
Introduction to Database Systems
CSE 414

Lecture 22: Introduction to
Transactions

1CSE 414 - Spring 2018

Class Overview

• Unit 1: Intro
• Unit 2: Relational Data Models and Query Languages
• Unit 3: Non-relational data
• Unit 4: RDMBS internals and query optimization
• Unit 5: Parallel query processing
• Unit 6: DBMS usability, conceptual design
• Unit 7: Transactions

– Locking and schedules
– Writing DB applications

• Unit 8: Advanced topics
2

Data Management Pipeline

Conceptual Schema

Physical Schema

Schema
designer

Database
administrator

Application
programmer

product

name

price

3

Transactions
• We use database transactions everyday

– Bank $$$ transfers
– Online shopping
– Signing up for classes

• For this class, a transaction is a series of DB
queries
– Read / Write / Update / Delete / Insert
– Unit of work issued by a user that is independent

from others
CSE 414 - Spring 2018 4

What’s the big deal?

CSE 414 - Spring 2018 5

Challenges

• Want to execute many apps concurrently
– All these apps read and write data to the same DB

• Simple solution: only serve one app at a time
– What’s the problem?

• Want: multiple operations to be executed
atomically over the same DBMS

CSE 414 - Spring 2018 6

What can go wrong?
• Manager: balance budgets among projects

– Remove $10k from project A
– Add $7k to project B
– Add $3k to project C

• CEO: check company’s total balance
– SELECT SUM(money) FROM budget;

• This is called a dirty / inconsistent read
aka a WRITE-READ conflict

CSE 414 - Spring 2018 7

What can go wrong?
• App 1:

SELECT inventory FROM products WHERE pid = 1

• App 2:
UPDATE products SET inventory = 0 WHERE pid = 1

• App 1:
SELECT inventory * price FROM products
WHERE pid = 1

• This is known as an unrepeatable read
aka READ-WRITE conflict

CSE 414 - Spring 2018 8

What can go wrong?
Account 1 = $100
Account 2 = $100

Total = $200
• App 1:

– Set Account 1 = $200
– Set Account 2 = $0

• App 2:
– Set Account 2 = $200
– Set Account 1 = $0

• At the end:
– Total = $200

• App 1: Set Account 1 = $200

• App 2: Set Account 2 = $200

• App 1: Set Account 2 = $0

• App 2: Set Account 1 = $0

• At the end:
– Total = $0

This is called the lost update aka WRITE-WRITE conflict
CSE 414 - Spring 2018 9

What can go wrong?

• Buying tickets to the next Bieber concert:

– Fill up form with your mailing address

– Put in debit card number

– Click submit

– Screen shows money deducted from your account

– [Your browser crashes]

CSE 414 - Spring 2018 10

Lesson:

Changes to the database

should be ALL or NOTHING

Transactions

• Collection of statements that are executed
atomically (logically speaking)

11

BEGIN TRANSACTION
[SQL statements]

COMMIT or
ROLLBACK (=ABORT)

[single SQL statement]
If BEGIN… missing,
then TXN consists

of a single instruction
CSE 414 - Spring 2018

Transactions Demo

CSE 414 - Spring 2018 12

Turing Awards in Data Management

CSE 414 - Spring 2018
13

Charles Bachman, 1973
IDS and CODASYL

Ted Codd, 1981
Relational model

Michael Stonebraker, 2014
INGRES and Postgres

Jim Gray, 1998
Transaction processing

14

Know your chemistry
transactions: ACID

• Atomic
– State shows either all the effects of txn, or none of them

• Consistent
– Txn moves from a DBMS state where integrity holds, to

another where integrity holds
• remember integrity constraints?

• Isolated
– Effect of txns is the same as txns running one after

another (i.e., looks like batch mode)
• Durable

– Once a txn has committed, its effects remain in the
database

CSE 414 - Spring 2018

Atomic
• Definition: A transaction is ATOMIC if all

its updates must happen or not at all.
• Example: move $100 from A to B

– UPDATE accounts SET bal = bal – 100
WHERE acct = A;

– UPDATE accounts SET bal = bal + 100
WHERE acct = B;

– BEGIN TRANSACTION;
UPDATE accounts SET bal = bal – 100
WHERE acct = A;
UPDATE accounts SET bal = bal + 100
WHERE acct = B;
COMMIT; 15CSE 414 - Spring 2018

Isolated

• Definition An execution ensures that txns are
isolated, if the effect of each txn is as if it
were the only txn running on the system.

CSE 414 - Spring 2018 16

Consistent

• Recall: integrity constraints govern how values in

tables are related to each other

– Can be enforced by the DBMS, or ensured by the app

• How consistency is achieved by the app:

– App programmer ensures that txns only takes a

consistent DB state to another consistent state

– DB makes sure that txns are executed atomically

• Can defer checking the validity of constraints

until the end of a transaction

CSE 414 - Spring 2018 17

Durable

• A transaction is durable if its effects continue
to exist after the transaction and even after
the program has terminated

• How?
– By writing to disk!
– More in CSE 444

CSE 414 - Spring 2018 18

Rollback transactions

• If the app gets to a state where it cannot
complete the transaction successfully,
execute ROLLBACK

• The DB returns to the state prior to the
transaction

• What are examples of such program states?

CSE 414 - Spring 2018 19

20

ACID
• Atomic
• Consistent
• Isolated
• Durable

• Enjoy this in HW8!

• Again: by default each statement is its own txn
– Unless auto-commit is off then each statement starts a

new txn

CSE 414 - Spring 2018

Transaction Schedules

CSE 414 - Spring 2018 21

Schedules

CSE 414 - Spring 2018 22

A schedule is a sequence
of interleaved actions
from all transactions

Serial Schedule

• A serial schedule is one in which transactions are

executed one after the other, in some sequential

order

• Fact: nothing can go wrong if the system executes

transactions serially

– (up to what we have learned so far)

– But DBMS don’t do that because we want better overall

system performance

CSE 414 - Spring 2018 23

Example

T1 T2

READ(A, t) READ(A, s)

t := t+100 s := s*2

WRITE(A, t) WRITE(A,s)

READ(B, t) READ(B,s)

t := t+100 s := s*2

WRITE(B,t) WRITE(B,s)

CSE 414 - Spring 2018 24

A and B are elements
in the database

t and s are variables
in txn source code

Example of a (Serial) Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

CSE 414 - Spring 2018 25

Ti
m

e

Another Serial Schedule
T1 T2

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

CSE 414 - Spring 2018 26

Ti
m

e

Review: Serializable Schedule

CSE 414 - Spring 2018 27

A schedule is serializable if it is
equivalent to a serial schedule

A Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)

READ(B, t)
t := t+100
WRITE(B,t)

READ(B,s)
s := s*2
WRITE(B,s)

This is a serializable schedule.
This is NOT a serial schedule

CSE 414 - Spring 2018 28

A Non-Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

CSE 414 - Spring 2018 29

How do We Know if a Schedule
is Serializable?

CSE 414 - Spring 2018 30

T1: r1(A); w1(A); r1(B); w1(B)
T2: r2(A); w2(A); r2(B); w2(B)

Notation:

Key Idea: Focus on conflicting operations

