
1

Introduction to Database Systems
CSE 414

Lecture 25:
Basics of Data Storage and Indexes

1CSE 414 - Spring 2018

Announcements

• HW8 and WQ7

– Due on 5/30

• OH changes

– Alvin will be away next Wed

– Jonathan will give next Wed’s lecture

• Final on Thurs 6/7

– Final review on 6/3 afternoon

CSE 414 - Spring 2018 2

Recap: Transactions

• Protocols discussed:
– Nothing
– 2PL à unrecoverable schedules
– Strict 2PL à phantom problem
– Predicate locking à expensive!

• Recall our execution model!

CSE 414 - Spring 2018 3

Isolation Levels in SQL

1. “Dirty reads”
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

2. “Committed reads”
SET TRANSACTION ISOLATION LEVEL READ COMMITTED

3. “Repeatable reads”
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

4. Serializable transactions
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

CSE 414 - Spring 2018 4Try these in HW8!

Beware!
In commercial DBMSs:

• Default level is often NOT serializable

• Default level differs between DBMSs

• Some engines support subset of levels!

• Serializable may not be exactly ACID

– Locking ensures isolation, not atomicity

• Also, some DBMSs do NOT use locking and
different isolation levels can lead to different pbs

• Bottom line: RTFM for your DBMS!

CSE 414 - Spring 2018 5

Class Overview

• Unit 1: Intro
• Unit 2: Relational Data Models and Query Languages
• Unit 3: Non-relational data
• Unit 4: RDMBS internals and query optimization
• Unit 5: Parallel query processing
• Unit 6: DBMS usability, conceptual design
• Unit 7: Transactions
• Unit 8: Advanced topics: Query optimization

6

2

Query Performance
• My database application is too slow… why?
• One of the queries is very slow… why?

• To understand performance, we need to
understand:
– How is data organized on disk
– How to estimate query costs

– In this course we will focus on disk-based DBMSs

CSE 414 - Spring 2018 7

Data Storage

• DBMSs store data in files
• Most common organization is row-wise storage
• On disk, a file is split into

blocks
• Each block contains

a set of tuples

In the example, we have 4 blocks with 2 tuples each

CSE 414 - Spring 2018 8

10 Tom Hanks
20 Amy Hanks

50 … …
200 …

220
240

420
800

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

block 1

block 2

block 3

Data File Types

The data file can be one of:
• Heap file

– Unsorted
• Sequential file

– Sorted according to some attribute(s) called key

9

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

CSE 414 - Spring 2018

Data File Types

The data file can be one of:
• Heap file

– Unsorted

• Sequential file
– Sorted according to some attribute(s) called key

10

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

CSE 414 - Spring 2018

Note: key here means something different from primary key:
it just means that we order the file according to that attribute.
In our example we ordered by ID. Might as well order by fName,
if that seems a better idea for the applications running on
our database.

Index

• An additional file, that allows fast access to
records in the data file given a search key

11CSE 414 - Spring 2018

Index

• An additional file, that allows fast access to
records in the data file given a search key

• The index contains (key, value) pairs:
– The key = an attribute value (e.g., student ID or name)
– The value = a pointer to the record

12CSE 414 - Spring 2018

3

Index

• An additional file, that allows fast access to
records in the data file given a search key

• The index contains (key, value) pairs:
– The key = an attribute value (e.g., student ID or name)
– The value = a pointer to the record

• Could have many indexes for one table

13

Key = means here search key

CSE 414 - Spring 2018

This Is Not A Key

Different keys:

• Primary key – uniquely identifies a tuple

• Key of the sequential file – how the data file is

sorted, if at all

• Index key – how the index is organized

CSE 414 - Spring 2018 14

15

Example 1:
Index on ID

10

20

50

200

220

240

420

800

CSE 414 - Spring 2018

Data File Student

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

10 Tom Hanks
20 Amy Hanks

50 … …
200 …

220
240

420
800

950

…

Index Student_ID on Student.ID

16

Example 2:
Index on fName

CSE 414 - Spring 2018

Index Student_fName
on Student.fName

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

Amy

Ann

Bob

Cho

…

…

…

…

…

…

Tom

10 Tom Hanks

20 Amy Hanks

50 … …

200 …

220

240

420

800

Data File Student

Index Organization
We need a way to represent indexes after
loading into memory so that they can be used
Several ways to do this:
• Hash table
• B+ trees – most popular

– They are search trees, but they are not binary
instead have higher fanout

– Will discuss them briefly next
• Specialized indexes: bit maps, R-trees,

inverted index
CSE 414 - Spring 2018 17 18

Hash table example

10

20

50

200

220

240

420

800

… …

… …

CSE 414 - Spring 2018

Data File Student

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

10 Tom Hanks
20 Amy Hanks

50 … …
200 …

220
240

420
800

Index Student_ID on Student.ID

Index File
(preferably
in memory)

Data file
(on disk)

4

19

B+ Tree Index by Example
Recall binary trees from CSE 143!

