
1

Introduction to Database Systems
CSE 414

Lecture 17: MapReduce and Spark

1CSE 414 - Spring 2018

Announcements

• Midterm this Friday in class!
– Review session tonight
– See course website for OHs
– Includes everything up to Monday’s lecture

• HW6 released
– Not due until next Friday 5/11
– No WQ6 (Yay!)

2

Purchase

pid=pid

cid=cid

Customer

Product
Purchase

pid=pid

cid=cid

Customer

Product

Approaches to
Parallel Query Evaluation

• Inter-query parallelism
– One query per node
– Good for transactional (OLTP) workloads

• Inter-operator parallelism
– Operator per node
– Good for analytical (OLAP) workloads

• Intra-operator parallelism
– Operator on multiple nodes
– Good for both?

CSE 414 - Spring 2018 3We study only intra-operator parallelism: most scalable

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

Parallel Data Processing
in the 20th Century

4

Parallel Execution of RA Operators:

Partitioned Hash-Join

• Data: R(K1, A, B), S(K2, B, C)

• Query: R(K1, A, B) ⋈ S(K2, B, C)

– Initially, both R and S are partitioned on K1 and

K2

CSE 414 - Spring 2018 5

R1, S1 R2, S2 RP, SP . . .

R’1, S’1 R’2, S’2 R’P, S’P . . .

Reshuffle R on R.B

and S on S.B

Each server computes

the join locally

Parallel Join IllustrationData: R(K1,A, B), S(K2, B, C)
Query: R(K1,A,B) ⋈ S(K2,B,C)

6

K1 B
1 20
2 50

K2 B
101 50
102 50

K1 B
3 20
4 20

K2 B
201 20
202 50

R1 S1 R2 S2

K1 B
1 20
3 20
4 20

K2 B
201 20

K1 B
2 50

K2 B
101 50
102 50
202 50

R1’ S1’ R2’ S2’

M1 M2

M1 M2

Shuffle on B

⋈ ⋈

Partition

Local
Join

2

Broadcast Join

CSE 414 - Spring 2018 7

Data: R(A, B), S(C, D)
Query: R(A,B) ⋈B=C S(C,D)

R1 R2 RP. . .

R’1, S R’2, S R’P, S. . .

Reshuffle R on R.B

Broadcast S

S

Why would you want to do this?

Parallel Data Processing @ 2000

CSE 414 - Spring 2018 8

Optional Reading

• Original paper:
https://www.usenix.org/legacy/events/osdi04/t
ech/dean.html

• Rebuttal to a comparison with parallel DBs:
http://dl.acm.org/citation.cfm?doid=1629175.1
629198

• Chapter 2 (Sections 1,2,3 only) of Mining of
Massive Datasets, by Rajaraman and Ullman
http://i.stanford.edu/~ullman/mmds.html

CSE 414 - Spring 2018 9

Motivation
• We learned how to parallelize relational database

systems

• While useful, it might incur too much overhead if our
query plans consist of simple operations

• MapReduce is a programming model for such
computation

• First, let’s study how data is stored in such systems

CSE 414 - Spring 2018 10

Distributed File System (DFS)

• For very large files: TBs, PBs

• Each file is partitioned into chunks, typically

64MB

• Each chunk is replicated several times (≥3),

on different racks, for fault tolerance

• Implementations:

– Google’s DFS: GFS, proprietary

– Hadoop’s DFS: HDFS, open source

CSE 414 - Spring 2018 11

MapReduce

• Google: paper published 2004
• Free variant: Hadoop

• MapReduce = high-level programming model
and implementation for large-scale parallel
data processing

CSE 414 - Spring 2018 12

https://www.usenix.org/legacy/events/osdi04/tech/dean.html
http://dl.acm.org/citation.cfm?doid=1629175.1629198
http://i.stanford.edu/~ullman/mmds.html

3

Typical Problems Solved by MR

• Read a lot of data
• Map: extract something you care about from each

record
• Shuffle and Sort
• Reduce: aggregate, summarize, filter, transform
• Write the results

CSE 414 - Spring 2018 13

Paradigm stays the same,
change map and reduce
functions for different problems

slide source: Jeff Dean

Data Model
Files!

A file = a bag of (key, value) pairs
Sounds familiar after HW5?

A MapReduce program:
• Input: a bag of (inputkey, value) pairs
• Output: a bag of (outputkey, value) pairs

– outputkey is optional

CSE 414 - Spring 2018 14

Step 1: the MAP Phase

User provides the MAP-function:
• Input: (input key, value)
• Output: bag of (intermediate key, value)

System applies the map function in parallel to all
(input key, value) pairs in the input file

CSE 414 - Spring 2018 15

Step 2: the REDUCE Phase

User provides the REDUCE function:
• Input: (intermediate key, bag of values)
• Output: bag of output (values)

System groups all pairs with the same intermediate
key, and passes the bag of values to the REDUCE
function

CSE 414 - Spring 2018 16

Example

• Counting the number of occurrences of each
word in a large collection of documents

• Each Document
– The key = document id (did)
– The value = set of words (word)

17

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:

emitIntermediate(w, “1”);

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:

result += ParseInt(v);
emit(AsString(result));

MAP REDUCE

(w1,1)

(w2,1)

(w3,1)

