Introduction to Database Systems CSE 414

Lecture 17: MapReduce and Spark

Announcements

- Midterm this Friday in class!
 - Review session tonight
 - See course website for OHs
 - Includes everything up to Monday's lecture
- HW6 released
 - Not due until next Friday 5/11
 - No WQ6 (Yay!)

Approaches to Parallel Query Evaluation

- Inter-query parallelism
 - One query per node
 - Good for transactional (OLTP) workloads
- Inter-operator parallelism
 - Operator per node
 - Good for analytical (OLAP) workloads
- Intra-operator parallelism
 - Operator on multiple nodes
 - Good for both?

Customer

Product Purchase

Customer

Customer

rchase

We study only intra-operator parallelism: most scalable

Parallel Data Processing in the 20th Century

Parallel Execution of RA Operators: Partitioned Hash-Join

Data: R(K1, A, B), S(K2, B, C)

Query: R(K1, A, B) ⋈ S(K2, B, C)

Initially, both R and S are partitioned on K1 and

Data: R(<u>K1</u>,A, B), S(<u>K2</u>, B, C)

Query: R(K1,A,B) \(\times\) S(K2,B,C) Parallel Join Illustration

Data: R(A, B), S(C, D)

Query: $R(A,B) \bowtie_{B=C} S(C,D)$

Broadcast Join

Parallel Data Processing @ 2000

Optional Reading

- Original paper: https://www.usenix.org/legacy/events/osdi04/t ech/dean.html
- Rebuttal to a comparison with parallel DBs: http://dl.acm.org/citation.cfm?doid=1629175.1

 629198
- Chapter 2 (Sections 1,2,3 only) of Mining of Massive Datasets, by Rajaraman and Ullman http://i.stanford.edu/~ullman/mmds.html

Motivation

- We learned how to parallelize relational database systems
- While useful, it might incur too much overhead if our query plans consist of simple operations
- MapReduce is a programming model for such computation
- First, let's study how data is stored in such systems

Distributed File System (DFS)

- For very large files: TBs, PBs
- Each file is partitioned into chunks, typically 64MB
- Each chunk is replicated several times (≥3), on different racks, for fault tolerance
- Implementations:
 - Google's DFS: GFS, proprietary
 - Hadoop's DFS: HDFS, open source

MapReduce

- Google: paper published 2004
- Free variant: Hadoop
- MapReduce = high-level programming model and implementation for large-scale parallel data processing

Typical Problems Solved by MR

- Read a lot of data
- Map: extract something you care about from each record
- Shuffle and Sort
- Reduce: aggregate, summarize, filter, transform
- Write the results

Paradigm stays the same, change map and reduce functions for different problems

Data Model

Files!

A file = a bag of (key, value) pairs
Sounds familiar after HW5?

A MapReduce program:

- Input: a bag of (inputkey, value) pairs
- Output: a bag of (outputkey, value) pairs
 - outputkey is optional

Step 1: the MAP Phase

User provides the MAP-function:

- Input: (input key, value)
- Output: bag of (intermediate key, value)

System applies the map function in parallel to all (input key, value) pairs in the input file

Step 2: the REDUCE Phase

User provides the REDUCE function:

- Input: (intermediate key, bag of values)
- Output: bag of output (values)

System groups all pairs with the same intermediate key, and passes the bag of values to the REDUCE function

Example

- Counting the number of occurrences of each word in a large collection of documents
- Each Document
 - The key = document id (did)
 - The value = set of words (word)

```
map(String key, String value):
    // key: document name
    // value: document contents
    for each word w in value:
        emitIntermediate(w, "1");
```

```
reduce(String key, Iterator values):
   // key: a word
   // values: a list of counts
   int result = 0;
   for each v in values:
      result += ParseInt(v);
   emit(AsString(result));
```


Workers

 A worker is a process that executes one task at a time

 Typically there is one worker per processor, hence 4 or 8 per node

Fault Tolerance

- If one server fails once every year...
 ... then a job with 10,000 servers will fail in less than one hour
- MapReduce handles fault tolerance by writing intermediate files to disk:
 - Mappers write file to local disk
 - Reducers read the files (=reshuffling); if the server fails, the reduce task is restarted on another server

Implementation

- There is one master node
- Master partitions input file into M splits, by key
- Master assigns workers (=servers) to the M map tasks, keeps track of their progress
- Workers write their output to local disk, partition into R regions
- Master assigns workers to the R reduce tasks
- Reduce workers read regions from the map workers' local disks

Interesting Implementation Details

Backup tasks:

- Straggler = a machine that takes unusually long time to complete one of the last tasks. E.g.:
 - Bad disk forces frequent correctable errors (30MB/s → 1MB/s)
 - The cluster scheduler has scheduled other tasks on that machine
- Stragglers are a main reason for slowdown
- Solution: pre-emptive backup execution of the last few remaining in-progress tasks

Straggler Example

Using MapReduce in Practice:

Implementing RA Operators in MR

Relational Operators in MapReduce

Given relations R(A,B) and S(B,C) compute:

• Selection: $\sigma_{A=123}(R)$

• Group-by: $\gamma_{A,sum(B)}(R)$

Join: R ⋈ S

Selection $\sigma_{A=123}(R)$

Selection $\sigma_{A=123}(R)$

```
map(Tuple t):
    if t.A = 123:
        EmitIntermediate(t.A, t);
```

reduce(String A, Iterator values):
for each v in values:
Emit(v);

No need for reduce.
But need system hacking in Hadoop to remove reduce from MapReduce

Group By $\gamma_{A,sum(B)}(R)$

	Α	В
t_1	23	10
t_2	123	21
t_3	123	4
t ₄	42	6


```
reduce(String A, Iterator values):
    s = 0
    for each v in values:
        s = s + v
    Emit(A, s);
```

Join

Two simple parallel join algorithms:

Partitioned hash-join (we saw it, will recap)

Broadcast join

Partitioned Hash-Join

Partitioned Hash-Join

Broadcast Join

map(String value):

for each w in S:

for each v in value:

Emit(v,w);

Broadcast Join

several records of R: value = some group of tuples from R readFromNetwork(S); /* over the network */ hashTable = new HashTable() Read entire table S, build a Hash Table hashTable.insert(w.C, w) for each w in hashTable.find(v.B) reduce(...):

map should read

HW6

- HW6 will ask you to write SQL queries and MapReduce tasks using Spark
- You will get to "implement" SQL using MapReduce tasks
 - Can you beat Spark's implementation?