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

d = 2 Find the key 40

40 <= 80

20 < 40 <= 60

30 < 40 <= 40

CSE 414 - Spring 2018

Index File
(preferably
in memory)

Data file
(on disk)

Clustered vs Unclustered

Index entries
(Index File)

(Data file)

Data Records

Index entries

Data Records
CLUSTERED UNCLUSTERED

B+ Tree B+ Tree

20CSE 414 - Spring 2018

Every table can have only one clustered and many unclustered indexes
Why?

21

Index Classification

• Clustered/unclustered
– Clustered = records close in index are close in data

• Option 1: Data inside data file is sorted on disk

• Option 2: Store data directly inside the index (no separate files)

– Unclustered = records close in index may be far in data

• Primary/secondary
– Meaning 1:

• Primary = is over attributes that include the primary key

• Secondary = otherwise

– Meaning 2: means the same as clustered/unclustered

• Organization B+ tree or Hash table

CSE 414 - Spring 2018

Scanning a Data File
• Disks are mechanical devices!

– Technology from the 60s; density much higher now
• Read only at the rotation speed!
• Consequence:

Sequential scan is MUCH FASTER than random reads
– Good: read blocks 1,2,3,4,5,…
– Bad: read blocks 2342, 11, 321,9, …

• Rule of thumb:
– Random reading 1-2% of the file ≈ sequential scanning the entire

file; this is decreasing over time (because of increased density of
disks)

• Solid state (SSD): $$$ expensive; put indexes, other “hot” data
there, still too expensive for everything 22

Example

CSE 414 - Spring 2018 23

SELECT *
FROM Student x, Takes y
WHERE x.ID=y.studentID AND y.courseID > 300

Assume the database has indexes on these attributes:

• index_takes_courseID = index on Takes.courseID

• index_student_ID = index on Student.ID

Student(ID, fname, lname)

Takes(studentID, courseID)

Example

CSE 414 - Spring 2018 24

SELECT *
FROM Student x, Takes y
WHERE x.ID=y.studentID AND y.courseID > 300

Assume the database has indexes on these attributes:
• index_takes_courseID = index on Takes.courseID
• index_student_ID = index on Student.ID

for y in Takes
if courseID > 300 then
for x in Student

if x.ID=y.studentID
output *

Student(ID, fname, lname)
Takes(studentID, courseID)

5

Example

CSE 414 - Spring 2018 25

SELECT *
FROM Student x, Takes y
WHERE x.ID=y.studentID AND y.courseID > 300

Assume the database has indexes on these attributes:

• Takes_courseID = index on Takes.courseID

• Student_ID = index on Student.ID

for y in Takes
if courseID > 300 then
for x in Student

if x.ID=y.studentID
output *

Student(ID, fname, lname)

Takes(studentID, courseID)

Example

CSE 414 - Spring 2018 26

SELECT *
FROM Student x, Takes y
WHERE x.ID=y.studentID AND y.courseID > 300

for y’ in Takes_courseID where y’.courseID > 300
y = fetch the Takes record pointed to by y’
for x’ in index_student_ID where x.ID = y.studentID

x = fetch the Student record pointed to by x’
output *

Assume the database has indexes on these attributes:

• Takes_courseID = index on Takes.courseID

• Student_ID = index on Student.ID

for y in Takes
if courseID > 300 then
for x in Student

if x.ID=y.studentID
output *

Student(ID, fname, lname)

Takes(studentID, courseID)

Example

CSE 414 - Spring 2018 27

SELECT *
FROM Student x, Takes y
WHERE x.ID=y.studentID AND y.courseID > 300

for y’ in Takes_courseID where y’.courseID > 300
y = fetch the Takes record pointed to by y’
for x’ in index_student_ID where x.ID = y.studentID

x = fetch the Student record pointed to by x’
output *

Assume the database has indexes on these attributes:

• Takes_courseID = index on Takes.courseID

• Student_ID = index on Student.ID

for y in Takes
if courseID > 300 then
for x in Student

if x.ID=y.studentID
output *

Index selection

Student(ID, fname, lname)

Takes(studentID, courseID)

Example

CSE 414 - Spring 2018 28

SELECT *
FROM Student x, Takes y
WHERE x.ID=y.studentID AND y.courseID > 300

for y’ in Takes_courseID where y’.courseID > 300
y = fetch the Takes record pointed to by y’
for x’ in Student_ID where x’.ID = y.studentID

x = fetch the Student record pointed to by x’
output *

Assume the database has indexes on these attributes:
• Takes_courseID = index on Takes.courseID
• Student_ID = index on Student.ID

for y in Takes
if courseID > 300 then
for x in Student

if x.ID=y.studentID
output *

Index selection

Index join

Student(ID, fname, lname)
Takes(studentID, courseID)

Example

CSE 414 - Spring 2018 29

SELECT *
FROM Student x, Takes y
WHERE x.ID=y.studentID AND y.courseID > 300

for y’ in Takes_courseID where y’.courseID > 300
y = fetch the Takes record pointed to by y’
for x’ in Student_ID where x’.ID = y.studentID

x = fetch the Student record pointed to by x’
output *

Assume the database has indexes on these attributes:

