CSE 344 Final Examination

Monday, March 18, 2019, 2:30-4:20

Name: __________________________

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>

- This exam is CLOSED book and CLOSED devices.
- You are allowed TWO, HAND-WRITTEN letter-size sheets with notes (both sides).
- You have 110 minutes;
- Answer the easy questions before you spend too much time on the more difficult ones.
- Good luck!
1 Relational Data Model

1. (35 points)

A Web browser stores the local data in a relational database with the following schema:

History(url, ts)
Cache(url, content, size)
Bookmark(name, url)

- Every time the user visits a page, the browser inserts a record in History; url is the URL of the webpage and has type Text; ts is the time stamp when the user accesses the page and has type Int.

- Some Web pages are stored in the local cache of the browser; this is the table Cache; content is the HTML text of the page in the cache and has type Text, while size is its size in bytes and has type Int.

- The user may create bookmarks and give them unique names; all bookmarks are stored in Bookmark.

(a) (5 points) Sometimes users created duplicate bookmarks; they give two or more names to the same URL. Write a SQL query that returns all duplicate bookmarks. Your query should return a list of names and URLs, sorted by the URLs.

\[\text{Chrome uses SQLite to store and manage all its data.}\]
(b) (5 points) The browser wants to store a new page in the cache. There is no more space, and it decides to evict the oldest pages in order to make room. Write a SQL query that lists for each URL in the cache its size and the latest timestamp when that page was last accessed. Your query should return triples url, size, ts, ordered increasingly by ts.
(c) (15 points) The new page to be added to the cache has 1000 bytes, and the browser decides to evict from the cache the oldest pages in order to make room from the new page. For example, if there are four pages in the cache last accessed at time stamps 1,2,3,4 respectively, and their sizes are 500, 300, 300, 600, then the browser wants to delete the oldest three pages, since 500 + 300 + 300 ≥ 1000. Write a SQL query to return the URLs of all pages in the cache that the browser needs to delete to make room for 1000 bytes; your query should return a list of URL’s (no need to actually delete them from Cache).

Note: only attempt to answer this question if you have answered question b. If you answered it, then you may refer to the query in b (no need to write it again).
(d) In this question we will represent sparse arrays and matrices as relations. For example, this shows how a matrix \(A \) and a vector \(X \) might be represented:

The matrix
\[
A = \begin{bmatrix}
 0 & 0 & 5 \\
 2 & -7 & 0 \\
 0 & 0 & -1
\end{bmatrix}
\]
is represented as

\[
\begin{array}{|c|c|c|}
\hline
\text{row} & \text{col} & \text{val} \\
\hline
1 & 3 & 5 \\
2 & 1 & 2 \\
2 & 2 & -7 \\
3 & 3 & -1 \\
\hline
\end{array}
\]

The array
\[
X = \begin{bmatrix}
 7 \\
 0 \\
 -5 \\
 0
\end{bmatrix}
\]
is represented as

\[
\begin{array}{|c|c|}
\hline
\text{pos} & \text{val} \\
\hline
1 & 7 \\
3 & -5 \\
\hline
\end{array}
\]

Recall some standard definitions in linear algebra:

- Matrix/matrix product: \(C = A \cdot B \), where \(C_{ik} = \sum_j A_{ij} B_{jk} \).
- Matrix/vector product: \(Y = A \cdot X \) where \(Y_i = \sum_j A_{ij} X_j \).
- Vector/vector product: \(X^t \cdot Y = \sum_i X_i Y_i \).
- The trace of a matrix is \(\text{tr}(A) = \sum_i A_{ii} \).

\(A, B, C \) are matrices and \(X \) is a vector. For each of the SQL expressions below, write the corresponding formula in linear algebra.

For example, if the queries is:

```sql
select A.row, B.col, sum(A.val * B.val)
from A, B
where A.col = B.row
group by A.row,B.col;
```

then you answer \(A \cdot B \).

If the query is:

```sql
select sum(A.val * B.val)
from A, B
where A.col = B.row
      and A.row = B.col;
```

then you answer \(\text{tr}(A \cdot B) \), or \(\text{tr}(B \cdot A) \) (both are correct answers).
i. (2 points)

```sql
select sum(A.val) from A where A.row = A.col;
```

Linear algebra expression:

i.

ii. (2 points)

```sql
select sum(X1.val * A.val * X2.val)
from X X1, A, X X2
where X1.pos = A.col and A.row = X2.pos;
```

Linear algebra expression:

ii.

iii. (2 points)

```sql
select sum(A.val) from A where A.row = A.col;
```

Linear algebra expression:

iii.

iv. (2 points)

```sql
select A.row, A.col, A.val + sum(B.val*C.val)
from A, B, C
where A.row = B.row and B.col = C.row and C.col = A.col
group by A.row, A.col, A.val;
```

Linear algebra expression:

iv.

v. (2 points)

```sql
select sum(A.val*B.val*C.val)
from A, B, C
where A.col = B.row and B.col = C.row and C.col = A.row;
```

Linear algebra expression:

v.

