
Introduction to Database Systems
CSE 414

Lecture 23: More Transactions

1CSE 414 - Spring 2018

Announcements
• WQ7 released

– Due on 5/30

• HW8 will be released later today
– Due on 5/30

• These are the last HW assignments for
the class!

CSE 414 - Spring 2018 2

HW8

CSE 414 - Spring 2018 3

What can go wrong?
• Manager: balance budgets among projects

– Remove $10k from project A
– Add $7k to project B
– Add $3k to project C

• CEO: check company’s total balance
– SELECT SUM(money) FROM budget;

• This is called a dirty / inconsistent read
aka a WRITE-READ conflict

CSE 414 - Spring 2018 4

What can go wrong?
• App 1:

SELECT inventory FROM products WHERE pid = 1

• App 2:
UPDATE products SET inventory = 0 WHERE pid = 1

• App 1:
SELECT inventory * price FROM products
WHERE pid = 1

• This is known as an unrepeatable read
aka READ-WRITE conflict

CSE 414 - Spring 2018 5

What can go wrong?
Account 1 = $100
Account 2 = $100

Total = $200
• App 1:

– Set Account 1 = $200
– Set Account 2 = $0

• App 2:
– Set Account 2 = $200
– Set Account 1 = $0

• At the end:
– Total = $200

• App 1: Set Account 1 = $200

• App 2: Set Account 2 = $200

• App 1: Set Account 2 = $0

• App 2: Set Account 1 = $0

• At the end:
– Total = $0

This is called the lost update aka WRITE-WRITE conflict
CSE 414 - Spring 2018 6

What can go wrong?

• Buying tickets to the next Bieber concert:

– Fill up form with your mailing address

– Put in debit card number

– Click submit

– Screen shows money deducted from your account

– [Your browser crashes]

CSE 414 - Spring 2018 7

Lesson:

Changes to the database

should be ALL or NOTHING

Transactions

• Collection of statements that are executed
atomically (logically speaking)

8

BEGIN TRANSACTION
[SQL statements]

COMMIT or
ROLLBACK (=ABORT)

[single SQL statement]
If BEGIN… missing,
then TXN consists

of a single instruction
CSE 414 - Spring 2018

9

Know your chemistry

transactions: ACID
• Atomic

– State shows either all the effects of txn, or none of them

• Consistent

– Txn moves from a DBMS state where integrity holds, to
another where integrity holds

• remember integrity constraints?

• Isolated

– Effect of txns is the same as txns running one after
another (i.e., looks like batch mode)

• Durable

– Once a txn has committed, its effects remain in the
database

CSE 414 - Spring 2018

Example of a (Serial) Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

CSE 414 - Spring 2018 10

Ti
m

e

Review: Serializable Schedule

CSE 414 - Spring 2018 11

A schedule is serializable if it is
equivalent to a serial schedule

(in terms of its effects on the DB)

A Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)

READ(B, t)
t := t+100
WRITE(B,t)

READ(B,s)
s := s*2
WRITE(B,s)

This is a serializable schedule.
This is NOT a serial schedule

CSE 414 - Spring 2018 12

A Non-Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

CSE 414 - Spring 2018 13

How do We Know if a Schedule
is Serializable?

CSE 414 - Spring 2018 14

T1: r1(A); w1(A); r1(B); w1(B)
T2: r2(A); w2(A); r2(B); w2(B)

Notation:

Key Idea: Focus on conflicting operations

Conflicts

• Write-Read – WR
• Read-Write – RW
• Write-Write – WW
• Read-Read?

CSE 414 - Spring 2018 15

Conflict Serializability

Conflicts: (i.e., swapping will change program behavior)

ri(X); wi(Y)Two actions by same transaction Ti:

wi(X); wj(X)Two writes by Ti, Tj to same element

wi(X); rj(X)
Read/write by Ti, Tj to same element

ri(X); wj(X)

CSE 414 - Spring 2018 16

Conflict Serializability

• A schedule is conflict serializable if it can be
transformed into a serial schedule by a series of
swappings of adjacent non-conflicting actions

• Every conflict-serializable schedule is serializable
• The converse is not true (why?)