• Takes_courseID = index on Takes.courseID

• Student_ID = index on Student.ID

for y in Takes
if courseID > 300 then
for x in Student

if x.ID=y.studentID
output *

Index selection

Index join

Student(ID, fname, lname)

Takes(studentID, courseID)

Example

CSE 414 - Spring 2018 30

SELECT *
FROM Student x, Takes y
WHERE x.ID=y.studentID AND y.courseID > 300

for y’ in Takes_courseID where y’.courseID > 300
y = fetch the Takes record pointed to by y’
for x’ in Student_ID where x’.ID = y.studentID

x = fetch the Student record pointed to by x’
output *

Assume the database has indexes on these attributes:

• Takes_courseID = index on Takes.courseID

• Student_ID = index on Student.ID

for y in Takes
if courseID > 300 then
for x in Student

if x.ID=y.studentID
output *

Index selection

Index join

Student(ID, fname, lname)

Takes(studentID, courseID)

Takes Student

σcourseID>300

⋈studentID=ID

Index selection

6

Getting Practical:
Creating Indexes in SQL

31

CREATE INDEX V1 ON V(N)

CREATE TABLE V(M int, N varchar(20), P int);

CREATE INDEX V2 ON V(P, M)

CREATE INDEX V3 ON V(M, N)

CREATE CLUSTERED INDEX V5 ON V(N)

CSE 414 - Spring 2018

CREATE UNIQUE INDEX V4 ON V(N)

Getting Practical:
Creating Indexes in SQL

32

CREATE INDEX V1 ON V(N)

CREATE TABLE V(M int, N varchar(20), P int);

CREATE INDEX V2 ON V(P, M)

CREATE INDEX V3 ON V(M, N)

CREATE CLUSTERED INDEX V5 ON V(N)

CSE 414 - Spring 2018

CREATE UNIQUE INDEX V4 ON V(N)

What does this mean?

Getting Practical:
Creating Indexes in SQL

33

CREATE INDEX V1 ON V(N)

CREATE TABLE V(M int, N varchar(20), P int);

CREATE INDEX V2 ON V(P, M)

CREATE INDEX V3 ON V(M, N)

CREATE CLUSTERED INDEX V5 ON V(N)

CSE 414 - Spring 2018

CREATE UNIQUE INDEX V4 ON V(N)

What does this mean?

select *
from V
where P=55 and M=77

yes

Getting Practical:
Creating Indexes in SQL

34

CREATE INDEX V1 ON V(N)

CREATE TABLE V(M int, N varchar(20), P int);

CREATE INDEX V2 ON V(P, M)

CREATE INDEX V3 ON V(M, N)

CREATE CLUSTERED INDEX V5 ON V(N)

CSE 414 - Spring 2018

CREATE UNIQUE INDEX V4 ON V(N)

What does this mean?

select *
from V
where P=55

select *
from V
where P=55 and M=77

yes

Getting Practical:
Creating Indexes in SQL

35

CREATE INDEX V1 ON V(N)

CREATE TABLE V(M int, N varchar(20), P int);

CREATE INDEX V2 ON V(P, M)

CREATE INDEX V3 ON V(M, N)

CREATE CLUSTERED INDEX V5 ON V(N)

CSE 414 - Spring 2018

CREATE UNIQUE INDEX V4 ON V(N)

What does this mean?

select *
from V
where P=55

select *
from V
where P=55 and M=77

yes

yes

Getting Practical:
Creating Indexes in SQL

36

CREATE INDEX V1 ON V(N)

CREATE TABLE V(M int, N varchar(20), P int);

CREATE INDEX V2 ON V(P, M)

CREATE INDEX V3 ON V(M, N)

CREATE CLUSTERED INDEX V5 ON V(N)

CSE 414 - Spring 2018

CREATE UNIQUE INDEX V4 ON V(N)

What does this mean?

select *
from V
where P=55

select *
from V
where M=77

select *
from V
where P=55 and M=77

yes

yes

7

Getting Practical:
Creating Indexes in SQL

37

CREATE INDEX V1 ON V(N)

CREATE TABLE V(M int, N varchar(20), P int);

CREATE INDEX V2 ON V(P, M)

CREATE INDEX V3 ON V(M, N)

CREATE CLUSTERED INDEX V5 ON V(N)

CSE 414 - Spring 2018

CREATE UNIQUE INDEX V4 ON V(N)

What does this mean?

select *
from V
where P=55

select *
from V
where M=77

select *
from V
where P=55 and M=77

no

yes

yes

Getting Practical:
Creating Indexes in SQL

38

CREATE INDEX V1 ON V(N)

CREATE TABLE V(M int, N varchar(20), P int);

CREATE INDEX V2 ON V(P, M)

CREATE INDEX V3 ON V(M, N)

CREATE CLUSTERED INDEX V5 ON V(N)

CSE 414 - Spring 2018

CREATE UNIQUE INDEX V4 ON V(N)

What does this mean?

select *
from V
where P=55

select *
from V
where M=77

select *
from V
where P=55 and M=77

no

yes

yes

Not supported
in SQLite