2 Datalog

2. (15 points)

In the kingdom of Datalandia there are nobles and commoners. When the kingdom was founded hundreds of years ago, the first king knighted some people who became the first noblemen, called UrNobles. The rule of the land is that a newborn becomes a noble if both his/her parents are nobles; otherwise he/she is a commoner. The kingdom meticulously maintains a database of all its subjects:

Person(pid,name); // every person in Datalandia who ever lived:
Father(fid,pid); // fid is the father of pid
Mother(mid,pid); // mid is the mother of pid
UrNoble(nid); // the person ID’s of the UrNobles
King(kid); // the person ID’s of all kings

(a) (10 points) Write a datalog query that returns the pid’s and names of all nobles.
(b) (5 points) Unfortunately, something terribly wrong happened, and some of the kings of Datalandia were commoners. Write a datalog program to retrieve all the commoner kings of Datalandia. You should return a set of person IDs (pid) and names. You may use the datalog query written for the previous question.
3 NoSQL, JSON, SQL++

3. (10 points)

(a) (10 points) We are given a JSON file with noble prize laureates, with the following structure:

```json
{"prizes": [
    {
      "year": "2018",
      "category": "physics",
      "overallMotivation": "For groundbreaking inventions in the field of laser physics",
      "laureates": [
        {
          "id": "960",
          "name": "Arthur Ashkin",
          "motivation": "for the optical tweezers and their application to biological systems",
          "share": "2"
        },
        {
          "id": "961",
          "name": "Grard Mourou",
          "motivation": "for their method of generating high-intensity, ultra-short optical pulses",
          "share": "4"
        },
        {
          "id": "962",
          "name": "Donna Strickland",
          "motivation": "for their method of generating high-intensity, ultra-short optical pulses",
          "share": "4"
        }
      ]
    },
    {
      "year": "2018",
      "category": "chemistry",
      ...
    },
    {
      "year": "2018",
      "category": "medicine",
      ...
    }
]
```

Write a SQL++ query that returns each noble prize laureate who has received more than one award, along with a list of the years and categories that each such laureate has received. Your query should return a JSON file with a structure like the following:

```json
{ "name": "Frederick Sanger", 
  "awards": [ 
    { "year": "1958", "category": "chemistry" }, 
    { "year": "1980", "category": "chemistry" } ] 
}
{ "name": "Marie Curie, ne Sklodowska", 
  "awards": [ 
    { "year": "1903", "category": "physics" }, 
    { "year": "1911", "category": "chemistry" } ] 
}
...
```
4 Query Execution and Optimization

(a) (10 points) In this question we are using the browsing history schema again. Write a logical plan for the following query.

```
select x.url
from History x, Cache y
where x.url = y.url
   and x.ts > 1000 and y.size < 500
group by x.url
having count(*) > 10;
```

You should turn in a relational algebra tree.
(b) In this question we consider three relations $R(A, B), S(B, C), T(C, D)$ and the following statistics:

\[
\begin{align*}
T(R) &= 10^5 \\
T(S) &= 6 \cdot 10^6 \\
T(T) &= 5 \cdot 10^4 \\
V(R, A) &= 5 \cdot 10^4 \\
V(R, B) &= V(S, B) = 3 \cdot 10^3 \\
V(S, C) &= V(T, C) = 2 \cdot 10^4 \\
V(T, D) &= 10^4 \\
B(R) &= 100 \\
B(S) &= 3000 \\
B(T) &= 40000
\end{align*}
\]

i. (5 points) Estimate the number of tuples returned by $\sigma_{A=2432}(R)$. You should turn in an integer number.

ii. (5 points) Estimate number of tuples returned by the following query:

```sql
SELECT * 
FROM R, S, T 
WHERE R.A = 2432 and R.B = S.B and S.C = T.C and T.D = 1234
```

You should turn in an integer number.
iii. (10 points) Assume the following indices:

- Unclustered indexes on $R.A$ and $R.B$
- Clustered index in $S.B$, unclustered index on $S.C$.
- Clustered index on $T.C$, unclustered index on $T.D$.

Estimate the I/O cost for two the physical plans below. Use the same statistics as in the previous question (they are shown on the plans, for your convenience).
5 Parallel Query Processing

5. (20 points)

Consider two relations with the following schema and statistics:

Users(uid, name, country)
Log(uid, url)

\(T(Users) = 10,000,000 \)
\(T(Log) = 20,000,000,000 \)
\(V(Users,country) = 100 \)
\(V(Log,uid) = 5,000,000 \)

The data is initially block partitioned on 1000 servers, so that each server holds 10000 records; we assume that, initially, the records of both Users and Log are randomly distributed to the 1000 servers.

