
1

Introduction to Database Systems
CSE 414

Lecture 21: BCNF

1CSE 414 - Spring 2018

What makes good schemas?

CSE 414 - Spring 2018 2

Keys

• A superkey is a set of attributes A1, ..., An s.t. for
any other attribute B, we have A1, ..., An à B

• A key is a minimal superkey (in terms of # of
attributes)
– A superkey and for which no subset is a superkey

CSE 414 - Spring 2018 3

Computing (Super)Keys

• For all sets X, compute X+

• If X+ = [all attributes], then X is a superkey

• Try reducing to the minimal X’s to get the key

CSE 414 - Spring 2018 4

Relational Schema Design

CSE 414 - Spring 2018 5

Anomalies:
• Redundancy = repeat data

• Update anomalies = what if Fred moves to “Bellevue”?
• Deletion anomalies = what if Joe deletes his phone number?

Name SSN PhoneNumber City

Fred 123-45-6789 206-555-1234 Seattle

Fred 123-45-6789 206-555-6543 Seattle

Joe 987-65-4321 908-555-2121 Westfield

SSN à Name, City

Relation Decomposition

6

Break the relation into two:

Name SSN City
Fred 123-45-6789 Seattle
Joe 987-65-4321 Westfield

SSN PhoneNumber
123-45-6789 206-555-1234
123-45-6789 206-555-6543
987-65-4321 908-555-2121Anomalies have gone:

• No more repeated data
• Easy to move Fred to “Bellevue” (how ?)
• Easy to delete all Joe’s phone numbers (how ?)

Name SSN PhoneNumber City
Fred 123-45-6789 206-555-1234 Seattle
Fred 123-45-6789 206-555-6543 Seattle
Joe 987-65-4321 908-555-2121 Westfield

SSN à Name, City

2

Eliminating Anomalies

Main idea:

• X à A is OK if X is a (super)key

• X à A is not OK otherwise
– Need to decompose the table, but how?

CSE 414 - Spring 2018 7

Boyce-Codd Normal Form

Boyce-Codd Normal Form

CSE 414 - Spring 2018 8

There are no
“bad” FDs:

Definition. A relation R is in BCNF if:

Whenever Xà B is a non-trivial dependency,
then X is a superkey.

Equivalently:
Definition. A relation R is in BCNF if:
" X, either X+ = X (i.e., X is not in any FDs)

or X+ = [all attributes] (computed using FDs)

BCNF Decomposition Algorithm

CSE 414 - Spring 2018 9

Normalize(R)
find X s.t.: X ≠ X+ and X+ ≠ [all attributes]
if (not found) then “R is in BCNF”
let Y = X+ - X; Z = [all attributes] - X+

decompose R into R1(X ∪ Y) and R2(X ∪ Z)

Normalize(R1); Normalize(R2);

Y X Z

X+

Example

Hence SSN à Name, City is a “bad” dependency

SSN à Name, City

In other words:
SSN+ = SSN, Name, City and is neither SSN nor All Attributes

Name SSN PhoneNumber City
Fred 123-45-6789 206-555-1234 Seattle
Fred 123-45-6789 206-555-6543 Seattle
Joe 987-65-4321 908-555-2121 Westfield
Joe 987-65-4321 908-555-1234 Westfield

Name,
City

SSN
Phone-
Number

SSN+

Example BCNF Decomposition

CSE 414 - Spring 2018 11

Name SSN City
Fred 123-45-6789 Seattle

Joe 987-65-4321 Westfield

SSN PhoneNumber
123-45-6789 206-555-1234

123-45-6789 206-555-6543

987-65-4321 908-555-2121

987-65-4321 908-555-1234

SSN à Name, City

Let’s check anomalies:
• Redundancy ?
• Update ?
• Delete ?

Name,
City

SSN
Phone-
Number

SSN+

Example BCNF Decomposition

CSE 414 - Spring 2018 12

Person(name, SSN, age, hairColor, phoneNumber)
SSN à name, age
age à hairColor

Find X s.t.: X ≠X+ and X+ ≠ [all attributes]

3

Example BCNF Decomposition

CSE 414 - Spring 2018 13

Person(name, SSN, age, hairColor, phoneNumber)

SSN à name, age

age à hairColor

Iteration 1: Person: SSN+ = SSN, name, age, hairColor

Decompose into: P(SSN, name, age, hairColor)

Phone(SSN, phoneNumber)

SSN
name,

age,

hairColor

phoneNumber

Find X s.t.: X ≠X+ and X+ ≠ [all attributes]

Example BCNF Decomposition

CSE 414 - Spring 2018 14

Person(name, SSN, age, hairColor, phoneNumber)

SSN à name, age

age à hairColor

Iteration 1: Person: SSN+ = SSN, name, age, hairColor

Decompose into: P(SSN, name, age, hairColor)

Phone(SSN, phoneNumber)

Iteration 2: P: age+ = age, hairColor

Decompose: People(SSN, name, age)

Hair(age, hairColor)

Phone(SSN, phoneNumber)

What are

the keys ?

