
Introduction to Database Systems
CSE 414

Lecture 28: Intro to Query Optimization

1CSE 414 - Spring 2018

Final Exam
• Thursday 6/7, 2:30-4:20pm
• Location: here
• Comprehensive exam

• Covers all lectures, sections, web quizzes, HWs,
and readings

• Can bring 2 letter-size sheets of notes
– Handwritten or printed

• More info on course website

• Review session:
– Sunday 6/3, 2:30-5pm, SMI 102

2

Big Picture
• How to choose the “best” query plan to run?

(aka query optimization)
• To answer this question we need to

understand:
– Data organization on the disk
– Index structures and how they are used in queries
– A way to model query “costs”
– Compute cost for each query operator
– Compute cost for each physical plan

CSE 414 - Spring 2018 3

Last topics
this quarter!

Review: Join Algorithms

• Nested loop join

• Hash join

• Sort-merge join

CSE 414 - Spring 2018 4

Hash Join

5

R

a b c

1 7 4

…

98 3 2

S

c d e

3 43 7

...

9 24 9

CSE 414 - Spring 2018

Hash Join

Hash join: R ⋈ S
• Scan R, build hash table in main memory
• Then scan S and join
• Cost: B(R) + B(S)
• Which relation to build the hash table on?

• One-pass algorithm when B(R) ≤ M
– M = number of memory pages available

CSE 414 - Spring 2018 6

Hash Join Example

7

Patient Insurance

Patient(pid, name, address)
Insurance(pid, provider, policy_nb)

1 ‘Bob’ ‘Seattle’
2 ‘Ela’ ‘Everett’

3 ‘Jill’ ‘Kent’
4 ‘Joe’ ‘Seattle’

Patient
2 ‘Blue’ 123
4 ‘Prem’ 432

Insurance

4 ‘Prem’ 343
3 ‘GrpH’ 554

Two tuples
per page

Hash Join Example

8

Patient Insurance

1 2
3 4

Patient
2 4

Insurance

4 3

Showing
pid only

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

Some large-
enough #

This is one page
with two tuples

Hash Join Example

9

Step 1: Scan Patient and build hash table in memory

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 43 96 85

1 2

= 0 = 1 = 2 = 3 = 4

Hash Join Example

10

Step 2: Scan Insurance and probe into hash table

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 43 96 85

1 22 4
Output buffer
2 2

Write to disk or
pass to next

operator

= 0 = 1 = 2 = 3 = 4

Hash Join Example

11

Step 2: Scan Insurance and probe into hash table

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 43 96 85

1 22 4
Output buffer
4 4

= 0 = 1 = 2 = 3 = 4

Hash Join Example

12

Step 2: Scan Insurance and probe into hash table

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 43 96 85

1 24 3
Output buffer
4 4

Keep going until read all of Insurance

Cost: B(R) + B(S)

= 0 = 1 = 2 = 3 = 4

Sort-Merge Join

13

R

a b c

1 7 4

…

98 3 2

S

c d e

3 43 7

...

9 24 9

Sort

Sort

Merge

CSE 414 - Spring 2018

Sort-Merge Join

Sort-merge join: R ⋈ S
• Scan R and sort in main memory
• Scan S and sort in main memory
• Merge R and S

• Cost: B(R) + B(S)
• One pass algorithm when B(S) + B(R) <= M
• Typically, this is NOT a one pass algorithm

CSE 414 - Spring 2018 14

Sort-Merge Join Example

15

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 1: Scan Patient and sort in memory

Sort-Merge Join Example

16

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 2: Scan Insurance and sort in memory

1 2 3 4

6 8 8 9

2 3 4 6

Sort-Merge Join Example

17

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 3: Merge Patient and Insurance

1 2 3 4

6 8 8 9

2 3 4 6

Output buffer
1 1

Sort-Merge Join Example

18

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 3: Merge Patient and Insurance

1 2 3 4

6 8 8 9

2 3 4 6

Output buffer
2 2

Keep going until end of first relation

Index Joins

19

R

a b c

1 7 4

…

98 3 2

S

c d e

3 43 7

...

9 24 9

S

c d e

3 43 7

...

9 24 9

...