The query below counts the number log entries from each country:

```
select x.country, count(*) as c
from Users x, Log y
where x.uid = y.uid
group by x.country
```
(a) The query optimizer chooses to compute the query using the following plan:

```
  \( \forall_{y\text{.country}} \), \text{sum}(t) \rightarrow c

  \text{HashPartition}(y\text{.country})

  \( \forall_{y\text{.country}} \), \text{count(*)} \rightarrow t

  \bowtie_{x\text{.uid}=y\text{.uid}}

  \text{HashPartition}(x\text{.uid}) \quad \text{HashPartition}(y\text{.uid})

  \text{Users x} \quad \text{Log y}
```

In words, the data is first hash-partitioned on uid, followed by a local join and a local group-by, followed by a repartition on country, and a final group-by.
i. (4 points) Estimate the size (number of tuples) of each intermediate relation in the plan. You may assume that the data is uniformly distributed and that the attributes are independent. Write your answer in the figure below, by filling out each missing \#tuples. Notice that \#tuples represents the total number of tuples, from all servers.

\[
\begin{align*}
\text{Users} \times \text{HashPartition}(\text{x.uid}) & \quad \forall \text{y.country, sum}(<t>) \rightarrow c \\
\text{Log} \times \text{HashPartition}(\text{y.uid}) & \quad \forall \text{y.country, count}(* \rightarrow t) \\
\text{HashPartition}(\text{x.uid}) & \quad \Join_{\text{x.uid} = \text{y.uid}} \\
\text{HashPartition}(\text{y.uid}) & \\
\end{align*}
\]
ii. (3 points) Assuming the system uses 1000 servers to compute the query, indicate the number of tuples per server at each step (i.e. the load per server). Assume the data is uniformly distributed, in the best possible way. In the case when not all servers receive the same number of tuples, then indicate the largest number. (This question should be easy to answer if you answered the previous one.)

iii. (3 points) Now assume that the data is not uniform. What is the largest possible number of tuples received by any server, and which intermediate result creates this largest number of tuples? Write your answers by referring to the figure above, for example you may write \(\text{tuples}_4 / \text{server} = 7 \cdot 10^{19} \) (not a real answer).
(b) Now the query optimizer chooses to compute the query using the following plan:

\[
\begin{align*}
&\text{Broadcast} \\
&\text{Users } x \\
&\text{Log } y \\
&\Join_{x.uid=y.uid} \\
&\text{HashPartition}(y.\text{country}) \\
&\Sigma_{y.\text{country}} \text{ sum(t)} \rightarrow c \\
&\Sigma_{y.\text{country}} \text{ count(*)} \rightarrow t
\end{align*}
\]

In other words, it first broadcasts Users, then computes the local join followed by a local group-by, then reshuffles the data based on country, followed by a final local group-by. Answer the same questions as before:
i. (4 points) Estimate the size (number of tuples) of each intermediate relation in the plan, as before.
ii. (3 points) Assuming the system uses 1000 servers to compute the query, indicate the number of tuples per server at each step (i.e. the load per server), as before.

iii. (3 points) Now assume that the data is not uniform. What is the largest possible number of tuples received by any server, and which intermediate result creates this largest number of tuples?
6 Conceptual Design

6. (30 points)
 (a) (10 points) Consider a relation $R(A, B, C, D, E)$ satisfying the following FD’s:

 \[
 AB \rightarrow CD \\
 DE \rightarrow B
 \]

 Decompose R into BCNF.
(b) (10 points) Consider two relations $R(K, A, B)$, $S(L, C, D)$. The following query returns a relation with attributes K, A, B, L, C, D:

```
select *
from R, S
where R.B=S.L and R.A=S.D
```

Find all functional dependencies satisfied by the answer to the query above. You only need to indicate a minimal set of FDs; for example if you wrote $X \rightarrow Y$ and $YZ \rightarrow U$ then you don’t need to write $XZ \rightarrow U$.
(c) Consider a relation with three attributes A, B, C. Answer the questions below.

i. (2 points) Give an example of functional dependencies such that the relation has a single key consisting of two attributes.

ii. (2 points) Give an example of functional dependencies such that the relation has two keys consisting of one attribute each.

iii. (2 points) Give an example of functional dependencies such that both AB and AC are keys, but A is not a key.

iv. (2 points) Give an example of functional dependencies such that the relation is not in BCNF.

v. (2 points) Give an example of functional dependencies such that the closures A^+, B^+, C^+ are three distinct sets, meaning no two sets can be equal.
7 Transactions

7. (60 points)

(a) For each schedule below indicate whether it is conflict serializable and, if it is, indicate the equivalent serial schedule.

