
Introduction to Database Systems
CSE 414

Lecture 15: SQL++ Wrapup

1CSE 414 - Spring 2018

Find each
country’s GDP

CSE 414 - Spring 18 2

Error: Type mismatch!

SELECT x.mondial.country.name, c.gdp_total

FROM world AS x, country AS c

WHERE x.mondial.country.`-car_code` = c.`-car_code`;

world
{{ {“mondial”:

{“country”:

[{“-car_code”:"AL”, …}

{“name”:”Albania”}, …
], ...

}, ...

}}

{{ { “-car_code”:“AL”,

“gdp_total”:4100,

...

}, ...

}}

country

x.mondial.country is an array
of objects. No field as -car_code! Need to

“unnest”
the array

In General

CSE 414 - Spring 18 3

SELECT ...
FROM R AS x, S AS y
WHERE x.f1 = y.f2;

Needs to be an array
or dataset

(i.e., iterable)

Need to
“unnest”
the array

Object to be
iterated on

These cannot evaluate to an array or dataset!These cannot evaluate to an array or dataset!

Unnesting collections

CSE 414 - Spring 18 4

SELECT x.A, y.C, y.D
FROM mydata AS x, x.B AS y;

{"A": "a1", "B": [{"C": "c1", "D": "d1"}, {"C": "c2", "D": "d2"}]}
{"A": "a2", "B": [{"C": "c3", "D": "d3"}] }
{"A": "a3", "B": [{"C": "c4", "D": "d4"}, {"C": "c5", "D": "d5"}]}

Form cross product between
each x and its x.B

mydata

{"A": "a1", "C": "c1", "D": "d1"}
{"A": "a1", "C": "c2", "D": "d2"}
{"A": "a2", "C": "c3", "D": "d3"}
{"A": "a3", "C": "c4", "D": "d4"}
{"A": "a3", "C": "c5", "D": "d5"}

Answer

Unnesting collections

CSE 414 - Spring 18 5

SELECT x.A, y.C, y.D
FROM mydata AS x UNNEST x.B AS y;

{"A": "a1", "B": [{"C": "c1", "D": "d1"}, {"C": "c2", "D": "d2"}]}
{"A": "a2", "B": [{"C": "c3", "D": "d3"}] }
{"A": "a3", "B": [{"C": "c4", "D": "d4"}, {"C": "c5", "D": "d5"}]}

Same as before

mydata

Answer
{"A": "a1", "C": "c1", "D": "d1"}
{"A": "a1", "C": "c2", "D": "d2"}
{"A": "a2", "C": "c3", "D": "d3"}
{"A": "a3", "C": "c4", "D": "d4"}
{"A": "a3", "C": "c5", "D": "d5"}

Find each
country’s GDP

CSE 414 - Spring 18 6

SELECT y.name, c.gdp_total
FROM world AS x, x.mondial.country AS y, country AS c
WHERE y.`-car_code` = c.`-car_code`;

world
{{ {“mondial”:

{“country”:
[{“-car_code”:"AL”, …}
{“name”:”Albania”}, …
], ...

}, ...
}}

{{ { “-car_code”:“AL”,
“gdp_total”:4100,
...

}, ...
}}

country

{ "name": "Albania", "gdp_total": "4100" }
{ "name": "Greece", "gdp_total": "101700" }
...

Answer

{{ {“mondial”:
{“country”: [{Albania}, {Greece}, …],
“continent”: […],
“organization”: […],
...
...

}
}

}}

Return province
and city names

7

“name”: “Greece”,
“province”: [...

{“name”: "Attiki”,
“city”: [{“name”: ”Athens”...}, {“name”: ”Pireus”...}, ...]
...},

{“name”: ”Ipiros”,
“city”: {“name”: ”Ioannia”...}
...}, ...

The problem:

SELECT z.name AS province_name, u.name AS city_name
FROM world x, x.mondial.country y, y.province z, z.city u
WHERE y.name = "Greece";

city is an array

city is an object

world

Error: Type mismatch!

Return province
and city names

8

SELECT z.name AS province_name, u.name AS city_name
FROM world x, x.mondial.country y, y.province z,

(CASE WHEN z.city IS missing THEN []
WHEN IS_ARRAY(z.city) THEN z.city
ELSE [z.city] END) AS u

WHERE y.name="Greece";

Even better

{{ {“mondial”:

{“country”: [{Albania}, {Greece}, …],
“continent”: […],

“organization”: […],
...
...

