Introduction to Database Systems
CSE 414
Lecture 20: Design Theory

Class Overview

- Unit 1: Intro
- Unit 2: Relational Data Models and Query Languages
- Unit 3: Non-relational data
- Unit 4: RDMBS internals and query optimization
- Unit 5: Parallel query processing
- Unit 6: DBMS usability, conceptual design
- E/R diagrams
- Schema normalization
- Unit 7: Transactions

Entity / Relationship Diagrams

- Entity set = a class
- An entity = an object

Product

- Attribute
- Relationship

Arrows in Multiway Relationships

Q: What does the arrow mean?

A: Any person buys a given product from at most one store AND every store sells to every person at most one product CSE 414 - Spring 2018

N-N Relationships to Relations

Referential Integrity Constraints

Each product made by at most one company.
Some products made by no company
 CSE 414 - Spring 2018 11

Constraints in SQL

Constraints in SQL:

- Keys, foreign keys
- Attribute-level constraints
- Tuple-level constraints
- Global constraints: assertions

- The more complex the constraint, the harder it is to check and to enforce

Relational Schema Design

Name	$\underline{\text { SSN }}$	PhoneNumber	City
Fred	$123-45-6789$	$206-555-1234$	Seattle
Fred	$123-45-6789$	$206-555-6543$	Seattle
Joe	$987-65-4321$	$908-555-2121$	Westfield

One person may have multiple phones, but lives in only one city
Primary key is thus (SSN, PhoneNumber)
What is the problem with this schema?

Relation Decomposition
Break the relation into two:

	Name	SSN	PhoneNumber	City
	Fred	123-45-6789	206-555-1234	Seattle
	Fred	123-45-6789	206-555-6543	Seattle
	Joe	987-65-4321	908-555-2121	Westrield
				\checkmark
Name	SSN	City	SSN	PhoneNumber
Fred	123-45-6789	Seattle	123-45-6789	206-555-1234
Joe	987-65-4321	Westfield	123-45-6789	206-555-6543
Anomalies have gone: - No more repeated data - Easy to move Fred to "Bellevue" (how ?) - Easy to delete all Joe's phone numbers (how ?)				908-555-2121
				?) 18

Relational Schema Design (or Logical Design)

How do we do this systematically?

- Start with some relational schema
- Find out its functional dependencies (FDs)
- Use FDs to normalize the relational schema

Functional Dependencies (FDs)

Definition $A_{1}, \ldots, A_{m} \rightarrow B_{1}, \ldots, B_{n}$ holds in R if:

$\left(\mathrm{t} . \mathrm{A}_{1}=\mathrm{t}^{\prime} . \mathrm{A}_{1} \wedge . . \wedge \mathrm{n} . \mathrm{A}_{\mathrm{m}}=\mathrm{t}^{\prime} . \mathrm{A}_{\mathrm{m}} \rightarrow \mathrm{t} . \mathrm{B}_{1}=\mathrm{t}^{\prime} . \mathrm{B}_{1} \wedge \ldots \wedge \mathrm{t} . \mathrm{B}_{\mathrm{n}}=\mathrm{t}^{\prime} . \mathrm{B}_{\mathrm{n}}\right)$

Example

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	$9876 \quad \leftarrow$	Salesrep
E1111	Smith	$9876 \leftarrow$	Salesrep
E9999	Mary	1234	Lawyer

Position \rightarrow Phone

SE 414 - Spring 2018
23

Functional Dependencies (FDs)

Definition

If two tuples agree on the attributes
$A_{1}, A_{2}, \ldots, A_{n}$
then they must also agree on the attributes

Formally
$\mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{m}}$

$$
\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{~B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{m}}
$$

Example

An FD holds, or does not hold on an instance:

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

EmpID \rightarrow Name, Phone, Position
Position \rightarrow Phone
but not Phone \rightarrow Position

Example

EmpID	Name	Phone	Position
E0045	Smith	$1234 \rightarrow$	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	$1234 \rightarrow$	Lawyer

But not Phone \rightarrow Position

Buzzwords

- FD holds or does not hold on an instance
- If we can be sure that every instance of R will be one in which a given FD is true, then we say that R satisfies the FD
- If we say that R satisfies an FD, we are stating a constraint on R

An Interesting Observation

\qquadIf all these FDs are true: name \rightarrow color category \rightarrow department color, category \rightarrow price Then this FD also holds: name, category \rightarrow price
If we find out from application domain that a relation satisfies some FDs, it doesn't mean that we found all the FDs that it satisfies! There could be more FDs implied by the ones we have.

