
1

Introduction to Database Systems
CSE 414

Lecture 7: SQL Wrapup

1CSE 414 - Spring 2018

Subqueries
• A subquery is a SQL query nested inside a larger query
• Such inner-outer queries are called nested queries
• A subquery may occur in:

– A SELECT clause
– A FROM clause
– A WHERE clause

• Rule of thumb: avoid nested queries when possible
– But sometimes it’s impossible, as we will see

CSE 414 - Spring 2018 2

FWGHOS

1. Subqueries in SELECT

CSE 414 - Spring 2018 3

Product (pname, price, cid)
Company (cid, cname, city)

For each product return the city where it is manufactured

SELECT X.pname, (SELECT Y.city
FROM Company Y
WHERE Y.cid=X.cid) as City

FROM Product X

What happens if the subquery returns more than one city?
We get a runtime error

(and SQLite simply ignores the extra values…)

“correlated
subquery”

1. Subqueries in SELECT

CSE 414 - Spring 2018 4

But are these really equivalent?
SELECT DISTINCT C.cname, (SELECT count(*)

FROM Product P
WHERE P.cid=C.cid)

FROM Company C

No! Different results if a
company has no products

SELECT C.cname, count(*)
FROM Company C, Product P
WHERE C.cid=P.cid
GROUP BY C.cname

SELECT C.cname, count(pname)
FROM Company C LEFT OUTER JOIN Product P
ON C.cid=P.cid
GROUP BY C.cname

Product (pname, price, cid)
Company (cid, cname, city)

Simple Aggregations

Five basic aggregate operations in SQL

CSE 414 - Spring 2018 5

Except count, all aggregations apply to a single attribute

select count(*) from Purchase
select sum(quantity) from Purchase
select avg(price) from Purchase
select max(quantity) from Purchase
select min(quantity) from Purchase

count of an
empty table is 0

Including Empty Groups

pname manufacturer …

Gizmo GizmoWorks

Camera Canon

OneClick Hitachi

product price ...

Camera 150

Camera 300

OneClick 180

pname manufacturer … product price …

Camera Canon Camera 150

Camera Canon Camera 300

OneClick Hitachi OneClick 180

Gizmo GizmoWorks … NULL NULL NULL

SELECT x.manufacturer, count(y.pid)
FROM Product x LEFT OUTER JOIN Purchase y
ON x.pname = y.product
GROUP BY x.manufacturer

Product Purchase

Left Outer Join(Product, Purchase)

manufacturer Count(y.pid)

Canon 2

Hitachi 1

GizmoWorks 0

Final results

GizmoWorks
is paired with

NULLs

Why 0 for
GizmoWorks?

2

Including Empty Groups

pname manufacturer …

Gizmo GizmoWorks

Camera Canon

OneClick Hitachi

product price ...

Camera 150

Camera 300

OneClick 180

pname manufacturer … product price …

Camera Canon Camera 150

Camera Canon Camera 300

OneClick Hitachi OneClick 180

Gizmo GizmoWorks … NULL NULL NULL

SELECT x.manufacturer, count(*)
FROM Product x LEFT OUTER JOIN Purchase y
ON x.pname = y.product
GROUP BY x.manufacturer

Product Purchase

Left Outer Join(Product, Purchase)

manufacturer Count(*)

Canon 2

Hitachi 1

GizmoWorks 1

Final results

Probably not
what we want!

1. Subqueries in SELECT

CSE 414 - Spring 2018 8

But are these really equivalent?
SELECT DISTINCT C.cname, (SELECT count(*)

FROM Product P
WHERE P.cid=C.cid)

FROM Company C

No! Different results if a
company has no products

SELECT C.cname, count(*)
FROM Company C, Product P
WHERE C.cid=P.cid
GROUP BY C.cname

SELECT C.cname, count(pname)
FROM Company C LEFT OUTER JOIN Product P
ON C.cid=P.cid
GROUP BY C.cname

Product (pname, price, cid)
Company (cid, cname, city)

Recall: count
of an empty

table is 0

2. Subqueries in FROM

CSE 414 - Spring 2018 9

Find all products whose prices is > 20 and < 500

SELECT X.pname
FROM (SELECT *

FROM Product AS Y
WHERE price > 20) as X

WHERE X.price < 500

Try unnest this query !