…

(w1,1)

(w2,1)

…

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(w1, (1,1,1,…,1))

(w2, (1,1,…))

(w3,(1…))

…

…

…

…

(w1, 25)

(w2, 77)

(w3, 12)

…

…

…

…

Shuffle

CSE 414 - Spring 2018 18

4

Workers

• A worker is a process that executes one task
at a time

• Typically there is one worker per processor,
hence 4 or 8 per node

CSE 414 - Spring 2018 19

MAP Tasks (M) REDUCE Tasks (R)

(w1,1)

(w2,1)

(w3,1)

…

(w1,1)

(w2,1)

…

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(w1, (1,1,1,…,1))

(w2, (1,1,…))

(w3,(1…))

…

…

…

…

(w1, 25)

(w2, 77)

(w3, 12)

…

…

…

…

Shuffle

20

Fault Tolerance

• If one server fails once every year…
... then a job with 10,000 servers will fail in
less than one hour

• MapReduce handles fault tolerance by writing
intermediate files to disk:
– Mappers write file to local disk
– Reducers read the files (=reshuffling); if the server

fails, the reduce task is restarted on another
server

CSE 414 - Spring 2018 21

Implementation

• There is one master node

• Master partitions input file into M splits, by key

• Master assigns workers (=servers) to the M map
tasks, keeps track of their progress

• Workers write their output to local disk, partition

into R regions
• Master assigns workers to the R reduce tasks
• Reduce workers read regions from the map

workers’ local disks

CSE 414 - Spring 2018 22

Interesting Implementation Details

Backup tasks:
• Straggler = a machine that takes unusually long

time to complete one of the last tasks. E.g.:
– Bad disk forces frequent correctable errors (30MB/s à

1MB/s)
– The cluster scheduler has scheduled other tasks on

that machine
• Stragglers are a main reason for slowdown
• Solution: pre-emptive backup execution of the

last few remaining in-progress tasks

CSE 414 - Spring 2018 23

Straggler Example

CSE 414 - Spring 2018 24

time

Worker 3

Worker 2

Worker 1

Straggler

Backup execution

Killed

Killed

5

Using MapReduce in Practice:

Implementing RA Operators in MR

Relational Operators in
MapReduce

Given relations R(A,B) and S(B,C) compute:

• Selection: σA=123(R)

• Group-by: γA,sum(B)(R)

• Join: R ⋈ S

CSE 414 - Spring 2018 26

Selection σA=123(R)

27

map(Tuple t):
if t.A = 123:

EmitIntermediate(t.A, t);

reduce(String A, Iterator values):
for each v in values:

Emit(v);

A
t1 23
t2 123
t3 123
t4 42

(123, [t2, t3])

(t2, t3)

Selection σA=123(R)

28

map(Tuple t):
if t.A = 123:

EmitIntermediate(t.A, t);

reduce(String A, Iterator values):
for each v in values:

Emit(v);
No need for reduce.
But need system hacking in Hadoop
to remove reduce from MapReduce

Group By γA,sum(B)(R)

29

map(Tuple t):
EmitIntermediate(t.A, t.B);

reduce(String A, Iterator values):
s = 0
for each v in values:

s = s + v

Emit(A, s);

A B

t1 23 10

t2 123 21

t3 123 4

t4 42 6

(23, [t1])
(42, [t4])
(123, [t2, t3])

(23, 10), (42, 6), (123, 25)

Join

Two simple parallel join algorithms:

• Partitioned hash-join (we saw it, will recap)

• Broadcast join

CSE 414 - Spring 2018 30

6

Partitioned Hash-Join

CSE 414 - Spring 2018 31

R1, S1 R2, S2 RP, SP . . .

R’1, S’1 R’2, S’2 R’P, S’P . . .

Reshuffle R on R.B
and S on S.B

Each server computes
the join locally

Initially, both R and S are horizontally partitioned

R(A,B) ⋈B=C S(C,D)

Partitioned Hash-Join

32

map(Tuple t):
case t.relationName of

‘R’: EmitIntermediate(t.B, (‘R’, t));
‘S’: EmitIntermediate(t.C, (‘S’, t));

reduce(String k, Iterator values):
R = empty; S = empty;
for each v in values:

case v.type of:
‘R’: R.insert(v)
‘S’: S.insert(v);

for v1 in R, for v2 in S
Emit(v1,v2);

R(A,B) ⋈B=C S(C,D)

type actual tuple

Broadcast Join

CSE 414 - Spring 2018 33

R1 R2 RP. . .

R’1, S R’2, S R’P, S. . .

Reshuffle R on R.B

Broadcast S

S

R(A,B) ⋈B=C S(C,D)

Broadcast Join

34

map(String value):
readFromNetwork(S); /* over the network */
hashTable = new HashTable()
for each w in S:

hashTable.insert(w.C, w)

for each v in value:
for each w in hashTable.find(v.B)

Emit(v,w);
reduce(…):

/* empty: map-side only */

map should read
several records of R:
value = some group

of tuples from R

Read entire table S,
build a Hash Table

R(A,B) ⋈B=C S(C,D)

HW6

• HW6 will ask you to write SQL queries and
MapReduce tasks using Spark

• You will get to “implement” SQL using
MapReduce tasks
– Can you beat Spark’s implementation?