Example $\begin{aligned} & \text { name } \rightarrow \text { color } \\ & \text { category } \rightarrow \text { department } \\ & \text { color, category } \rightarrow \text { price }\end{aligned}$				
name	category	color	department	price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Green	Toys	49
Gizmo	Stationary	Green	Office-supp.	59
What about this one ?		CSE 414 - Sping 2018		26

Why bother with FDs?

Name	$\underline{\text { SSN }}$	PhoneNumber	City
Fred	$123-45-6789$	$206-555-1234$	Seattle
Fred	$123-45-6789$	$206-555-6543$	Seattle
Joe	$987-65-4321$	$908-555-2121$	Westfield

Anomalies:

- Redundancy
= repeat data
- Update anomalies = what if Fred moves to "Bellevue"?
- Deletion anomalies = what if Joe deletes his phone number?

Closure of a set of Attributes

Given a set of attributes $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}$
The closure is the set of attributes B , notated $\left.\left\{\mathrm{A}_{1}, \ldots, \mathrm{~A}_{n}\right\}^{+}\right)$, s.t. $A_{1}, \ldots, A_{n} \rightarrow B$

Example

1. name \rightarrow color
2. category \rightarrow department
3. color, category \rightarrow price

Closures:
3. color, category \rightarrow price
name $^{+}=\{$name, color $\}$
\{name, category\} ${ }^{+}=$\{name, category, color, department, price\} color $^{+}=\{$color $\}$

Example

In class:
$R(A, B, C, D, E, F)$

$$
\begin{array}{|lll|}
\hline \mathrm{A}, \mathrm{~B} & \rightarrow & \mathrm{C} \\
\mathrm{~A}, \mathrm{D} & \rightarrow & \mathrm{E} \\
\mathrm{~B} & & \rightarrow \\
\mathrm{D} \\
\mathrm{~A}, \mathrm{~F} & \rightarrow & \mathrm{~B} \\
\hline
\end{array}
$$

Compute $\{A, B\}^{+} \quad X=\{A, B, C, D, E\}$
Compute $\{A, F\}^{+} \quad X=\{A, F, B, C, D, E\}$
What is the key of R ?

Example

In class:
$R(A, B, C, D, E, F)$

$$
\begin{array}{|lll|}
\hline \mathrm{A}, \mathrm{~B} & \rightarrow & \mathrm{C} \\
\mathrm{~A}, \mathrm{D} & \rightarrow & \mathrm{E} \\
\mathrm{~B} & \rightarrow & \mathrm{D} \\
\mathrm{~A}, \mathrm{~F} & \rightarrow & \mathrm{~B} \\
\hline
\end{array}
$$

Compute $\{A, B\}^{+} \quad X=\{A, B, \quad\}$
Compute $\{A, F\}^{+} \quad X=\{A, F, \quad\}$

CSE 414 - Spring 2018
32

Example

In class:
$R(A, B, C, D, E, F)$

$$
\begin{array}{|lll|}
\hline \mathrm{A}, \mathrm{~B} & \rightarrow & \mathrm{C} \\
\mathrm{~A}, \mathrm{D} & \rightarrow & \mathrm{E} \\
\mathrm{~B} & & \rightarrow \\
\mathrm{D} \\
\mathrm{~A}, \mathrm{~F} & \rightarrow & \mathrm{~B} \\
\hline
\end{array}
$$

Compute $\{A, B\}^{+} \quad X=\{A, B, C, D, E\}$
Compute $\{\mathrm{A}, \mathrm{F}\}^{+} \quad \mathrm{X}=\{\mathrm{A}, \mathrm{F}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$