Product (pname, price, cid)
Company (cid, cname, city)

Side note: This is not a
correlated subquery. (why?)

2. Subqueries in FROM

CSE 414 - Spring 2018 10

SELECT X.pname
FROM (SELECT *

FROM Product AS Y
WHERE price > 20) as X

WHERE X.price < 500

Product (pname, price, cid)
Company (cid, cname, city)

=

WITH myTable AS (SELECT * FROM Product AS Y WHERE price > 20)
SELECT X.pname
FROM myTable as X
WHERE X.price < 500

A subquery whose
result we called myTable

3. Subqueries in WHERE

CSE 414 - Spring 2018 11

Find all companies that make some products with price < 200

Product (pname, price, cid)
Company (cid, cname, city)

3. Subqueries in WHERE

CSE 414 - Spring 2018 12

Find all companies that make some products with price < 200

Existential quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

3

3. Subqueries in WHERE

CSE 414 - Spring 2018 13

Find all companies that make some products with price < 200

SELECT DISTINCT C.cname
FROM Company C
WHERE EXISTS (SELECT *

FROM Product P
WHERE C.cid = P.cid and P.price < 200)

Existential quantifiers

Using EXISTS:

Product (pname, price, cid)
Company (cid, cname, city)

3. Subqueries in WHERE

CSE 414 - Spring 2018 14

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price < 200)

Using IN

Find all companies that make some products with price < 200

Existential quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

3. Subqueries in WHERE

CSE 414 - Spring 2018 15

SELECT DISTINCT C.cname
FROM Company C
WHERE 200 > ANY (SELECT price

FROM Product P
WHERE P.cid = C.cid)

Using ANY:

Find all companies that make some products with price < 200

Existential quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

3. Subqueries in WHERE

CSE 414 - Spring 2018 16

SELECT DISTINCT C.cname
FROM Company C
WHERE 200 > ANY (SELECT price

FROM Product P
WHERE P.cid = C.cid)

Using ANY:

Find all companies that make some products with price < 200

Existential quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

Not supported
in sqlite

3. Subqueries in WHERE

CSE 414 - Spring 2018 17

SELECT DISTINCT C.cname
FROM Company C, Product P
WHERE C.cid = P.cid and P.price < 200

Now let’s unnest it:

Find all companies that make some products with price < 200

Existential quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

3. Subqueries in WHERE

CSE 414 - Spring 2018 18

SELECT DISTINCT C.cname
FROM Company C, Product P
WHERE C.cid = P.cid and P.price < 200

Existential quantifiers are easy! J

Now let’s unnest it:

Find all companies that make some products with price < 200

Existential quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

4

3. Subqueries in WHERE

CSE 414 - Spring 2018 19

same as:

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies that make only products with price < 200

Find all companies s.t. all their products have price < 200

3. Subqueries in WHERE

CSE 414 - Spring 2018 20

same as:

Universal quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies that make only products with price < 200

Find all companies s.t. all their products have price < 200

3. Subqueries in WHERE

CSE 414 - Spring 2018 21

Universal quantifiers are hard! L

same as:

Universal quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies that make only products with price < 200

Find all companies s.t. all their products have price < 200

3. Subqueries in WHERE

CSE 414 - Spring 2018 22

1. Find the other companies that make some product ≥ 200
SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price >= 200)

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies s.t. all their products have price < 200

3. Subqueries in WHERE

CSE 414 - Spring 2018 23

2. Find all companies s.t. all their products have price < 200

1. Find the other companies that make some product ≥ 200
SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price >= 200)

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies s.t. all their products have price < 200

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid NOT IN (SELECT P.cid

FROM Product P
WHERE P.price >= 200)

3. Subqueries in WHERE

CSE 414 - Spring 2018 24

SELECT DISTINCT C.cname
FROM Company C
WHERE NOT EXISTS (SELECT *

FROM Product P
WHERE P.cid = C.cid and P.price >= 200)

