Introduction to Database Systems
CSE 414

Lecture 21: BCNF

CSE 414 - Spring 2018

What makes good schemas?

| UPDATED A SI}HEMA

WHY; S/MANY DATABASEﬁ ABlESﬂ??

/e, ,/ ;

CSE 414 - Spring 2018

Keys

* A superkey is a set of attributes A, ..., A, s.t. for
any other attribute B, we have A,, ..., A, 2 B

* A key is a minimal superkey (in terms of # of
attributes)

— A superkey and for which no subset is a superkey

CSE 414 - Spring 2018 3

Computing (Super)Keys
* For all sets X, compute X*
 If X* = [all attributes], then X is a superkey

* Try reducing to the minimal X's to get the key

CSE 414 - Spring 2018

Relational Schema Design
SSN - Name, City

Name SSN PhoneNumber | City
Fred 123-45-6789 | 206-555-1234 | Seattle
Fred 123-45-6789 | 206-555-6543 | Seattle
Joe 987-65-4321 908-555-2121 | Westfield
Anomalies:
 Redundancy = repeat data

« Update anomalies = what if Fred moves to “Bellevue”?
* Deletion anomalies = what if Joe deletes his phone number?

CSE 414 - Spring 2018 5

Relation Decomposition

Break the relation into two:

SSN = Name, City

Name SSN PhoneNumber | City
Fred 123-45-6789 | 206-555-1234 | Seattle
Fred 123-45-6789 | 206-555-6543 | Seattle
/ Joe 987-65-4321 908-555-2121 | Westfield
\
Name SSN City SSN PhoneNumber
Fred 123-45-6789 | Seattle 123-45-6789 206-555-1234
Joe 987-65-4321 | Westfield 123-45-6789 206-555-6543
987-65-4321 908-555-2121

Anomalies have gone:
* No more repeated data

» Easy to move Fred to “Bellevue” (how ?)
« Easy to delete all Joe’s phone numbers (how ?) 6

Eliminating Anomalies

Main idea:
« X2 Ais OKif Xis a (super)key

« X =2 Ais not OK otherwise
— Need to decompose the table, but how?

Boyce-Codd Normal Form

CSE 414 - Spring 2018

Boyce-Codd Normal Form

There are no
“bad” FDs:

Equivalently:

Definition. A relation R is in BCNF if:

Whenever X-> B is a non-trivial dependency,
then X is a superkey.

Definition. A relation R is in BCNF if:

Vv X, either X* = X (i.e., Xis not in any FDs)
or X* = [all attributes] (computed using FDs)

CSE 414 - Spring 2018 8

BCNF Decomposition Algorithm

Normalize(R)
find X s.t.: X # X* and X* # [all attributes]
if (not found) then "R is in BCNF”
letY =X"-X;, Z=[all attributes] - X*
decompose R into R1(X U Y) and R2(X U Z)
Normalize(R1); Normalize(R2);

+
X CSE 414 - Spring 2018

Example

Name |SSN PhoneNumber | City

Fred 123-45-6789 |206-555-1234 | Seattle
Fred 123-45-6789 | 206-555-6543 | Seattle
Joe 087-65-4321 |908-555-2121 | Westfield
Joe 087-65-4321 |908-555-1234 | Westfield

SSN - Name, City

Hence SSN - Name, City is a “bad” dependency

In other words:

o

SSN*

Phone-
Number

SSN+ = SSN, Name, City and is neither SSN nor All Attributes

Example BCNF Decomposition

Name SSN City SSN => Name, City
Fred 123-45-6789 | Seattle
Joe 987-65-4321 | Westfield
Phone-

SSN PhoneNumber umbey
123-45-6789 206-555-1234 SSN*
123-45-6789 | 206-555-6543 | | et’s check anomalies:
987-65-4321 908-555-2121 « Redundancy ?
987-65-4321 908-555-1234 » Update ?

* Delete ?

CSE 414 - Spring 2018 11

Find X s.t.: X #X* and X* # [all attributes]

Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)
SSN - name, age
age - hairColor

CSE 414 - Spring 2018 12

Find X s.t.: X #X* and X* # [all attributes]

Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)
SSN - name, age
age - hairColor

Iteration 1: Person: SSN+ = SSN, name, age, hairColor

Decompose into: P(SSN, name, age, hairColor)
Phone(SSN, phoneNumber)

phoneNumber

CSE 414 - Spring 2018 13

Find X s.t.: X #X* and X* # [all attributes]

Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumb
SSN - name, age
age - hairColor

What are
the keys ?

