Section 4 Worksheet
Part 1: Interpreting SQL and Relational Data
For each SQL query, find
1) what the SQL statement is querying for (a short description) and
2) an equivalent relational algebra (RA) expression/tree

A. (Midterm 12AU)

Clinic(cid, name, street, state)
Equipment (eid, type, model)
Assignment (cid, eid)

Finds the count of clinics that do not have a fridge (of model 1004) assigned to it.

1)
SELECT COUNT (*)
FROM Clinic AS C
WHERE NOT EXISTS (SELECT *
FROM Assignment AS A, Equipment AS E
WHERE C.cid = A.cid AND
A.eid = E.eid AND
E.type = ’‘Fridge’ AND
E.model = 1004);
2)

Vcount(‘)

T~

"Amo

oEtype=‘Fn’dge‘ and E.model=1004

N A.eid=E.eid

Clinic C Assignment A Equipment E

TI'C.Cld

B. (Midterm 15AU)
Item(oid, category, price)
Gift(pid, rid, oid) -- pid gifts oid to rid

SELECT Ol.category, max(abs (Ol.price - 02.price))
FROM Gift AS G1l, Gift AS G2, Item AS 01, Item AS 02
WHERE Gl.pid = G2.rid AND
G2.pid = Gl.rid AND
Ol.oid = Gl.oid AND
02.0id = G2.o0id AND
Ol.category = 0O2.category
GROUP BY Ol.category
HAVING count(*) > 5;

1) Finds item categories that have been mutually gifted over 5 times and the corresponding maximum
price difference between mutually exchanged items (of said category).

2)

"c3,m

ouﬂ>5

Yc3. count(*) -> cnt, max(abs(p3-p4)) -> m

N oid2=0id4 A c3=c4

Dqpld =rid2 A p|d2 rid

ppid2.n’d2.oid2 Poid3,c3p3 Poidd,cs,ps

Gift Gift Item Item

Section 5 Worksheet
Part 1. Datalog Practice
Consider a graph of colored vertices and undirected edges where the vertices can be red, green, blue. In
particular, you have the relations

Vertex (x, color)
Edge (x, y)

The Edge relation is symmetric in that if (x, y) is in Edge, then (y, x) is in Edge.
Your goal is to write a datalog program to answer each of the following questions.

1. Find all green vertices.
GreenV (x) :— Vertex(x, ‘green’)

2. Find all pairs of blue vertices connected by one edge.
BluePairs(x, y) :— Vertex(x, ‘blue’), Vertex(y , ’‘blue’), Edge(x, V)

3. Find all triangles where all the vertices are the same color. Output the three vertices and their color.
Triangle(x, vy, z, ¢) :— Vertex(x, c¢), Vertex(y, c¢), Vertex(z, c),
Edge(x, y), Edgel(y, z), Edge(z, x)

4. Find all vertices that don’t have any neighbors.

WRONG ANSWER (UNSAFE)

LonelyV(x) :— !Edge(x, _)

WRONG ANSWER (UNSAFE)

LonelyV(x) :— Vertex(x, _), !Edge(x, _)
CORRECT ANSWER (SAFE)

OnlyX(x) :— Edge(x, _)

LonelyV(x) :— Vertex(x, _), !'0OnlyX(x)

5. Find all vertices such that they only have red neighbors.

BlueV(x) :— Vertex(x, _), Edge(x, y), Vertex(y, ‘blue’)
GreenV (x) :— Vertex(x,_), Edge(x, y), Vertex(y, ‘green’)
RedV (x) :— Vertex(x,_), !BluevV(x), !GreenV(x)

6. Find all vertices such that they only have neighbors with the same color. Return the vertex and color.

SameColor (x, y, a) :— Vertex(x, a), Vertex(y, a)

NotSameNeigh(x) :— Vertex(x, _), Edge(x, y), Edge(x, z), !SameColor(y, z)
OnlySameNeigh(x, a) :— Vertex(x, a), !NotSameNeigh (x)

OR

Neigh(x, y, a) :— Edge(x, y), Vertex(y, a)

DifferentNeigh(x) :— Neigh(x, y, a), Neigh(x, z, b), a !=b
OnlySameNeigh(x, a) :— Vertex(x, a), !DifferentNeigh (x)

7. For some vertex v, find all vertexes connected to v by blue vertexes (this one requires recursion).
ConnectedTo (x) :— Vertex(x, ‘blue’), Edge(x, ‘v’)
ConnectedTo (x) :— Vertex(x, ‘blue’), Edge(x, y), ConnectedTo (y)

