
1

Introduction to Database Systems
CSE 414

Lecture 16: Query Evaluation

1CSE 414 - Spring 2018

Announcements

• HW5 + WQ5 due tomorrow

• Midterm this Friday in class!
– Review session this Wednesday evening
– See course website

• HW6 will be released later this week
– Due on Friday 5/11
– No WQ6 (yet)!

2

Class Overview

• Unit 1: Intro
• Unit 2: Relational Data Models and Query Languages
• Unit 3: Non-relational data
• Unit 4: RDMBS internals and parallel query processing
• Unit 5: DBMS usability, conceptual design
• Unit 6: Transactions
• Unit 7: Advanced topics

3

From Logical RA Plans
to Physical Plans

CSE 414 - Spring 2018 4

Query Evaluation Steps Review

5

Parse Query

Generate Logical Plan

Select Physical Plan

Query Execution

Disk

SQL query

Query
optimization

Logical
plan (RA)

Physical
plan

Logical vs Physical Plans
• Logical plans:

– Created by the parser from the input SQL text
– Expressed as a relational algebra tree
– Each SQL query has many possible logical plans

• Physical plans:
– Goal is to choose an efficient implementation for

each operator in the RA tree
– Each logical plan has many possible physical plans

CSE 414 - Spring 2018 6

2

Review: Relational Algebra

CSE 414 - Spring 2018 7

Supplier Supply

sid = sid

σscity=�Seattle� and sstate=�WA’ and pno=2

πsname

Relational algebra expression is

also called the “logical query plan”

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

Physical Query Plan 1

8

Supplier Supply

sid = sid

σscity=�Seattle� and sstate=�WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
A physical query plan is a logical
query plan annotated with
physical implementation details

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

Physical Query Plan 2

9

Supplier Supply

sid = sid

σscity=�Seattle� and sstate=�WA’ and pno=2

πsname

(File scan) (File scan)

(Hash join)

(On the fly)

(On the fly)
Same logical query plan
Different physical plan

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

Physical Query Plan 3

CSE 414 - Spring 2018 10

Supplier Supply

sid = sid

(a) σscity=�Seattle� and sstate=�WA’

πsname

(File scan) (File scan)

(Sort-merge join)

(On the fly)

(b) σpno=2

(Scan & write to T1)

(c)

(d)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Different but equivalent logical
query plan; different physical plan
SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

(Scan & write to T2)

Query Optimization Problem

• For each SQL query… many logical plans

• For each logical plan… many physical plans

• Choosing the best one among them is the goal
of query optimization

• More on this later in the quarter
CSE 414 - Spring 2018 11

Distributed query processing

CSE 414 - Spring 2018 12

3

Why compute in parallel?

• Multi-cores:
– Most processors have multiple cores
– This trend will likely increase in the future

• Big data: too large to fit in main memory
– Distributed query processing on 100x-1000x

servers
– Widely available now using cloud services
– Recall HW3 and motivation for NoSQL!

CSE 414 - Spring 2018 13

Performance Metrics
for Parallel DBMSs

Nodes = processors, computers

• Speedup:
– More nodes, same data è higher speed

• Scaleup:
– More nodes, more data è same speed

CSE 414 - Spring 2018 14

Linear v.s. Non-linear Speedup

CSE 414 - Spring 2018 15

nodes (=P)

Speedup

×1 ×5 ×10 ×15

Ideal

Linear v.s. Non-linear Scaleup

CSE 414 - Spring 2018 16

nodes (=P) AND data size

Batch
Scaleup

×1 ×5 ×10 ×15

Ideal

Why Sub-linear Speedup and
Scaleup?

• Startup cost
– Cost of starting an operation on many nodes

• Interference
– Contention for resources between nodes

• Skew
– Slowest node becomes the bottleneck

CSE 414 - Spring 2018 17

Purchase

pid=pid

cid=cid

Customer

Product
Purchase

pid=pid

cid=cid

Customer

Product

Approaches to
Parallel Query Evaluation

• Inter-query parallelism
– One query per node
– Good for transactional (OLTP) workloads

• Inter-operator parallelism
– Operator per node
– Good for analytical (OLAP) workloads

• Intra-operator parallelism
– Operator on multiple nodes
– Good for both?

CSE 414 - Spring 2018 18We study only intra-operator parallelism: most scalable

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

4

Parallel Data Processing
in the 20th Century

19

Let’s parallelize RDBMS

• Data is horizontally partitioned on many

servers

• Operators may require data reshuffling

• First let’s discuss how to distribute data

across multiple nodes / servers

CSE 414 - Spring 2018 20

Horizontal Data Partitioning

CSE 414 - Spring 2018 21

1 2 P . . .

Data: Servers:

K A B
… …

Horizontal Data Partitioning

CSE 414 - Spring 2018 22

K A B
… …

1 2 P . . .

Data: Servers:

K A B

… …

K A B

… …

K A B

… …

Which tuples
go to what server?