Using EXISTS:

Universal quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies s.t. all their products have price < 200

5

3. Subqueries in WHERE

CSE 414 - Spring 2018 25

SELECT DISTINCT C.cname
FROM Company C
WHERE 200 >= ALL (SELECT price

FROM Product P
WHERE P.cid = C.cid)

Using ALL:

Universal quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies s.t. all their products have price < 200

3. Subqueries in WHERE

CSE 414 - Spring 2018 26

SELECT DISTINCT C.cname
FROM Company C
WHERE 200 >= ALL (SELECT price

FROM Product P
WHERE P.cid = C.cid)

Using ALL:

Universal quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies s.t. all their products have price < 200

Not supported
in sqlite

Question for Database Theory
Fans and their Friends

• Can we unnest the universal quantifier
query?

• We need to first discuss the concept of
monotonicity

CSE 414 - Spring 2018 27

Monotone Queries
• Definition A query Q is monotone if:

– Whenever we add tuples to one or more input tables, the
answer to the query will not lose any of the tuples

CSE 414 - Spring 2018 28

Product (pname, price, cid)
Company (cid, cname, city)

Monotone Queries
• Definition A query Q is monotone if:

– Whenever we add tuples to one or more input tables, the
answer to the query will not lose any of the tuples

CSE 414 - Spring 2018 29

pname price cid
Gizmo 19.99 c001
Gadget 999.99 c004
Camera 149.99 c003

Product (pname, price, cid)
Company (cid, cname, city)

cid cname city
c002 Sunworks Bonn
c001 DB Inc. Lyon
c003 Builder Lodtz

Product Company

Q pname city
Gizmo Lyon
Camera Lodtz

Monotone Queries
• Definition A query Q is monotone if:

– Whenever we add tuples to one or more input tables, the
answer to the query will not lose any of the tuples

pname price cid
Gizmo 19.99 c001
Gadget 999.99 c004
Camera 149.99 c003

Product (pname, price, cid)
Company (cid, cname, city)

pname price cid
Gizmo 19.99 c001
Gadget 999.99 c004
Camera 149.99 c003
iPad 499.99 c001

cid cname city
c002 Sunworks Bonn
c001 DB Inc. Lyon
c003 Builder Lodtz

Product Company
pname city
Gizmo Lyon
Camera Lodtz

pname city

Gizmo Lyon
Camera Lodtz
iPad Lyon

Product Company

Q

Qcid cname city
c002 Sunworks Bonn
c001 DB Inc. Lyon
c003 Builder Lodtz

So far it looks monotone...

6

Monotone Queries
• Definition A query Q is monotone if:

– Whenever we add tuples to one or more input tables, the
answer to the query will not lose any of the tuples

pname price cid
Gizmo 19.99 c001
Gadget 999.99 c004
Camera 149.99 c003

Product (pname, price, cid)
Company (cid, cname, city)

pname price cid
Gizmo 19.99 c001
Gadget 999.99 c004
Camera 149.99 c003
iPad 499.99 c001

cid cname city
c002 Sunworks Bonn
c001 DB Inc. Lyon
c003 Builder Lodtz

Product Company
pname city
Gizmo Lyon
Camera Lodtz

pname city

Gizmo Lodtz
Camera Lodtz
iPad Lyon

Product Company

Q

Qcid cname city
c002 Sunworks Bonn
c001 DB Inc. Lyon
c003 Builder Lodtz
c004 Crafter Lodtz

Q is not monotone!

Monotone Queries
• Theorem: If Q is a SELECT-FROM-WHERE query

that does not have subqueries, and no aggregates,
then it is monotone.

CSE 414 - Spring 2018 32

Monotone Queries
• Theorem: If Q is a SELECT-FROM-WHERE query

that does not have subqueries, and no aggregates,
then it is monotone.