}

}

}}

world

Useful Functions

• is_array
• is_boolean
• is_number
• is_object
• is_string
• is_null
• is_missing
• is_unknown = is_null or is_missing

CSE 414 - Spring 18 9

Other Features

• Unnesting
• Nesting
• Grouping and aggregate
• Joins
• Multi-value join

CSE 414 - Spring 18 10

Nesting

CSE 414 - Spring 18 11

[{A:a1, B:b1},
{A:a1, B:b2},
{A:a2, B:b1}]

C

SELECT DISTINCT x.A,
(SELECT y.B FROM C AS y WHERE x.A = y.A) AS Grp

FROM C AS x

SELECT DISTINCT x.A, g AS Grp
FROM C AS x
LET g = (SELECT y.B FROM C AS y WHERE x.A = y.A)

[{A:a1, Grp:[{b1, b2}]},
{A:a2, Grp:[{b1}]}]

We want:

Using LET syntax:

Grouping and Aggregates

CSE 414 - Spring 18 12

Count the number of elements in the F array for each A

[{A:a1, F:[{B:b1}, {B:b2}], G:[{C:c1}]},
{A:a2, F:[{B:b3}, {B:b4}, {B:null}], G:[]},
{A:a3, F:[{B:b6}], G:[{C:c2},{C:c3}]}]

C

SELECT x.A, COLL_COUNT(x.F) AS cnt
FROM C AS x

SELECT x.A, COUNT(*) AS cnt
FROM C AS x, x.F AS y
GROUP BY x.A

These are
NOT

equivalent!

Grouping and Aggregates

Grouping and Aggregates

CSE 414 - Spring 18 14

Count the number of elements in the F array for each A

[{A:a1, F:[{B:b1}, {B:b2}], G:[{C:c1}]},
{A:a2, F:[{B:b3}, {B:b4}, {B:null}], G:[]},
{A:a3, F:[{B:b6}], G:[{C:c2},{C:c3}]}]

C

SELECT x.A, COLL_COUNT(x.F) AS cnt
FROM C AS x

SELECT x.A, COUNT(*) AS cnt
FROM C AS x, x.F AS y
GROUP BY x.A

These are

NOT

equivalent!

Lesson:

Read the *$@# manual!!

Joins

CSE 414 - Spring 18 15

coll1 = [{A:a1, B:b1}, {A:a1, B:b2}, {A:a2, B:b1}]
coll2 = [{B:b1, C:c1}, {B:b1, C:c2}, {B:b3, C:c3}]

Two flat collection

SELECT x.A, x.B, y.C
FROM coll1 AS x, coll2 AS y
WHERE x.B = y.B

SELECT x.A, x.B, y.C
FROM coll1 AS x JOIN coll2 AS y ON x.B = y.B

[{A:a1, B:b1, C:c1},
{A:a1, B:b1, C:c2},
{A:a2, B:b1, C:c1},
{A:a2, B:b1, C:c2}]

Answer

Outer Joins

CSE 414 - Spring 18 16

[{A:a1, B:b1}, {A:a1, B:b2}, {A:a2, B:b1}]

Two flat collection

SELECT x.A, x.B, y.C
FROM coll1 AS x RIGHT OUTER JOIN coll2 AS y

ON x.B = y.B

[{A:a1, B:b1, C:c1},
{A:a1, B:b1, C:c2},
{A:a2, B:b1, C:c1},
{A:a2, B:b1, C:c2},
{B:b3, C:c3}]

Answer

[{B:b1, C:c1}, {B:b1, C:c2}, {B:b3, C:c3}]

coll1

coll2

Ordering

17

[{A:a1, B:b1}, {A:a1, B:b2}, {A:a2, B:b1}]

SELECT x.A, x.B
FROM coll AS x
ORDER BY x.A

coll1

Data type matters!

"90" > "8000" but
90 < 8000 !

Multi-Value Join

CSE 414 - Spring 18 18

SELECT ...
FROM country AS x, river AS y,

split(y. `-country`, " ") AS z
WHERE x.`-car_code` = z

split("MEX USA", " ") = ["MEX", "USA"]

String Separator

[{"name": "Donau", "-country": "SRB A D H HR SK BG RO MD UA”},
{"name": "Colorado”, "-country": "MEX USA"},
...]

