Introduction to Database Systems
CSE 414

Lecture 23: More Transactions

CSE 414 - Spring 2018

Announcements

« WQY released
— Due on 5/30

 HW8 will be released later today
— Due on 5/30

* These are the last HW assignments for
the class!

CSE 414 - Spring 2018

HW3

% Expedia Account v MylLists My Trips St
Get DOUBLE pc

Home Bundle and Save Hotels Cars Qigllslgicl Cruises Thingsto Do Discover Vacation Rentals Deals Rewards Mobile

Search Flights
X X B XEBa X &=

Flight Only Flight + Hotel Flight + Hotel + Car Flight + Car

Roundtrip Oneway Multi-City

Flying from Flying to
City or airport City or airport

Departing Returning 2 Travelers
mm/dd/yyyy mm/dd/yyyy 1 Adult, 0 Children

Advanced options ¥

® B Addahotel @ & Addacar

CSE 414 - Spring 2018 3

What can go wrong?

 Manager: balance budgets among projects

— Remove $10k from project A
_j— Add $7k to project B
- “— Add $3k to project C

 CEO: check company’s total balance
— SELECT SUM(money) FROM budget;

* This is called a dirty / inconsistent read
aka a WRITE-READ conflict

CSE 414 - Spring 2018

What can go wrong?

App 1:
SELECT inventory FROM products WHERE pid =1

App 2:
UPDATE products SET inventory = © WHERE pid =1

App 1:
SELECT inventory * price FROM products
WHERE pid =1

This is known as an unrepeatable read
aka READ-WRITE conflict

CSE 414 - Spring 2018

What can go wrong?

Account 1 = $100
Account 2 = $100
Total = $200

* App 1: * App 1: Set Account 1 = $200
— Set Account 1 = $200

— Set Account 2 = $0 * App 2: Set Account 2 = $200

* App 2: App 1: Set Account 2 = $0
— Set Account 2 = $200

— Set Account 1 = $0 App 2: Set Account 1 = $0

At the end: Atthe end:
— Total = $200 — Total = $0

This is called the lost update aka WRITE-WRITE confllct

CSE 414 - Spring 2018

What can go wrong?

* Buying tickets to the next Bieber concert:
— Fill up form with your mailing address
— Put in debit card number
— Click submit
— Screen shows money deducted from your account
— [Your browser crashes]

Lesson:

Changes to the database
should be ALL or NOTHING

CSE 414 - Spring 2018 7

Transactions

* Collection of statements that are executed
atomically (logically speaking)

BEGIN TRANSACTION
[SQL statements]

COMMIT or

ROLLBACK (=ABORT)

[single SQL statement]

CSE 414 - Spring 2018

If BEGIN... missing,

then TXN consists
of a single instruction

Know your ehemistry

~ transactions: ACID
Atomic

— State shows either all the effects of txn, or none of them
Consistent

— Txn moves from a DBMS state where integrity holds, to
another where integrity holds

* remember integrity constraints?
Isolated

— Effect of txns is the same as txns running one after
another (i.e., looks like batch mode)

Durable

— Once a txn has committed, its effects remain in the
database

CSE 414 - Spring 2018 9

Example of a (Serial) Schedule

\Time

T1 T2

READ(A, t)

t:=t+100

WRITE(A, 1)

READ(B, t)

t:=t+100

WRITE(B,1)
READ(A,s)
S = §*2
WRITE(A,s)
READ(B,s)
S =82
WRITE(B,s)

CSE 414 - Spring 2018

10

Review: Serializable Schedule

A schedule is serializable if it is

equivalent to a serial schedule
(in terms of its effects on the DB)

CSE 414 - Spring 2018

11

A Serializable Schedule

T1 T2
READ(A, t)
t:=t+100
WRITE(A, t)
READ(A,s)
S = §%2
WRITE(A,s)
READ(B, t)
t:=t+100
WRITE(B,t)
READ(B,s)
This is a serializable schedule. S =82
This is NOT a serial schedule WRITE(B,s)

CSE 414 - Spring 2018

T

12

A Non-Serializable Schedule

T1 T2

READ(A, t)

t:=t+100

WRITE(A, t)
READ(A,s)
S :=8*2
WRITE(A,s)
READ(B,s)
S =82
WRITE(B,s)

READ(B, t)

t:=t+100

WRITE(B,1)

CSE 414 - Spring 2018

13

How do We Know if a Schedule
IS Serializable?

Notation:

T4 r(A); wy(A); r(B); wy(B)
T,: r(A); Wo(A); r(B); w,y(B)

Key ldea: Focus on conflicting operations

CSE 414 - Spring 2018 14

Conflicts

* Write-Read — WR
 Read-Write — RW
 Write-Write — WW
 Read-Read?

CSE 414 - Spring 2018

15

Conflict Serializability

Conflicts: (i.e., swapping will change program behavior)

Two actions by same transaction T;:

r(X); wi(Y)
Two writes by T;, T, {o same element W;(X); w;(X) '

Read/write by T;, T; to same element

CSE 414 - Spring 2018 16

Conflict Serializability

» A schedule is conflict serializable if it can be
transformed into a serial schedule by a series of
swappings of adjacent non-conflicting actions

* Every conflict-serializable schedule is serializable
* The converse is not true (why?)