CSE 414 - Spring 2018 17

Conflict Serializability

CSE 414 - Spring 2018 18

Example:
r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Conflict Serializability

CSE 414 - Spring 2018 19

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Conflict Serializability

CSE 414 - Spring 2018 20

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Conflict Serializability

CSE 414 - Spring 2018 21

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

Conflict Serializability

CSE 414 - Spring 2018 22

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

r1(A); w1(A); r1(B); r2(A); w2(A); w1(B); r2(B); w2(B)

….

Testing for Conflict-Serializability

Precedence graph:
• A node for each transaction Ti,
• An edge from Ti to Tj whenever an action in Ti

conflicts with, and comes before an action in Tj

• The schedule is conflict-serializable iff the
precedence graph is acyclic

CSE 414 - Spring 2018 23

Example 1

CSE 414 - Spring 2018 24

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

Example 1

CSE 414 - Spring 2018 25

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

This schedule is conflict-serializable

AB

Example 2

CSE 414 - Spring 2018 26

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3

Example 2

CSE 414 - Spring 2018 27

1 2 3

This schedule is NOT conflict-serializable

A
B

B

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

Implementing Transactions

CSE 414 - Spring 2018 28

Scheduler

• Scheduler = the module that schedules the
transaction’s actions, ensuring serializability

• Also called Concurrency Control Manager

• We discuss next how a scheduler may be
implemented

CSE 414 - Spring 2018 29

Implementing a Scheduler

Major differences between database vendors
• Locking Scheduler

– Aka “pessimistic concurrency control”
– SQLite, SQL Server, DB2

• Multiversion Concurrency Control (MVCC)
– Aka “optimistic concurrency control”
– Postgres, Oracle: Snapshot Isolation (SI)

We discuss only locking schedulers in this class
30CSE 414 - Spring 2018

Locking Scheduler

Simple idea:
• Each element has a unique lock
• Each transaction must first acquire the lock

before reading/writing that element
• If the lock is taken by another transaction,

then wait
• The transaction must release the lock(s)

CSE 414 - Spring 2018 31By using locks scheduler ensures conflict-serializability

What Data Elements are Locked?

Major differences between vendors:

• Lock on the entire database
– SQLite

• Lock on individual records
– SQL Server, DB2, etc

CSE 414 - Spring 2018 32

Now for something more serious…

CSE 414 - Spring 2018 33

More Notations

CSE 414 - Spring 2018 34

Li(A) = transaction Ti acquires lock for element A

Ui(A) = transaction Ti releases lock for element A

A Non-Serializable Schedule

CSE 414 - Spring 2018 35

T1 T2
READ(A)
A := A+100
WRITE(A)

READ(A)
A := A*2
WRITE(A)
READ(B)
B := B*2
WRITE(B)

READ(B)
B := B+100
WRITE(B)

Example

CSE 414 - Spring 2018 36

T1 T2
L1(A); READ(A)
A := A+100
WRITE(A); U1(A); L1(B)

L2(A); READ(A)
A := A*2
WRITE(A); U2(A);
L2(B); BLOCKED…

READ(B)
B := B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(B);

Scheduler has ensured a conflict-serializable schedule

But…

37

T1 T2
L1(A); READ(A)
A := A+100
WRITE(A); U1(A);

L2(A); READ(A)
A := A*2
WRITE(A); U2(A);
L2(B); READ(B)
B := B*2
WRITE(B); U2(B);

L1(B); READ(B)
B := B+100
WRITE(B); U1(B);

Locks did not enforce conflict-serializability !!! What’s wrong ?

Two Phase Locking (2PL)

CSE 414 - Spring 2018 38

In every transaction, all lock requests
must precede all unlock requests

The 2PL rule:

Example: 2PL transactions

CSE 414 - Spring 2018 39

T1 T2
L1(A); L1(B); READ(A)
A := A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B := B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B); Now it is conflict-serializable

