
1

Introduction to Database Systems
CSE 414

Lecture 5: SQL Aggregates

1CSE 414 - Spring 2018

Joins in SQL

CSE 414 - Spring 2018 2

Retrieve all Japanese products that cost < $150

Product(pname, price, category, manufacturer)
Company(cname, country)

SELECT P.pname, P.price
FROM Product as P, Company as C
WHERE P.manufacturer=C.cname AND

C.country='Japan' AND C.price < 150

pname price category manufacturer

MultiTouch 199.99 gadget Canon

SingleTouch 49.99 photography Canon

Gizom 50 gadget GizmoWorks

SuperGizmo 250.00 gadget GizmoWorks

cname country

GizmoWorks USA

Canon Japan

Hitachi Japan

Join Predicate

Selection predicatesSelection predicates

for x1 in R1:
for x2 in R2:
...

for xm in Rm:
if Cond(x1, x2…):
output(x1.a1, x2.a2, … xm.am)

(Inner) Joins
SELECT x1.a1, x2.a2, … xm.am
FROM R1 as x1, R2 as x2, … Rm as xm
WHERE Cond

3
This is called nested loop semantics since we are
interpreting what a join means using a nested loop

Self Join Example

CSE 414 - Spring 2018 4

Product(pname, price, category, manufacturer)
Company(cname, country)
-- manufacturer is foreign key to Company

Find US companies that manufacture both
‘gadgets’ and ‘photo’ products

SELECT DISTINCT z.cname
FROM Product x, Product y, Company z
WHERE z.country = ’USA’

AND x.manufacturer = z.cname
AND y.manufacturer = z.cname
AND x.category = 'gadget’
AND y.category = 'photography;

Need to include
Product twice!

Joins in SQL

• The join we have just seen is
sometimes called an inner join
– Each row in the result must come from

both tables in the join
• Sometimes we want to include rows

from only one of the two table: outer join

CSE 414 - Spring 2018 5

Outer Join
Employee
id name
1 Joe
2 Jack
3 Jill

Sales
employeeID productID
1 344
1 355
2 544

Retrieve employees and their sales

SELECT *
FROM Employee E

LEFT OUTER JOIN
Sales S

ON E.id = S.employeeID

Employee(id, name)
Sales(employeeID, productID)

id name empolyeeID productID
1 Joe 1 344
1 Joe 1 355
2 Jack 2 544
3 Jill NULL NULL

Jill is
present

2

Outer Joins

• Left outer join:
– Include tuples from tableA even if no match

• Right outer join:
– Include tuples from tableB even if no match

• Full outer join:
– Include tuples from both even if no match

• In all cases:
– Patch tuples without matches using NULL

CSE 414 - Spring 2018 7

tableA (LEFT/RIGHT/FULL) OUTER JOIN tableB ON p

Aggregates in SQL

8CSE 414 - Spring 2018

Simple Aggregations

Five basic aggregate operations in SQL

CSE 414 - Spring 2018 9

Except count, all aggregations apply to a single attribute

select count(*) from Purchase
select sum(quantity) from Purchase
select avg(price) from Purchase
select max(quantity) from Purchase
select min(quantity) from Purchase

Demo

10CSE 414 - Spring 2018

Aggregates and NULL Values

11

insert into Purchase
values(12, 'gadget', NULL, NULL, 'april')

select count(*) from Purchase
select count(quantity) from Purchase

select sum(quantity) from Purchase

select count(*)
from Purchase
where quantity is not null;

Null values are not used in aggregates

Let’s try the following

COUNT applies to duplicates, unless otherwise stated:

SELECT count(product)
FROM Purchase
WHERE price > 4.99

same as count(*) if no nulls

We probably want:

SELECT count(DISTINCT product)
FROM Purchase
WHERE price > 4.99

Counting Duplicates

CSE 414 - Spring 2018 12

3

More Examples

CSE 414 - Spring 2018 13

SELECT Sum(P.price * P.quantity)
FROM Purchase as P

SELECT Sum(P.price * P.quantity)
FROM Purchase as P
WHERE P.product = ‘bagel’

What do
they mean ?

Grouping and Aggregation

CSE 414 - Spring 2018 14

Purchase(product, price, quantity)

Find total quantities for all sales over $1, by product.

Grouping and Aggregation

15

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Product TotalSales
Bagel 40

Banana 20

Product Price Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50
Banana 2 10
Banana 4 10

Other Examples

CSE 414 - Spring 2018 16

SELECT product,
sum(quantity) AS SumQuantity,
max(price) AS MaxPrice

FROM Purchase
GROUP BY product

What does
it return?