Find X s.t.: X ≠X+ and X+ ≠ [all attributes]

Example BCNF Decomposition

CSE 414 - Spring 2018 15

Person(name, SSN, age, hairColor, phoneNumber)

SSN à name, age

age à hairColor

Iteration 1: Person: SSN+ = SSN, name, age, hairColor

Decompose into: P(SSN, name, age, hairColor)

Phone(SSN, phoneNumber)

Iteration 2: P: age+ = age, hairColor

Decompose: People(SSN, name, age)

Hair(age, hairColor)

Phone(SSN, phoneNumber)

Note the keys!

Find X s.t.: X ≠X
+

and X
+

≠ [all attributes]

Example: BCNF

CSE 414 - Spring 2018 16

A à B
B à C

R(A,B,C,D)

R(A,B,C,D)

Example: BCNF

CSE 414 - Spring 2018 17

A à B
B à C

R(A,B,C,D)

R(A,B,C,D)

Recall: Find X s.t.: X ≠X+

and X+ ≠ [all attributes]

Example: BCNF

CSE 414 - Spring 2018 18

A à B
B à C

R(A,B,C,D)
A+ = ABC ≠ ABCD

R(A,B,C,D)

4

Example: BCNF

CSE 414 - Spring 2018 19

A à B
B à C

R(A,B,C,D)
A+ = ABC ≠ ABCD

R(A,B,C,D)

R1(A,B,C) R2(A,D)

Example: BCNF

CSE 414 - Spring 2018 20

A à B
B à C

R(A,B,C,D)
A+ = ABC ≠ ABCD

R(A,B,C,D)

R1(A,B,C)
B+ = BC ≠ ABC

R2(A,D)

Example: BCNF

21

What are
the keys ?

A à B
B à C

R(A,B,C,D)
A+ = ABC ≠ ABCD

R(A,B,C,D)

What happens if in R we first pick B+ ? Or AB+ ?

R1(A,B,C)
B+ = BC ≠ ABC

R2(A,D)

R11(B,C) R12(A,B)

Decompositions in General

CSE 414 - Spring 2018 22

S1 = projection of R on A1, ..., An, B1, ..., Bm
S2 = projection of R on A1, ..., An, C1, ..., Cp

R(A1, ..., An, B1, ..., Bm, C1, ..., Cp)

S1(A1, ..., An, B1, ..., Bm) S2(A1, ..., An, C1, ..., Cp)

Lossless Decomposition

CSE 414 - Spring 2018 23

Name Price Category

Gizmo 19.99 Gadget
OneClick 24.99 Camera

Gizmo 19.99 Camera

Name Price

Gizmo 19.99
OneClick 24.99

Gizmo 19.99

Name Category

Gizmo Gadget
OneClick Camera

Gizmo Camera

Lossy Decomposition

CSE 414 - Spring 2018 24

Name Price Category

Gizmo 19.99 Gadget
OneClick 24.99 Camera

Gizmo 19.99 Camera

Name Category

Gizmo Gadget
OneClick Camera

Gizmo Camera

Price Category

19.99 Gadget
24.99 Camera
19.99 Camera

What is
lossy here?

5

Lossy Decomposition

CSE 414 - Spring 2018 25

Name Price Category

Gizmo 19.99 Gadget
OneClick 24.99 Camera

Gizmo 19.99 Camera

Name Category

Gizmo Gadget
OneClick Camera

Gizmo Camera

Price Category

19.99 Gadget
24.99 Camera
19.99 Camera

Decomposition in General

26

R(A1, ..., An, B1, ..., Bm, C1, ..., Cp)

Fact: If A1, ..., An à B1, ..., Bm then the decomposition is lossless

S1(A1, ..., An, B1, ..., Bm) S2(A1, ..., An, C1, ..., Cp)

It follows that every BCNF decomposition is lossless

The decomposition is called lossless if R = S1 ⋈ S2

S1 = projection of R on A1, ..., An, B1, ..., Bm
S2 = projection of R on A1, ..., An, C1, ..., Cp

Let:

Schema Refinements
= Normal Forms

• 1st Normal Form = all tables are flat
• 2nd Normal Form = obsolete
• Boyce Codd Normal Form = no bad FDs
• 3rd Normal Form = see book

– BCNF is lossless but can cause loss of ability to
check some FDs (see book 3.4.4)

– 3NF fixes that (is lossless and dependency-
preserving), but some tables might not be in
BCNF – i.e., they may have redundancy
anomalies

CSE 414 - Spring 2018 27

Getting Practical

CSE 414 - Spring 2018 28

How to implement normalization in SQL

Motivation

• We learned about how to normalize tables to

avoid anomalies

• How can we implement normalization in SQL

if we can’t modify existing tables?