CSE 414 - Spring 2018 17

Conflict Serializability

Example:

ri(A); wi(A); ra(A); Wo(A); r4(B); wq(B); ra(B); wo(B)

CSE 414 - Spring 2018 18

Conflict Serializability

Example:

ri(A); wi(A); ra(A); Wo(A); r4(B); wq(B); ra(B); wo(B)

r1(A);, wi(A); ry(B); wy(B); ra(A); wo(A); ry(B); wy(B)

CSE 414 - Spring 2018 19

Conflict Serializability

Example:
r(A); Wi(A); ro(A);

W, (A); r4(B);

W;(B); ra(B); wo(B)

r1(A);, wi(A); ry(B); wy(B); ra(A); wo(A); ry(B); wy(B)

CSE 414 - Spring 2018 20

Conflict Serializability

Example:
ri(A); wy(A); ry(A);

W, (A); r4(B);

W;(B); ra(B); wo(B)

~~
Wy (A); W4(B); ra(B); wy(B)

r1(A);, wi(A); ry(B); wy(B); ra(A); wo(A); ry(B); wy(B)

CSE 414 - Spring 2018 21

Conflict Serializability

Example:
ri(A); wy(A); ry(A);

W, (A); r4(B);

W;(B); ra(B); wo(B)

~~

W(A); w4(B); r2(B); wo(B)

r1(A);, wi(A); ry(B); wy(B); ra(A); wo(A); ry(B); wy(B)

CSE 414 - Spring 2018 22

Testing for Conflict-Serializability

Precedence graph:
* A node for each transaction T,

* An edge from T; to T; whenever an action in T,
conflicts with, and comes before an action in T,

* The schedule is conflict-serializable iff the
precedence graph is acyclic

CSE 414 - Spring 2018 23

Example 1

ry(A); r1(B); wy(A); ra(A); wy(B); wa(A); ry(B); wy(B)

ORNE) ©)

CSE 414 - Spring 2018 24

Example 1

N

ry(A); r1(B); wy(A); ra(A); wy(B); wa(A); ry(B); wy(B)

This schedule is conflict-serializable

CSE 414 - Spring 2018 25

Example 2

r)(A); 11(B); Wa(A); ra(B); ra(A); wy(B); wi(A); w,(B)

v @ ©)

CSE 414 - Spring 2018 26

Example 2

T

r)(A); 11(B); Wa(A); ra(B); ra(A); wy(B); wi(A); w,(B)

This schedule is NOT conflict-serializable

CSE 414 - Spring 2018 27

Implementing Transactions

CSE 414 - Spring 2018

28

Scheduler

» Scheduler = the module that schedules the
transaction’s actions, ensuring serializability

* Also called Concurrency Control Manager

* We discuss next how a scheduler may be
Implemented

CSE 414 - Spring 2018

29

Implementing a Scheduler

Major differences between database vendors
* Locking Scheduler

— Aka “pessimistic concurrency control”
— SQLite, SQL Server, DB2

* Multiversion Concurrency Control (MVCC)
— Aka “optimistic concurrency control”
— Postgres, Oracle: Snapshot Isolation (Sl)

We discuss only locking schedulers in this class

CSE 414 - Spring 2018 30

Locking Scheduler

Simple idea:
 Each element has a unique lock

« Each transaction must first acquire the lock
before reading/writing that element

* If the lock is taken by another transaction,
then wait

* The transaction must release the lock(s)

By using locks scheduler ensures conflict-serializability

What Data Elements are Locked?

Major differences between vendors:

 Lock on the entire database
— SQLite

 Lock on individual records
— SQL Server, DB2, etc

CSE 414 - Spring 2018 32

Now for something more serious...

CSE 414 - Spring 2018 33

More Notations

L,(A) = transaction T, acquires lock for element A

U.(A) = transaction T, releases lock for element A

CSE 414 - Spring 2018 34

A Non-Serializable Schedule

T1 T2

READ(A)

A:=A+100

WRITE(A)
READ(A)
A :=A*2
WRITE(A)
READ(B)
B :=B*2
WRITE(B)

READ(B)

B :=B+100

WRITE(B)

CSE 414 - Spring 2018

35

Example
T1 T2

L,(A); READ(A)

A:=A+100

WRITE(A); U;(A); L4(B)
L,(A); READ(A)
A:=A*2
WRITE(A); U,(A);
L,(B); BLOCKED...

READ(B)

B :=B+100

WRITE(B); U,(B);
...GRANTED; READ(B)
B:=B*2
WRITE(B); U,(B);

Scheduler has ensured a conflict-serializable schedule 36

But...

T1 12

L,(A); READ(A)

A:=A+100

WRITE(A); U, (A);
L,(A); READ(A)
A:=A*2
WRITE(A); U,(A);
L,(B); READ(B)
B :=B*2
WRITE(B); U,(B);

L,(B); READ(B)

B :=B+100

WRITE(B); U,(B);

Locks did not enforce conflict-serializability !!'! What's wrong ?

Two Phase Locking (2PL)

The 2PL rule:

In every transaction, all lock requests
must precede all unlock requests

CSE 414 - Spring 2018

38

Example: 2PL transactions

T1

12

L1(A); L4(B); READ(A)

A := A+100
WRITE(A); U.(A)

READ(B)
B := B+100
WRITE(B): U, (B);

Now it is conflict-serializable

L,(A): READ(A)
A= A2
WRITE(A);

L,(B); BLOCKED...

...GRANTED: READ(B)
B := B*2

WRITE(B); U,(A); U,(B);

CSE 414 - Spring 2018

39