• Proof. We use the nested loop semantics: if we
insert a tuple in a relation Ri, this will not remove any
tuples from the answer

CSE 414 - Spring 2018 33

SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

for x1 in R1 do
for x2 in R2 do

…
for xn in Rn do
if Conditions
output (a1,…,ak)

Monotone Queries
• The query:

is not monotone

34

Find all companies s.t. all their products have price < 200

Product (pname, price, cid)
Company (cid, cname, city)

CSE 414 - Spring 2018

Monotone Queries
• The query:

is not monotone

35

Find all companies s.t. all their products have price < 200

pname price cid
Gizmo 19.99 c001

cid cname city
c001 Sunworks Bonn

cname
Sunworks

Product (pname, price, cid)
Company (cid, cname, city)

CSE 414 - Spring 2018

Monotone Queries
• The query:

is not monotone

• Consequence: If a query is not monotonic, then we
cannot write it as a SELECT-FROM-WHERE query
without nested subqueries

Find all companies s.t. all their products have price < 200

pname price cid

Gizmo 19.99 c001

cid cname city

c001 Sunworks Bonn

cname

Sunworks

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c001

cid cname city

c001 Sunworks Bonn

cname

Product (pname, price, cid)
Company (cid, cname, city)

7

Queries that must be nested

• Queries with universal quantifiers or with
negation

CSE 414 - Spring 2018 37

Queries that must be nested

• Queries with universal quantifiers or with
negation

• Queries that use aggregates in certain ways
– sum(..) and count(*) are NOT monotone,

because they do not satisfy set containment
– select count(*) from R is not monotone!

CSE 414 - Spring 2018 38

SQL Idioms

39CSE 414 - Spring 2018

Finding Witnesses

CSE 414 - Spring 2018 40

Product (pname, price, cid)
Company (cid, cname, city)

For each city, find the most expensive product made in that city

Finding Witnesses

CSE 414 - Spring 2018 41

SELECT x.city, max(y.price)
FROM Company x, Product y
WHERE x.cid = y.cid
GROUP BY x.city;

Finding the maximum price is easy…

But we need the witnesses, i.e., the products with max price

For each city, find the most expensive product made in that city

Product (pname, price, cid)
Company (cid, cname, city)

Finding Witnesses

CSE 414 - Spring 2018 42

To find the witnesses, compute the maximum price
in a subquery (in FROM or in WITH)

Product (pname, price, cid)
Company (cid, cname, city)

WITH CityMax AS
(SELECT x.city, max(y.price) as maxprice
FROM Company x, Product y
WHERE x.cid = y.cid
GROUP BY x.city)

SELECT DISTINCT u.city, v.pname, v.price
FROM Company u, Product v, CityMax w
WHERE u.cid = v.cid

and u.city = w.city
and v.price = w.maxprice;

8

Finding Witnesses

CSE 414 - Spring 2018 43

To find the witnesses, compute the maximum price
in a subquery (in FROM or in WITH)

SELECT DISTINCT u.city, v.pname, v.price
FROM Company u, Product v,

(SELECT x.city, max(y.price) as maxprice
FROM Company x, Product y
WHERE x.cid = y.cid
GROUP BY x.city) w

WHERE u.cid = v.cid
and u.city = w.city
and v.price = w.maxprice;

Product (pname, price, cid)
Company (cid, cname, city)

Finding Witnesses

CSE 414 - Spring 2018 44

Or we can use a subquery in where clause

SELECT u.city, v.pname, v.price
FROM Company u, Product v
WHERE u.cid = v.cid

and v.price >= ALL (SELECT y.price
FROM Company x, Product y
WHERE u.city=x.city
and x.cid=y.cid);

Product (pname, price, cid)
Company (cid, cname, city)

Finding Witnesses

CSE 414 - Spring 2018 45

There is a more concise solution here:

SELECT u.city, v.pname, v.price
FROM Company u, Product v, Company x, Product y
WHERE u.cid = v.cid and u.city = x.city
and x.cid = y.cid
GROUP BY u.city, v.pname, v.price
HAVING v.price = max(y.price)

Product (pname, price, cid)
Company (cid, cname, city)

SQL: Our first language for

the relational model

• Projections

• Selections

• Joins (inner and outer)

• Inserts, updates, and deletes

• Aggregates

• Grouping

• Ordering

• Nested queries

CSE 414 - Spring 2018 46