CSE 414 - Spring 2018
34

Practice at Home

Find all FD's implied by:

$$
\begin{array}{|lll|}
\hline \mathrm{A}, \mathrm{~B} & \rightarrow & \mathrm{C} \\
\mathrm{~A}, \mathrm{D} & \rightarrow & \mathrm{~B} \\
\mathrm{~B} & \rightarrow & \mathrm{D} \\
\hline
\end{array}
$$

Step 1: Compute X^{+}, for every X :
$\mathrm{A}^{+}=\mathrm{A}, \quad \mathrm{B}^{+}=\mathrm{BD}, \quad \mathrm{C}^{+}=\mathrm{C}, \quad \mathrm{D}^{+}=\mathrm{D}$
$A B^{+}=A B C D, A C^{+}=A C, A D^{+}=A B C D$,
$\mathrm{BC}^{+}=\mathrm{BCD}, \mathrm{BD}^{+}=\mathrm{BD}, \mathrm{CD}^{+}=\mathrm{CD}$
$\mathrm{ABC}^{+}=\mathrm{ABD}^{+}=\mathrm{ACD}^{+}=\mathrm{ABCD}$ (no need to compute- why ?)
$\mathrm{BCD}^{+}=\mathrm{BCD}, \quad \mathrm{ABCD}^{+}=\mathrm{ABCD}$
Step 2: Enumerate all FD's $X \rightarrow Y$, s.t. $Y \subseteq X^{+}$and $X \cap Y=\emptyset$:
$\mathrm{AB} \rightarrow \mathrm{CD}, \mathrm{AD} \rightarrow \mathrm{BC}, \mathrm{ABC} \rightarrow \mathrm{D}, \mathrm{ABD} \rightarrow \mathrm{C}, \mathrm{ACD} \rightarrow \mathrm{B} \quad{ }^{36}$

$$
\text { Keys } \quad R\left(A, \ldots A_{n}, B\right)
$$

- A superkey is a set of attributes A_{1}, \ldots, A_{n} s.t. for any other attribute B, we have $A_{1}, \ldots, A_{n} \rightarrow B$
- A key is a minimal superkey
- A superkey and for which no subset is a superkey

Example

Product(name, price, category, color)
name, category \rightarrow price category \rightarrow color

What is the key?

Key or Keys ?

Can we have more than one key ?

Given $R(A, B, C)$ define FD's s.t. there are two or more distinct keys

Computing (Super)Keys

- For all sets X , compute X^{+}
- If $\mathrm{X}^{+}=$[all attributes], then X is a superkey
- Try reducing to the minimal X's to get the key

Example

Product(name, price, category, color)
name, category \rightarrow price
category \rightarrow color

What is the key?
(name, category) $+=$ \{ name, category, price, color $\}$
Hence (name, category) is a key

Key or Keys ?

Can we have more than one key ?

Given $R(A, B, C)$ define FD's s.t. there are two or more distinct keys

Eliminating Anomalies

Main idea:

- $X \rightarrow A$ is OK if X is a (super)key
- $X \rightarrow A$ is not OK otherwise
- Need to decompose the table, but how?

Boyce-Codd Normal Form

There are no
"bad" FDs:

Equivalently:
Definition. A relation R is in BCNF if: $\forall \mathrm{X}$, either $\mathrm{X}^{+}=\mathrm{X}$ or $\mathrm{X}^{+}=$[all attributes $]$

CSE 414 - Spring 2018

Example

Name	SSN	PhoneNumber	City
Fred	$123-45-6789$	$206-555-1234$	Seattle
Fred	$123-45-6789$	$206-555-6543$	Seattle
Joe	$987-65-4321$	$908-555-2121$	Westfield
Joe	$987-65-4321$	$908-555-1234$	Westfield

The only key is: \{SSN, PhoneNumber\}
Hence SSN \rightarrow Name, City is a "bad" dependency
In other words:
SSN+ = SSN, Name, City and is neither SSN nor All Attributes