SELECT product, count(*)
FROM Purchase
GROUP BY product

SELECT month, count(*)
FROM Purchase
GROUP BY month

Compare these
two queries:

Need to be Careful…

CSE 414 - Spring 2018 17

Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

SELECT product,
max(quantity)

FROM Purchase
GROUP BY product

Need to be Careful…

CSE 414 - Spring 2018 18

SELECT product, quantity
FROM Purchase
GROUP BY product
-- what does this mean?

Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

SELECT product,
max(quantity)

FROM Purchase
GROUP BY product

4

Need to be Careful…

CSE 414 - Spring 2018 19

SELECT product, quantity
FROM Purchase
GROUP BY product
-- what does this mean?

Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

SELECT product,
max(quantity)

FROM Purchase
GROUP BY product

Product Max(quantity)

Bagel 20

Banana 50

Need to be Careful…

CSE 414 - Spring 2018 20

SELECT product, quantity
FROM Purchase
GROUP BY product
-- what does this mean?

Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

SELECT product,
max(quantity)

FROM Purchase
GROUP BY product

Product Max(quantity)

Bagel 20

Banana 50

Product Quantity

Bagel 20

Banana ??

Need to be Careful…

CSE 414 - Spring 2018 21

SELECT product, quantity
FROM Purchase
GROUP BY product
-- what does this mean?

Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

SELECT product,
max(quantity)

FROM Purchase
GROUP BY product

Product Max(quantity)

Bagel 20

Banana 50

Product Quantity

Bagel 20

Banana ??

Need to be Careful…

CSE 414 - Spring 2018 22

SELECT product, quantity
FROM Purchase
GROUP BY product
-- what does this mean?

Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

SELECT product,
max(quantity)

FROM Purchase
GROUP BY product

Product Max(quantity)

Bagel 20

Banana 50

Product Quantity

Bagel 20

Banana ??

Everything in SELECT must be
either a GROUP-BY attribute, or an aggregate

Grouping and Aggregation
Purchase(product, price, quantity)

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

How is this query processed?

Find total quantities for all sales over $1, by product.

CSE 414 - Spring 2018 23

Grouping and Aggregation
Purchase(product, price, quantity)

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Find total quantities for all sales over $1, by product.

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
GROUP BY product

Do these queries return the same number of rows? Why?

24

5

Grouping and Aggregation
Purchase(product, price, quantity)

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Find total quantities for all sales over $1, by product.

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
GROUP BY product

Do these queries return the same number of rows? Why?

Rows where price > 1are removed, so
first query may return fewer groups

Grouping and Aggregation

CSE 414 - Spring 2018 26

1. Compute the FROM and WHERE clauses.

2. Group by the attributes in the GROUPBY

3. Compute the SELECT clause:
grouped attributes and aggregates.

FWGS
TM

1,2: From, Where

27

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Product Price Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50
Banana 2 10
Banana 4 10

FWGS

WHERE price > 1

3,4. Grouping, Select

28

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Product TotalSales
Bagel 40

Banana 20

Product Price Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50
Banana 2 10
Banana 4 10

FWGS

Ordering Results

CSE 414 - Spring 2018 29

SELECT product, sum(price*quantity) as rev
FROM Purchase
GROUP BY product
ORDER BY rev desc

FWGOS

Purchase(pid, product, price, quantity, month)

Note: some SQL engines
want you to say ORDER BY sum(price*quantity) desc

TM

HAVING Clause

CSE 414 - Spring 2018 30

SELECT product, sum(price*quantity)
FROM Purchase
WHERE price > 1
GROUP BY product
HAVING sum(quantity) > 30

Same query as before, except that we consider only products
that had at least 30 sales.

HAVING clause contains conditions on aggregates.

Purchase(pid, product, price, quantity, month)

6

General form of Grouping
and Aggregation

S = may contain attributes a1,…,ak and/or any
aggregates but NO OTHER ATTRIBUTES

C1 = is any condition on the attributes in R1,…,Rn
C2 = is any condition on aggregate expressions

and on attributes a1,…,ak

CSE 414 - Spring 2018 31

Why ?

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

Semantics of SQL With
Group-By

CSE 414 - Spring 2018
32

Evaluation steps:
1. Evaluate FROM-WHERE using Nested Loop Semantics

2. Group by the attributes a1,…,ak

3. Apply condition C2 to each group (may have aggregates)
4. Compute aggregates in S and return the result

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

FWGHOS