i. (5 points)

\[W_1(B), R_3(A), W_2(A), R_2(C), R_3(B), R_1(C), W_4(C) \]

ii. (5 points)

\[W_1(B), R_3(A), W_2(A), R_2(C), R_3(B), W_4(C), R_1(C) \]
(b) A concurrency manager uses strict 2PL. The system runs only three transactions concurrently, denoted \(T_1, T_2, T_3 \). In each case below indicate whether there exists a schedule that leads to a deadlock. If you answer yes, then write a schedule that leads to a deadlock (up to the deadlock).

i. (5 points) The transactions are:

\[
T_1 : R_1(A), W_1(B) \\
T_2 : R_2(B), W_2(C) \\
T_3 : R_3(C), W_3(A)
\]

Can this lead to a deadlock?

ii. (5 points) The transactions are:

\[
T_1 : R_1(A), W_1(B), W_1(C) \\
T_2 : W_2(A), R_2(B), W_2(C) \\
T_3 : W_3(A), W_3(B), R_3(C)
\]

Can this lead to a deadlock?

iii. (5 points) The transactions are:

\[
T_1 : W_1(D), R_1(A), W_1(B) \\
T_2 : W_2(D), R_2(B), W_2(C) \\
T_3 : W_3(D), R_3(C), W_3(A)
\]

Can this lead to a deadlock?
(c) (5 points) Consider the following three transactions, where St_i indicates the start of T_i and Co_i indicates the commit of T_i:

$$T_1 : St_1, R_1(A), W_1(B), Co_1$$
$$T_2 : St_2, R_2(B), W_2(C), Co_2$$
$$T_3 : St_3, R_3(C), W_3(A), Co_3$$

Give an example of a schedule with the following properties: (1) the schedule is serializable; (2) transaction T_1 ends before transaction T_3 begins; (3) the only serialization order is T_3, T_2, T_1. In your schedule include the St_i and Co_i actions.
(d) (10 points) The SQL standard defines three weak isolation levels: dirty reads, read committed, and repeatable reads. As you know:

- **Dirty reads** means no read locks.
- **Read committed** means short-duration read locks.
- **Repeatable reads** means long-duration read locks (full 2PL).

Consider two transactions \(T_1, T_2 \). For each schedule below, indicate under which isolation level that schedule is possible:

<table>
<thead>
<tr>
<th>Time →</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schedule₁: (St_1, R_1(A),) (R_1(B),) (R_1(A),) (W_1(A),) (Co_1) (St_2, W_2(A), W_2(B), Co_2)</td>
</tr>
<tr>
<td>Schedule₂: (St_1, R_1(A),) (R_1(B),) (W_1(A),) (Co_1) (St_2, W_2(A), W_2(B), Co_2)</td>
</tr>
<tr>
<td>Schedule₃: (St_1, R_1(A), R_1(B),) (W_1(A),) (Co_1) (St_2, W_2(A), W_2(B), Co_2)</td>
</tr>
<tr>
<td>Schedule₄: (St_1, R_1(A), R_1(B),) (W_1(A),) (Co_1) (St_2, W_2(A), W_2(B), Co_2)</td>
</tr>
</tbody>
</table>

Write yes/no answers below:

<table>
<thead>
<tr>
<th></th>
<th>Dirty reads</th>
<th>Read committed</th>
<th>Repeatable Reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schedule₁</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schedule₂</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schedule₃</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schedule₄</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(e) For each of the following statements indicate whether it is true or false:
i. (2 points) If there are an odd number of transactions, then deadlock can never occur.

 i. True or false?

 True or false?

ii. (2 points) In a static database, every serializable schedule is conflict serializable.

 ii. True or false?

 True or false?

iii. (2 points) In a dynamic database, every serializable schedule is conflict serializable.

 iii. True or false?

 True or false?

iv. (2 points) In a static database, every conflict serializable schedule is serializable.

 iv. True or false?

 True or false?

v. (2 points) In a dynamic database, every conflict serializable schedule is serializable.

 v. True or false?
vi. (2 points) T_1 holds a shared lock on A. When T_2 requests a shared lock on A, the scheduler will grant it

True or false?

vi. __________

vii. (2 points) T_1 holds a shared lock on A. When T_2 requests an exclusive lock on A, the scheduler will grant it

True or false?

vii. __________

viii. (2 points) A concurrency management system uses strict 2PL, with shared locks for reads and exclusive locks for writes. If all transactions are read-only, then deadlock is not possible.

True or false?

viii. __________

ix. (2 points) An OLAP workload (“Online analytical processing”) means a workload consisting of simple queries and many updates.

True or false?

ix. __________

x. (2 points) An OLTP workload (“Online transaction processing”) means a workload consisting of simple queries and may updates.

True or false?

x. __________