
Introduction to Database Systems
CSE 414

Lecture 24:
Implementation of Transactions

1CSE 414 - Spring 2018

Conflict Serializability

• A schedule is conflict serializable if it can be
transformed into a serial schedule by a series of
swappings of adjacent non-conflicting actions

• Every conflict-serializable schedule is serializable
• The converse is not true (why?)

CSE 414 - Spring 2018 2

Testing for Conflict-Serializability

Precedence graph:
• A node for each transaction Ti,
• An edge from Ti to Tj whenever an action in Ti

conflicts with, and comes before an action in Tj

• The schedule is conflict-serializable iff the
precedence graph is acyclic

CSE 414 - Spring 2018 3

Example 2

CSE 414 - Spring 2018 4

1 2 3

This schedule is NOT conflict-serializable

A
B

B

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

More Notations

CSE 414 - Spring 2018 5

Li(A) = transaction Ti acquires lock for element A

Ui(A) = transaction Ti releases lock for element A

A Non-Serializable Schedule

CSE 414 - Spring 2018 6

T1 T2
READ(A)
A := A+100
WRITE(A)

READ(A)
A := A*2
WRITE(A)
READ(B)
B := B*2
WRITE(B)

READ(B)
B := B+100
WRITE(B)

Example

CSE 414 - Spring 2018 7

T1 T2

L
1
(A); READ(A)

A := A+100

WRITE(A); U
1
(A); L

1
(B)

L
2
(A); READ(A)

A := A*2

WRITE(A); U
2
(A);

L
2
(B); BLOCKED…

READ(B)

B := B+100

WRITE(B); U
1
(B);

…GRANTED; READ(B)

B := B*2

WRITE(B); U
2
(B);

Scheduler has ensured a conflict-serializable schedule

But…

8

T1 T2
L1(A); READ(A)
A := A+100
WRITE(A); U1(A);

L2(A); READ(A)
A := A*2
WRITE(A); U2(A);
L2(B); READ(B)
B := B*2
WRITE(B); U2(B);

L1(B); READ(B)
B := B+100
WRITE(B); U1(B);

Locks did not enforce conflict-serializability !!! What’s wrong ?

Two Phase Locking (2PL)

CSE 414 - Spring 2018 9

In every transaction, all lock requests
must precede all unlock requests

The 2PL rule:

Example: 2PL transactions

CSE 414 - Spring 2018 10

T1 T2
L1(A); L1(B); READ(A)
A := A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B := B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B); Now it is conflict-serializable

Two Phase Locking (2PL)

11

Theorem: 2PL ensures conflict serializability

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Two Phase Locking (2PL)

13

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:

Two Phase Locking (2PL)

14

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A) why?

U1(A) happened
strictly before L2(A)

Two Phase Locking (2PL)

15

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B) why?

L2(A) happened
strictly before U1(A)

Two Phase Locking (2PL)

16

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B) why?

Two Phase Locking (2PL)

17

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B)
U2(B)àL3(B) why?

Two Phase Locking (2PL)

18

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B)
U2(B)àL3(B)

......etc.....

Two Phase Locking (2PL)

19

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B)
U2(B)àL3(B)
L3(B)àU3(C)
U3(C)àL1(C)
L1(C)àU1(A)

Cycle in time:
Contradiction

A New Problem:
Non-recoverable Schedule

CSE 414 - Spring 2018 20

T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B);
Commit

Rollback

A New Problem:
Non-recoverable Schedule

CSE 414 - Spring 2018 21

T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B);
Commit

Rollback

Elements A, B written
by T1 are restored
to their original value.

A New Problem:
Non-recoverable Schedule

CSE 414 - Spring 2018 22

T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B);
Commit

Rollback

Elements A, B written
by T1 are restored
to their original value.

Dirty reads of
A, B lead to
incorrect writes.

A New Problem:
Non-recoverable Schedule

CSE 414 - Spring 2018 23

T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B);
Commit

Rollback
Elements A, B written
by T1 are restored
to their original value. Can no longer undo!

Dirty reads of
A, B lead to
incorrect writes.

Strict 2PL

24

T1 T2

L1(A); READ(A)

A :=A+100

WRITE(A);

L2(A); BLOCKED…

L1(B); READ(B)

B :=B+100

WRITE(B);

Rollback & U1(A);U1(B);

…GRANTED; READ(A)

A := A*2

WRITE(A);

L2(B); READ(B)

B := B*2

WRITE(B);

Commit & U2(A); U2(B);

Strict 2PL

CSE 414 - Spring 2018 25

All locks are held until commit/abort:
All unlocks are done together with commit/abort.