A collection

river

Behind the Scenes

Query Processing on NFNF data:

• Option 1: give up on query plans, use
standard java/python-like execution

• Option 2: represent the data as a collection of
flat tables, convert SQL++ to a standard
relational query plan

CSE 414 - Spring 18 19

Flattening SQL++ Queries

20

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:c1}]},
{A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[]},
{A:a1, F:[{B:b6}], G:[{C:c2},{C:c3}]}]

A nested collection

21

A nested collection Relational representation
coll:

id A
1 a1

2 a2
3 a1

F

parent B
1 b1

1 b2
2 b3

2 b4

2 b5
3 b6

G

parent C
1 c1

3 c2
3 c3

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:c1}]},
{A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[]},
{A:a1, F:[{B:b6}], G:[{C:c2},{C:c3}]}]

Flattening SQL++ Queries

22

SELECT x.A, y.B
FROM coll AS x, x.F AS y
WHERE x.A = “a1”

A nested collection

SQL++

Relational representation
coll:

id A
1 a1

2 a2
3 a1

F

parent B
1 b1

1 b2
2 b3

2 b4

2 b5
3 b6

G

parent C
1 c1

3 c2
3 c3

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:c1}]},
{A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[]},
{A:a1, F:[{B:b6}], G:[{C:c2},{C:c3}]}]

Flattening SQL++ Queries

23

SELECT x.A, y.B
FROM coll AS x, x.F AS y
WHERE x.A = “a1”

SELECT x.A, y.B
FROM coll AS x, F AS y
WHERE x.id = y.parent AND x.A = “a1”

A nested collection

SQL++

Relational representation
coll:

id A
1 a1

2 a2
3 a1

F

parent B
1 b1

1 b2
2 b3

2 b4

2 b5
3 b6

G

parent C
1 c1

3 c2
3 c3

SQL

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:c1}]},
{A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[]},
{A:a1, F:[{B:b6}], G:[{C:c2},{C:c3}]}]

Flattening SQL++ Queries

24

SELECT x.A, y.B
FROM coll AS x, x.F AS y
WHERE x.A = “a1”

SELECT x.A, y.B
FROM coll AS x, F AS y
WHERE x.id = y.parent AND x.A = “a1”

A nested collection

SQL++

Relational representation
coll:

id A

1 a1

2 a2

3 a1

F

parent B

1 b1

1 b2

2 b3

2 b4

2 b5

3 b6

G

parent C

1 c1

3 c2

3 c3

SQL

SELECT x.A, y.B
FROM coll AS x, x.F AS y, x.G AS z
WHERE y.B = z.C

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:c1}]},
{A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[]},
{A:a1, F:[{B:b6}], G:[{C:c2},{C:c3}]}]

Flattening SQL++ Queries

25

SELECT x.A, y.B
FROM coll AS x, x.F AS y
WHERE x.A = “a1”

SELECT x.A, y.B
FROM coll AS x, F AS y
WHERE x.id = y.parent AND x.A = ‘a1’

A nested collection

SQL++

Relational representation
coll:

id A

1 a1

2 a2

3 a1

F

parent B

1 b1

1 b2

2 b3

2 b4

2 b5

3 b6

G

parent C

1 c1

3 c2

3 c3

SQL

SELECT x.A, y.B
FROM coll AS x, x.F AS y, x.G AS z
WHERE y.B = z.C

SELECT x.A, y.B
FROM coll AS x, F AS y, G AS z
WHERE x.id = y.parent AND x.id = z.parent

AND y.B = z.C

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:c1}]},
{A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[]},
{A:a1, F:[{B:b6}], G:[{C:c2},{C:c3}]}]

Flattening SQL++ Queries

Semistructured Data Model

• Several file formats: Json, protobuf, XML

• The data model is a tree

• They differ in how they handle structure:

– Open or closed

– Ordered or unordered

• Query language needs to take NFNF into

account

– Various “extra” constructs introduced as a result

CSE 414 - Spring 18 26

Conclusion

• Semi-structured data best suited for data
exchange

• “General” guidelines:
– For quick, ad-hoc data analysis, use a “native”

query language: SQL++, or AQL, or Xquery
• Where “native” = how data is stored

– Modern, advanced query processors like
AsterixDB / SQL++ can process semi-structured
data as efficiently as RDBMS

– For long term data analysis: spend the time and
effort to normalize it, then store in a RDBMS

CSE 414 - Spring 18 27