Recall: Horizontal Data
Partitioning

• Block Partition:
– Partition tuples arbitrarily s.t. size(R1)≈ … ≈ size(RP)

• Hash partitioned on attribute A:
– Tuple t goes to chunk i, where i = h(t.A) mod P + 1
– Recall: calling hash fn’s is free in this class

• Range partitioned on attribute A:
– Partition the range of A into -∞ = v0 < v1 < … < vP = ∞
– Tuple t goes to chunk i, if vi-1 < t.A < vi

CSE 414 - Spring 2018 23

Uniform Data v.s. Skewed Data

• Let R(K,A,B,C); which of the following

partition methods may result in skewed

partitions?

• Block partition

• Hash-partition

– On the key K

– On the attribute A

CSE 414 - Spring 2018 24

Uniform

Uniform

May be skewed

Assuming good

hash function

E.g. when all records

have the same value

of the attribute A, then

all records end up in the

same partition

Keep this in mind in the next few slides

5

Parallel Execution of RA Operators:

Grouping

Data: R(K,A,B,C)

Query: γA,sum(C)(R)

How to compute group by if:

• R is hash-partitioned on A ?

• R is block-partitioned ?

• R is hash-partitioned on K ?

CSE 414 - Spring 2018 25

Parallel Execution of RA Operators:
Grouping

Data: R(K,A,B,C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K

CSE 414 - Spring 2018 26

R1 R2 RP . . .

R1’ R2’ RP’
. . .

Reshuffle R
on attribute A

Run grouping
on reshuffled

partitions

Speedup and Scaleup

• Consider:
– Query: γA,sum(C)(R)
– Runtime: only consider I/O costs

• If we double the number of nodes P, what is
the new running time?
– Half (each server holds ½ as many chunks)

• If we double both P and the size of R, what is
the new running time?
– Same (each server holds the same # of chunks)

CSE 414 - Spring 2018 27But only if the data is without skew!

Skewed Data

• R(K,A,B,C)
• Informally: we say that the data is skewed if

one server holds much more data that the
average

• E.g., we hash-partition on A, and some value
of A occurs very many times (“Justin Bieber”)

• Then the server holding that value will be
skewed

CSE 414 - Spring 2018 28

Parallel Execution of RA Operators:

Partitioned Hash-Join

• Data: R(K1, A, B), S(K2, B, C)

• Query: R(K1, A, B) ⋈ S(K2, B, C)

– Initially, both R and S are partitioned on K1 and

K2

CSE 414 - Spring 2018 29

R1, S1 R2, S2 RP, SP . . .

R’1, S’1 R’2, S’2 R’P, S’P . . .

Reshuffle R on R.B

and S on S.B

Each server computes

the join locally

Parallel Join IllustrationData: R(K1,A, B), S(K2, B, C)
Query: R(K1,A,B) ⋈ S(K2,B,C)

30

K1 B
1 20
2 50

K2 B
101 50
102 50

K1 B
3 20
4 20

K2 B
201 20
202 50

R1 S1 R2 S2

K1 B
1 20
3 20
4 20

K2 B
201 20

K1 B
2 50

K2 B
101 50
102 50
202 50

R1’ S1’ R2’ S2’

M1 M2

M1 M2

Shuffle on B

⋈ ⋈

Partition

Local
Join

6

Broadcast Join

CSE 414 - Spring 2018 31

Data: R(A, B), S(C, D)
Query: R(A,B) ⋈B=C S(C,D)

R1 R2 RP. . .

R’1, S R’2, S R’P, S. . .

Reshuffle R on R.B

Broadcast S

S

Why would you want to do this?

Putting it Together:
Example Parallel Query Plan

CSE 414 - Spring 2018 32

SELECT *
FROM Order o, Line i
WHERE o.item = i.item
AND o.date = today()

join

select

scan scan

date = today()

o.item = i.item

Order oItem i

Find all orders from today, along with the items ordered

Order(oid, item, date), Line(item, …)

Example Parallel
Query Plan

CSE 414 - Spring 2018 33

Node 1 Node 2 Node 3

select
date=today()

select
date=today()

select
date=today()

scan
Order o

scan
Order o

scan
Order o

hash
h(o.item)

hash
h(o.item)

hash
h(o.item)

Node 1 Node 2 Node 3

join

select

scan

date = today()

o.item = i.item

Order o

Order(oid, item, date), Line(item, …)

Example Parallel

Query Plan

CSE 414 - Spring 2018 34

Node 1 Node 2 Node 3

scan
Item i

Node 1 Node 2 Node 3

hash

h(i.item)

scan
Item i

hash

h(i.item)

scan
Item i

hash

h(i.item)

join

scan

date = today()

o.item = i.item

Order o
Item i

Order(oid, item, date), Line(item, …)

Example Parallel Query Plan

CSE 414 - Spring 2018 35

Node 1 Node 2 Node 3

join join join
o.item = i.item o.item = i.item o.item = i.item

contains all orders and all
lines where hash(item) = 1

contains all orders and all
lines where hash(item) = 2

contains all orders and all
lines where hash(item) = 3

Order(oid, item, date), Line(item, …)