Iteration 1: Person: SSN+ = SSN, name, age, hairColor

Decompose into: P(SSN, name, age, hairColor)
Phone(SSN, phoneNumber)

lteration 2: P: age+ = age, hairColor
Decompose: People(SSN, name, age)
Hair(age, hairColor)
Phone(SSN, phoneNumber)

CSE 414 - Spring 2018 14

Find X s.t.: X #X* and X* # [all attributes]

Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)

SSN - name, age C)
Note the keys!
age - hairColor Ui IO ReYS

Iteration 1: Person: SSN+ = SSN, name, age, hairColor

Decompose into: P(SSN, name, age, hairColor)
Phone(SSN, phoneNumber)

lteration 2: P: age+ = age, hairColor

Decompose: People(SSN, name, age)
Hair(age, hairColor)
Phone(SSN, phoneNumber)

CSE 414 - Spring 2018 15

R(A,B,C,D)

Example: BCNF

CSE 414 - Spring 2018

16

R(A,B,C,D)

Example: BCNF

Recall: Find X s.t.: X #X*
and X* # [all attributes]

CSE 414 - Spring 2018

17

R(A,B,C,D)

Example: BCNF

R(A,B,C,D)
A+ = ABC # ABCD

CSE 414 - Spring 2018

18

R(A,B,C,D)

Example: BCNF

R(A,B,C,D)
A* = ABC # ABCD

CSE 414 - Spring 2018

19

R(A,B,C,D)

Example: BCNF B>C

R(A,B,C,D)
A* = ABC # ABCD

R4(A,B,C)
B*=BC # ABC

CSE 414 - Spring 2018 20

R(A,B,C,D)

Example: BCNF B>C

R(A,B,C,D)
A* = ABC # ABCD

R4(A,B,C)
B*=BC # ABC

What are
the keys ?

What happens if in R we first pick B* ? Or AB* ?

21

Decompositions in General

R(A,,,A,B,, ...B., Cy ..., C)

<N

S,(As, ..., A, By, ... B)IS,A,, ... A, C,, ..., C.)

S, = projectionof Ron A,, ..., A, By, ..., B,

S, = projection of Ron Ay, ..., A, Cy, ..., C,

CSE 414 - Spring 2018 22

Lossless Decomposition

Name Price Category
Gizmo 19.99 Gadget
OneClick 24.99 Camera
Gizmo 19.99 Camera
4 \
Name Price Name Category
Gizmo 19.99 Gizmo Gadget
OneClick 24.99 OneClick Camera
iZmo Gizmo Camera

CSE 414 - Spring 2018

23

Lossy Decomposition

What is
lossy here?
Name Price Category
Gizmo 19.99 Gadget
OneClick 24.99 Camera
Gizmo 19.99 Camera
— N
Name Category Price | Category
Gizmo Gadget 19.99 Gadget
OneClick Camera 24.99 Camera
Gizmo Camera 19.99 Camera

CSE 414 - Spring 2018

24

Lossy Decomposition

Name Price Category

Gizmo 19.99 Gadget
OneClick 24.99 Camera

/ Gizmo 19.99 Camera \

Name Category Price | Category

Gizmo Gadget 19.99 Gadget
OneClick Camera 24.99 Camera

Gizmo Camera 19.99 Camera

CSE 414 - Spring 2018

25

Decompos

ition in General

R(A,,,A,B,, ...B., Cy ..., C)

~

o~

S,(As, ..., A, By, ... B)IS,A,, ... A, C,, ..., C.)

Let: S = projection of
S, = projection of
The decomposition is ca

RonA,, ..., A, By ..., B,
RonA,, ...,A, C,, .., Cp

led lossless if R =S5, x S,

[Fact: If A, ...,A, 2 B4, ..., B, then the decomposition is Iossless}

It follows that every BCNF decomposition is lossless 2

Schema Refinements
= Normal Forms

1st Normal Form = all tables are flat
2nd Normal Form = obsolete
Boyce Codd Normal Form = no bad FDs

3rd Normal Form = see book

— BCNF is lossless but can cause loss of ability to
check some FDs (see book 3.4.4)

— 3NF fixes that (is lossless and dependency-
preserving), but some tables might not be in
BCNF —i.e., they may have redundancy

anomalies
CSE 414 - Spring 2018

27

Getting Practical

How to implement normalization in SQL

CSE 414 - Spring 2018 28

Motivation

« We learned about how to normalize tables to
avoid anomalies

 How can we implement normalization in SQL
If we can’t modify existing tables?