Index Nested Loop Join
R ⋈S
• Assume S has an index on the join attribute
• Iterate over R, for each tuple fetch corresponding

tuple(s) from S

for r in R
// use index to lookup
for s’ in S that should be joined with r
s = fetch S tuple pointed to by s’ from disk
output (r,s)

CSE 414 - Spring 2018 20

Index Nested Loop Join
R ⋈S
for r in R

// use index to lookup
for s’ in S that should be joined with r
s = fetch S tuple pointed to by s’ from disk
output (r,s)

• Cost:
– If index on S is clustered:

B(R) + T(R) * (B(S) * 1/V(S,a))
– If index on S is unclustered:

B(R) + T(R) * (T(S) * 1/V(S,a))
CSE 414 - Spring 2018 21

Review:
Logical vs Physical Plans

CSE 414 - Spring 2018 22

Review: Physical Query Plan 1

23

Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
A physical query plan is a logical
query plan annotated with
physical implementation details

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

Review: Physical Query Plan 2

24

Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Hash join)

(On the fly)

(On the fly)
Same logical query plan
Different physical plan

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

Review: Physical Query Plan 3

CSE 414 - Spring 2018 25

Supplier Supply

sid = sid

(a) σscity=‘Seattle’ and sstate=‘WA’

πsname

(File scan) (File scan)

(Sort-merge join)

(On the fly)

(b) σpno=2

(Scan & write to T1)

(c)

(d)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Different but equivalent logical
query plan; different physical
planSELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

(Scan & write to T2)

Query Optimization: Overview

• Compute cost of each operator, which

depends on:

• Table statistics (# of tuples produced)

• Algorithm used to implement each operator

• Cost of a physical plan =

sum(each operator cost)

• Cost each plan and choose the one with

lowest cost

CSE 414 - Spring 2018 26

Estimating Table Statistics

CSE 414 - Spring 2018 27

Logical Query Plan 1

Supply Supplier

sid = sid

σpno=2�scity=‘Seattle’�sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

Logical Query Plan 1

Supply Supplier

sid = sid

σpno=2�scity=‘Seattle’�sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 10000

Logical Query Plan 1

Supply Supplier

sid = sid

σpno=2�scity=‘Seattle’�sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)

M=11

T = 10000

T < 1

Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’�sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’�sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4 T= 5

Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’�sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4 T= 5
Very wrong!

Why?

Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’�sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4 T= 5
Very wrong!

Why?

T = 4

Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’�sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4 T= 5
Very wrong!

Why?

T = 4

Different
estimate L

Computing Plan Costs

CSE 414 - Spring 2018 36

Physical Plan 1

Supply Supplier

sid = sid

σpno=2�scity=‘Seattle’�sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 10000

T < 1

Block nested loop join

Scan
Scan

Total cost: 100/10 * 100 = 1000

Physical Plan 1

Supply Supplier

sid = sid

σpno=2�scity=‘Seattle’�sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)

T = 10000

T < 1

Block nested loop join

Scan
Scan

Total cost: 100+100*100/10 = 1100

M=11

Physical Plan 2

Supply Supplier

sid = sid

σsstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 4

T= 5

T = 4

Unclustered
index lookup
Supply(pno)

Unclustered
index lookup
Supplier(scity)

σscity=‘Seattle’

Cost of Supply(pno) = 4
Cost of Supplier(scity) = 50
Total cost: 54

Main memory join

T= 50

M=11

Physical Plan 2

Supply Supplier

sid = sid

σsstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 4

T= 5

T = 4

Unclustered
index lookup
Supply(pno)

Unclustered
index lookup
Supplier(scity)

σscity=‘Seattle’

Cost of Supply(pno) = 4
Cost of Supplier(scity) = 50
Total cost: 54

Main memory join

T= 50

M=11

Physical Plan 2

Supply Supplier

sid = sid

σsstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 4

T= 5

T = 4

Unclustered
index lookup
Supply(pno)

Unclustered
index lookup
Supplier(scity)

σscity=‘Seattle’

Cost of Supply(pno) = 4
Cost of Supplier(scity) = 50
Total cost: 54

Main memory join

T= 50

M=11

Physical Plan 3

Supply Supplier

sid = sid

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 4

T = 4

Unclustered
index lookup
Supply(pno)

Cost of Supply(pno) = 4
Cost of Index join = 4
Total cost: 8

Clustered
Index join

σscity=‘Seattle’�sstate=‘WA’

M=11

Physical Plan 3

Supply Supplier

sid = sid

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 4

T = 4

Unclustered
index lookup
Supply(pno)

Cost of Supply(pno) = 4
Cost of Index join = 4
Total cost: 8

Clustered
Index join

σscity=‘Seattle’�sstate=‘WA’

M=11

Physical Plan 3

Supply Supplier

sid = sid

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 4

T = 4

Unclustered
index lookup
Supply(pno)

Cost of Supply(pno) = 4
Cost of Index join = 4
Total cost: 8

Clustered
Index join

σscity=‘Seattle’�sstate=‘WA’

M=11

Query Optimizer Summary
• Input: A logical query plan
• Output: A good physical query plan
• Basic query optimization algorithm

– Enumerate alternative plans (logical and physical)
– Compute estimated cost of each plan
– Choose plan with lowest cost

• This is called cost-based optimization
– More in CSE 444

CSE 414 - Spring 2018 45

