Introduction to Databases CSE 414

Lecture 2: Data Models

CSE 414 - Spring 2018

Announcements

- HW1 and WQ1 released
 - Both due next Tuesday
- Office hours start this week
- Sections tomorrow
- Make sure you sign up on piazza
- Please ask questions!
 - Both online and offline

Staff

- Instructor: Alvin Cheung
 - Office hour on Wednesdays, 1-2pm

From ACM Spring BBQ 15

CSE 414 – Spring 2018

Using Electronics in Class

In the lectures:

- Opened laptops may disturb neighbors
- Please sit in the back if you take notes on laptop; pads / surfaces are OK
- Please don't check your email / youtube / fb

In the sections:

• Always bring your laptop (starting Thursday)

Class Overview

- Unit 1: Intro
- Unit 2: Relational Data Models and Query Languages
 Data models, SQL, Relational Algebra, Datalog
- Unit 3: Non-relational data
- Unit 4: RDMBS internals and query optimization
- Unit 5: Parallel query processing
- Unit 6: DBMS usability, conceptual design
- Unit 7: Transactions

Review

• What is a database?

A collection of files storing related data

- What is a DBMS?
 - An application program that allows us to manage efficiently the collection of data files

Data Models

- Recall our example: want to design a database of books:
 - author, title, publisher, pub date, price, etc
 - How should we describe this data?
- Data model = mathematical formalism (or conceptual way) for describing the data

Data Models

Relational

- Unit 2
- Data represented as relations
- Semi-structured (JSon)
 - Data represented as trees
- Key-value pairs
 - Used by NoSQL systems
- Graph
- Object-oriented

Example: storing FB friends

Person1	Person2	is_friend
Peter	John	1
John	Mary	0
Mary	Phil	1
Phil	Peter	1

As a graph

As a relation

We will learn the tradeoffs of different data models later this quarter

CSE 414 - Spring 2018

3 Elements of Data Models

- Instance
 - The actual data
- Schema
 - Describe what data is being stored
- Query language
 - How to retrieve and manipulate data

Turing Awards in Data Management

Charles Bachman, 1973 IDS and CODASYL

Ted Codd, 1981 *Relational model*

Jim Gray, 1998 *Transaction processing*

Michael Stonebraker, 2014 INGRES and Postgres CSE 414 - Spring 2018

 Relational Model Data is a collection of relations / tables: 				columns / attributes / fields			
• Da	ta is a		of relations	5 / tadie	S :		
					,		
		cname	country	no_emp	oyees	for_p	orofit
rouve		GizmoWorks	USA	20000		True	,
rows /		Canon	Japan	50000		True	;
tuples / records		Hitachi	Japan	30000		True	;
IECOIUS	ļ ļ	HappyCam	Canada	500		Fals	e

- mathematically, relation is a set of tuples
 - each tuple appears 0 or 1 times in the table
 - order of the rows is unspecified

The Relational Data Model

- Degree (arity) of a relation = #attributes
- Each attribute has a type.
 - Examples types:
 - Strings: CHAR(20), VARCHAR(50), TEXT
 - Numbers: INT, SMALLINT, FLOAT
 - MONEY, DATETIME, ...
 - Few more that are vendor specific
 - Statically and strictly enforced

Key

cname	country	no_employees	for_profit
GizmoWorks	USA	20000	True
Canon	Japan	50000	True
Hitachi	Japan	30000	True
HappyCam	Canada	500	False

Multi-attribute Key

Multiple Keys

<u>SSN</u>	fName	IName	Income	Department
111-22-3333	Alice	Smith	20000	Testing
222-33-4444	Alice	Thompson	50000	Testing
333-44-5555	Bob	Thompson	30000	SW
444-55-6666	Carol	Smith	50000	Testing

We can choose one key and designate it as *primary key* E.g.: primary key = SSN

CSE 414 - Spring 2018

Foreign Key

Company(<u>cname</u>, country, no_employees, for_profit)
Country(<u>name</u>, population)

Company		Foreign key to Country.name	
<u>cname</u>	country	no_employees	for_profit
Canon	Japan	50000	Υ
Hitachi	Japan	30000	Υ

Country

name	population
USA	320M
Japan	127M

Keys: Summary

- Key = columns that uniquely identify tuple
 - Usually we underline
 - A relation can have many keys, but only one can be chosen as *primary key*
- Foreign key:
 - Attribute(s) whose value is a key of a record in some other relation
 - Foreign keys are sometimes called *semantic* pointer

Query Language

- SQL
 - Structured Query Language
 - Developed by IBM in the 70s
 - Most widely used language to query relational data
- Other relational query languages
 - Datalog, relational algebra

Our First DBMS

- SQL Lite
- Will switch to SQL Server later in the quarter

Demo 1

Discussion

- Tables are NOT ordered
 - they are sets or multisets (bags)
- Tables are FLAT
 - No nested attributes
- Tables DO NOT prescribe how they are implemented / stored on disk

- This is called **physical data independence**