– This might be due to legacy applications that rely

on previous schemas to run

CSE 414 - Spring 2018

Use Views!
• A view in SQL =

– A table computed from other tables, s.t., whenever
the base tables are updated, the view is updated
too

• More generally:
– A view is derived data that keeps track of changes

in the original data

CSE 414 - Spring 2018

6

A Simple View

CSE 414 - Spring 2018 31

CREATE VIEW StorePrice AS
SELECT DISTINCT x.store, y.price
FROM Purchase AS x, Product AS y
WHERE x.product = y.pname

This is like a new table
StorePrice(store,price)

Purchase(customer, product, store)
Product(pname, price)

StorePrice(store, price)

Create a view that returns for each store
the prices of products purchased at that store

We Use a View Like Any Table

• A "high end" store is a store that sell some products

over 1000.

• For each customer, return all the high end stores that

they visit.

CSE 414 - Spring 2018 32

SELECT DISTINCT u.customer, u.store

FROM Purchase AS u, StorePrice AS v

WHERE u.store = v.store

AND v.price > 1000

Purchase(customer, product, store)

Product(pname, price)
StorePrice(store, price)

Types of Views
• Virtual views

– Computed only on-demand – slow at runtime
– Always up to date

• Materialized views
– Pre-computed offline – fast at runtime
– May have stale data (must recompute or update)

• A key component of database performance tuning is
the selection of materialized and virtual views

CSE 414 - Spring 2018 33

Vertical Partitioning

34

SSN Name Address Resume Picture
234234 Mary Houston Doc1… JPG1…
345345 Sue Seattle Doc2… JPG2…
345343 Joan Seattle Doc3… JPG3…
432432 Ann Portland Doc4… JPG4…

Resumes

SSN Name Address
234234 Mary Houston
345345 Sue Seattle
. . .

SSN Resume
234234 Doc1…
345345 Doc2…

SSN Picture
234234 JPG1…
345345 JPG2…

T1 T2 T3

T2.SSN is a key and a foreign key to T1.SSN. Same for T3.SSN

Vertical Partitioning

CSE 414 - Spring 2018 35

T1(ssn,name,address)
T2(ssn,resume)
T3(ssn,picture)

Resumes(ssn,name,address,resume,picture)

CREATE VIEW Resumes AS
SELECT T1.ssn, T1.name, T1.address,

T2.resume, T3.picture
FROM T1,T2,T3
WHERE T1.ssn=T2.ssn AND T1.ssn=T3.ssn

Vertical Partitioning

CSE 414 - Spring 2018 36

CREATE VIEW Resumes AS

SELECT T1.ssn, T1.name, T1.address,

T2.resume, T3.picture

FROM T1,T2,T3
WHERE T1.ssn=T2.ssn AND T1.ssn=T3.ssn

T1(ssn,name,address)

T2(ssn,resume)

T3(ssn,picture)

Resumes(ssn,name,address,resume,picture)

SELECT address

FROM Resumes

WHERE name = ‘Sue’

7

Vertical Partitioning

CSE 414 - Spring 2018

CREATE VIEW Resumes AS

SELECT T1.ssn, T1.name, T1.address,

T2.resume, T3.picture

FROM T1,T2,T3
WHERE T1.ssn=T2.ssn AND T1.ssn=T3.ssn

T1(ssn,name,address)

T2(ssn,resume)

T3(ssn,picture)

Resumes(ssn,name,address,resume,picture)

SELECT address

FROM Resumes

WHERE name = ‘Sue’
SELECT T1.address

FROM T1, T2, T3

WHERE T1.name = ‘Sue’

AND T1.SSN=T2.SSN

AND T1.SSN = T3.SSN

Original query:

Vertical Partitioning
CREATE VIEW Resumes AS

SELECT T1.ssn, T1.name, T1.address,
T2.resume, T3.picture

FROM T1,T2,T3
WHERE T1.ssn=T2.ssn AND T1.ssn=T3.ssn

T1(ssn,name,address)
T2(ssn,resume)
T3(ssn,picture)

Resumes(ssn,name,address,resume,picture)

SELECT address
FROM Resumes
WHERE name = ‘Sue’ SELECT T1.address

FROM T1, T2, T3
WHERE T1.name = ‘Sue’

AND T1.SSN=T2.SSN
AND T1.SSN = T3.SSN

Modified query:

SELECT T1.address
FROM T1
WHERE T1.name = ‘Sue’

Final query:

Vertical Partitioning Applications

• Advantages
– Speeds up queries that touch only a small fraction of columns
– Single column can be compressed effectively, reducing disk I/O

• Disadvantages
– Updates are expensive!
– Need many joins to access many columns
– Repeated key columns add overhead

CSE 414 - Spring 2018 39