The Strict 2PL rule:

With strict 2PL, we will get schedules that
are both conflict-serializable and recoverable

Another problem: Deadlocks

• T1: R(A), W(B)
• T2: R(B), W(A)

• T1 holds the lock on A, waits for B
• T2 holds the lock on B, waits for A

This is a deadlock!
CSE 414 - Spring 2018 26

Another problem: Deadlocks
To detect a deadlocks, search for a cycle in the
waits-for graph:
• T1 waits for a lock held by T2;
• T2 waits for a lock held by T3;
• . . .
• Tn waits for a lock held by T1

Relatively expensive: check periodically, if deadlock is
found, then abort one transaction.
need to continuously re-check for deadlocks

27

A “Solution”: Lock Modes

• S = shared lock (for READ)

• X = exclusive lock (for WRITE)

CSE 414 - Spring 2018 28

None S X

None

S

X

Lock compatibility matrix:

A “Solution”: Lock Modes

• S = shared lock (for READ)

• X = exclusive lock (for WRITE)

CSE 414 - Spring 2018 29

None S X

None ✔ ✔ ✔

S ✔ ✔ ✖

X ✔ ✖ ✖

Lock compatibility matrix:

Lock Granularity

• Fine granularity locking (e.g., tuples)
– High concurrency
– High overhead in managing locks
– E.g., SQL Server

• Coarse grain locking (e.g., tables, entire database)
– Many false conflicts
– Less overhead in managing locks
– E.g., SQL Lite

• Solution: lock escalation changes granularity as needed

CSE 414 - Spring 2018 30

Lock Performance

CSE 414 - Spring 2018 31

Th
ro

ug
hp

ut
 (T

PS
)

Active Transactions

thrashing

Why ?

TPS =
Transactions
per second

To avoid, use
admission control

Phantom Problem
• So far we have assumed the database to be a

static collection of elements (=tuples)

• If tuples are inserted/deleted then the phantom
problem appears

CSE 414 - Spring 2018 32

Phantom Problem

CSE 414 - Spring 2018 33

Is this schedule serializable ?

T1 T2

SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

Phantom Problem

CSE 414 - Spring 2018 34

R1(A1);R1(A2);W2(A3);R1(A1);R1(A2);R1(A3)

T1 T2

SELECT *

FROM Product

WHERE color=‘blue’

INSERT INTO Product(name, color)

VALUES (‘A3’,’blue’)

SELECT *

FROM Product

WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

W2(A3);R1(A1);R1(A2);R1(A1);R1(A2);R1(A3)

Phantom Problem

R1(A1);R1(A2);W2(A3);R1(A1);R1(A2);R1(A3)

T1 T2

SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

Phantom Problem
• A “phantom” is a tuple that is

invisible during part of a transaction execution but
not invisible during the entire execution

• In our example:
– T1: reads list of products
– T2: inserts a new product
– T1: re-reads: a new product appears !

CSE 414 - Spring 2018 36

Dealing With Phantoms

• Lock the entire table

• Lock the index entry for ‘blue’

– If index is available

• Or use predicate locks

– A lock on an arbitrary predicate

CSE 414 - Spring 2018 37

Dealing with phantoms is expensive !

Summary of Serializability

• Serializable schedule = equivalent to a serial
schedule

• (strict) 2PL guarantees conflict serializability
– What is the difference?

• Static database:
– Conflict serializability implies serializability

• Dynamic database:
– This no longer holds

CSE 414 - Spring 2018 38

Isolation Levels in SQL

1. “Dirty reads”
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

2. “Committed reads”
SET TRANSACTION ISOLATION LEVEL READ COMMITTED

3. “Repeatable reads”
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

4. Serializable transactions
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

CSE 414 - Spring 2018 39

ACID

1. Isolation Level: Dirty Reads

• “Long duration” WRITE locks
– Strict 2PL

• No READ locks
– Read-only transactions are never delayed

CSE 414 - Spring 2018 40

Possible problems: dirty and inconsistent reads

2. Isolation Level: Read Committed

• “Long duration” WRITE locks
– Strict 2PL

• “Short duration” READ locks
– Only acquire lock while reading (not 2PL)

CSE 414 - Spring 2018 41

Unrepeatable reads:
When reading same element twice,
may get two different values

3. Isolation Level: Repeatable Read

• “Long duration” WRITE locks

– Strict 2PL

• “Long duration” READ locks

– Strict 2PL

CSE 414 - Spring 2018 42

This is not serializable yet !!!

Why ?

4. Isolation Level Serializable

• “Long duration” WRITE locks
– Strict 2PL

• “Long duration” READ locks
– Strict 2PL

• Predicate locking
– To deal with phantoms

CSE 414 - Spring 2018 43

Beware!

In commercial DBMSs:

• Default level is often NOT serializable

• Default level differs between DBMSs

• Some engines support subset of levels!

• Serializable may not be exactly ACID

– Locking ensures isolation, not atomicity

• Also, some DBMSs do NOT use locking and

different isolation levels can lead to different pbs

• Bottom line: RTFM for your DBMS!

CSE 414 - Spring 2018 44

