Introduction to Database Systems CSE 414

Lecture 19: E/R Diagrams

Class Overview

- Unit 1: Intro
- Unit 2: Relational Data Models and Query Languages
- Unit 3: Non-relational data
- Unit 4: RDMBS internals and query optimization
- Unit 5: Parallel query processing
- Unit 6: DBMS usability, conceptual design
 - E/R diagrams
 - Schema normalization
- Unit 7: Transactions

Database Design

What it is:

 Starting from scratch, design the database schema: relation, attributes, keys, foreign keys, constraints etc

Why it's hard

 The database will be in operation for a very long time (years). Updating the schema while in production is very expensive (why?)

Database Design

- Consider issues such as:
 - What entities to model
 - How entities are related
 - What constraints exist in the domain
- Several formalisms exists
 - We discuss E/R diagrams
 - UML, model-driven architecture
- Reading: Sec. 4.1-4.6

Database Design Process

Entity / Relationship Diagrams

- Entity set = a class
 An entity = an object
- Attribute
- Relationship

Product

city

Keys in E/R Diagrams

• Every entity set must have a key

What is a Relation ?

- A mathematical definition:
 - if A, B are sets, then a relation R is a subset of A \times B

Product

• makes is a subset of **Product × Company**:

makes

CSE 414 - Spring 2018

Company

Multiplicity of E/R Relations

Attributes on Relationships

Multi-way Relationships

How do we model a purchase relationship between buyers, products and stores?

Can still model as a mathematical set (How?)

As a set of triples \subseteq Person × Product × Store

Arrows in Multiway Relationships

A: Any person buys a given product from at most one store

[Fine print: Arrow pointing to E means that if we select one entity from each of the other entity sets in the relationship, those entities are related to at most one entity in E]

CSE 414 - Spring 2018

Arrows in Multiway Relationships

A: Any person buys a given product from at most one store AND every store sells to every person at most one product

3. Design Principles

Moral: Be faithful to the specifications of the application!

CSE 414 - Spring 2018

Design Principles: What's Wrong?

From E/R Diagrams to Relational Schema

- Entity set \rightarrow relation
- Relationship \rightarrow relation

Entity Set to Relation

Product(prod-ID, category, price)

prod-ID	category	price
Gizmo55	Camera	99.99
Pokemn19	Тоу	29.99

24

N-N Relationships to Relations

N-N Relationships to Relations

N-1 Relationships to Relations

N-1 Relationships to Relations

Remember: no separate relations for many-one relationship

Modeling Subclasses

Some objects in a class may be special

- define a new class
- better: define a *subclass*

So --- we define subclasses in E/R

Modeling Union Types with Subclasses

FurniturePiece

Say: each piece of furniture is owned either by a person or by a company

CSE 414 - Spring 2018

Modeling Union Types with Subclasses

Say: each piece of furniture is owned either by a person or by a company

Solution 1. Acceptable but imperfect (What's wrong ?)

Modeling Union Types with Subclasses

Solution 2: better, more laborious

Weak Entity Sets

Entity sets are weak when their key comes from other classes to which they are related.

Team(sport, <u>number, universityName</u>) University(<u>name</u>)

CSE 414 - Spring 2018