— This might be due to legacy applications that rely
on previous schemas to run

CSE 414 - Spring 2018

Use Views!

e Aviewin SQL =

— A table computed from other tables, s.t., whenever
the base tables are updated, the view is updated
too

* More generally:

— A view is derived data that keeps track of changes
in the original data

CSE 414 - Spring 2018

Purchase(customer, product, store) StorePrice(store, price)
Product(pname, price)

A Simple View

Create a view that returns for each store
the prices of products purchased at that store

CREATE VIEW StorePrice AS
SELECT DISTINCT x.store, y.price

FROM Purchase AS x, Product AS y
WHERE x.product = y.pname

This is like a new table
StorePrice(store,price)

CSE 414 - Spring 2018 31

Purchase(customer, product, store) StorePrice(store, price)
Product(pname, price)

We Use a View Like Any Table

* A "high end" store is a store that sell some products
over 1000.

* For each customer, return all the high end stores that
they visit.

SELECT DISTINCT u.customer, u.store
FROM Purchase AS u, StorePrice AS v
WHERE u.store = v.store

AND v.price > 1000

CSE 414 - Spring 2018 32

Types of Views

* Virtual views
— Computed only on-demand — slow at runtime
— Always up to date

 Materialized views
— Pre-computed offline — fast at runtime
— May have stale data (must recompute or update)

* A key component of database performance tuning is
the selection of materialized and virtual views

CSE 414 - Spring 2018

33

Vertical Partitioning

Resumes|SSN Name |Address | Resume |Picture
234234 |Mary |Houston |Doc1... |JPG1...
345345 | Sue Seattle |Doc2... |JPG2...
345343 |Joan |Seattle |[Doc3... |JPGS...
432432 | Ann Portland |Doc4... |JPG4...

T1 T2 T3
SSN Name | Address SSN Resume SSN Picture
234234 |Mary |Houston | [234234 | Doc1.. 234234 | JPGI...
345345 | Sue | Seattle 345345 | Doc2.. 345345 | JPG2...

T2.SSN is a key and a foreign key to T1.SSN. Same for T3.SSN

34

T1(ssn,name,address)
T2(ssn,resume)
T3(ssn,picture)

Resumes(ssn,name,address,resume,picture)

Vertical Partitioning

CREATE VIEW Resumes AS
SELECT T1.ssn, T1.name, T1.address,
T2.resume, T3.picture
FROM T1,T2,T3
WHERE T1.ssn=T2.ssn AND T1.ssn=T3.ssn

CSE 414 - Spring 2018 35

T1(ssn,name,address)
T2(ssn,resume)
T3(ssn,picture)

Resumes(ssn,name,address,resume,picture)

Vertical Partitioning

CREATE VIEW Resumes AS
SELECT T1.ssn, T1.name, T1.address,
T2.resume, T3.picture
FROM T1,T2,T3
WHERE T1.ssn=T2.ssn AND T1.ssn=T3.ssn

SELECT address
FROM Resumes
WHERE name = ‘Sue’

CSE 414 - Spring 2018 36

T1(ssn,name,address)
T2(ssn,resume)
T3(ssn,picture)

Resumes(ssn,name,address,resume,picture)

Vertical Partitioning

CREATE VIEW Resumes AS
SELECT T1.ssn, T1.name, T1.address,
T2.resume, T3.picture
FROM T1,T2,T3
WHERE T1.ssn=T2.ssn AND T1.ssn=T3.ssn

SELECT address .
FROM Resumes Original query:
WHERE name = ‘Sue’

SELECT T1.address

FROM T1, T2, T3

WHERE T1.name = ‘Sue’
AND T1.SSN=T2.SSN
AND T1.SSN =T3.SSN

CSE 414 - Spring 2018

T1(ssn,name,address) Resumes(ssn,name,address,resume,picture)
T2(ssn,resume)
T3(ssn,picture)

Vertical Partitioning

CREATE VIEW Resumes AS
SELECT T1.ssn, T1.name, T1.address,
T2.resume, T3.picture
FROM T1,T2,T3
WHERE T1.ssn=T2.ssn AND T1.ssn=T3.ssn %
SELECT address B
FROM Resumes Modified query:
WHERE name =‘Sue SELECT T1.address
FROM T1, =213
. WHERE T1.name = ‘Sue’
Final query: | |
SELECT T1.address -
FROM T1

WHERE T1.name = ‘Sue’

Vertical Partitioning Applications

 Advantages
— Speeds up queries that touch only a small fraction of columns
— Single column can be compressed effectively, reducing disk I/O

* Disadvantages
— Updates are expensive!
— Need many joins to access many columns
— Repeated key columns add overhead

CSE 414 - Spring 2018 39

