than “Bob”
U1 = infinite!

U3(minId, y) :- minId = min x : { Actor(x, y, _) }

Unclear what y is

338

U1(x,y) :- ParentChild(“Alice”,x), y != “Bob”

Here are unsafe datalog rules. What’s “unsafe” about them ?

U2(x) :- ParentChild(“Alice”,x), !ParentChild(x,y)

A datalog rule is safe if every variable appears
in some positive, non-aggregated relational atom

ParentChild(p,c)

Safe Datalog Rules

U3(minId, y) :- minId = min x : { Actor(x, y, _) }

Stratified Datalog
• Recursion does not cope well with aggregates or negation
• Example: what does this mean?

• A datalog program is stratified if it can be partitioned into
strata
– Only IDB predicates defined in strata 1, 2, ..., n may appear

under ! or agg in stratum n+1.

• Many Datalog DBMSs (including souffle) accepts only
stratified Datalog.

CSE 414 - 2019sp 339

A() :- !B().
B() :- !A().

Stratified Datalog

340

D(x,y) :- ParentChild(x,y).
D(x,z) :- D(x,y), ParentChild(y,z).
T(p,c) :- D(p,_), c = count : { D(p,y) }.
Q(d) :- T(p,d), p = “Alice”.

Stratum 1

Stratum 2

May use D
in an agg since it was

defined in previous
stratum

Stratified Datalog

341

D(x,y) :- ParentChild(x,y).
D(x,z) :- D(x,y), ParentChild(y,z).
T(p,c) :- D(p,_), c = count : { D(p,y) }.
Q(d) :- T(p,d), p = “Alice”.

Stratum 1

Stratum 2

May use D
in an agg since it was

defined in previous
stratum

D(x,y) :- ParentChild(x,y).
D(x,z) :- D(x,y), ParentChild(y,z).
Q(x) :- D(“Alice”,x), !D(“Bob”,x).

Stratum 1

Stratum 2

May use !DA() :- !B().
B() :- !A(). Non-stratified

Cannot use !A

Stratified Datalog

• If we don’t use aggregates or negation,
then the Datalog program is already
stratified

• If we do use aggregates or negation, it
is usually quite natural to write the
program in a stratified way

CSE 414 - 2019sp 342

