Introduction to Database Systems
CSE 414

Lecture 13: Json and SQL++

CSE 414 - Spring 2018

JSon Syntax

Announcements
» HW5 + WQ5 will be out tomorrow

— Both due in 1 week

» Midterm in class on Friday, 5/4

— Covers everything (HW, WQ, lectures, sections,
readings) up to and including next Monday’s
lecture and HW5 + WQ5

— Review session: 5/2 in MUE 153, 5-7pm

* Make sure you are good for AWS
— You will need it for HW6

CSE 414 - Spring 18

{ "book": [
{"id":"e1",
"language": "Java",
"author": "H. Javeson",
"year": 2015
1
{"id":"e7",
"language": "C++",
"edition": “"second"
“author": “E. Sepp",
"price": 22.25
}
]
}

CSE 414 - Spring 18

JSon Data Structures

» Objects, i.e., collections of name-value pairs:
- {“name1”: valuel, “name2”: value2, ..}
— “name” is also called a “key”

* Ordered lists of values:
- [obj1, obj2, obj3, ...]

CSE 414 - Spring 18 4

JSon Primitive Datatypes
* Number

 String
— Denoted by double quotes

* Boolean
— Either true or false

* nullempty

CSE 414 - Spring 18

JSon Semantics: a Tree !

{“person”:
[{“name”: “Mary”,

“address”:

{“street”:“Maple”,

“no”:345,

“city”: “Seattle”}},
{“name”: “John”,
“address”: “Thailand”,
“phone”:2345678}}

]

}

JSon Semantics: a Tree !

{“person”:
[{“name”: “Mary”, OR
“address”:
{“street”:“Maple”, A

“no”:345,

“city”: “Seattle”}},
{“name”: “John”,
“address”: “Thailand",/
“phone”:2345678}}

]

JSon Data

» JSon is self-describing

* Schema elements become part of the data
— Relational schema: person(name, phone)
— In Json “person”, “name”, “phone” are part of the
data, and are repeated many times
« Consequence: JSon is much more flexible

* JSon = semistructured data

CSE 414 - Spring 18 8

Mapping Relational Data to JSon

May inline multiple relations based on foreign keys

}
' Recall: arrays are ordered in Json! | ,
Mapping Relational Data to JSon
person
Person name phone name phone name phone
“John” 3634 “Sue” 6343 “Dirk” 6363
name phone
{“person”:@
John 3634 {“name” ¥“John”, “phone”:3634},
Sue 6343 {“name”: “Sue”, “phone”:6343},
Dirk 6363 {“name”: “Dirk”, “phone”:6383}
N®,

CSE 414 - Spring 18 9

Person {“Person”:
[{"name": "John",
@ame} phone "phone":3646,
~ ~'Orders":[
John /\ 3634 {"date":2002, "product": "Gizmo"},
Sue 6343 {“date”:2004, "product”: "Gadget"}
Orders \FK {','name": "Sue",
"phone":6343,
per‘sonNa@ date |product "Orders":[
"date":2002," duct"”:"Gadget"
John 2002 [Gizmo | jraate product”: "Gadget"}
John 2004 |Gadget || |}
Sue 2002 |Gadget ||}

Discussion: Why Semi-Structured Data?

» Semi-structured data model is good as data
exchange formats
— i.e., exchanging data between different apps
— Examples: XML, JSon, Protobuf (protocol buffers)

* Increasingly, systems use them as a data
model for databases:
— SQL Server supports for XML-valued relations
— CouchBase, MongoDB: JSon as data model
— Dremel (BigQuery): Protobuf as data model

CSE 414 - Spring 18 "

Query Languages for
Semi-Structured Data

XML: XPath, XQuery (see textbook)

— Supported inside many RDBMS (SQL Server, DB2, Oracle)
— Several standalone XPath/XQuery engines

Protobuf: SQL-ish language (Dremel) used internally
by google, and externally in BigQuery

» JSon:
— CouchBase: N1QL
— Asterix: SQL++ (based on SQL)
— MongoDB: has a pattern-based language
— JSONiq http://www.jsonig.org/

http://www.jsoniq.org/

Asterixes

» AsterixDB
— No-SQL database system
— Developed at UC Irvine

— Now an Apache project, being incorporated into
CouchDB (another No-SQL DB)

Asterix Data Model (ADM)

* Based on the Json standard

* Objects: -
Can’t have
- {“Name”: “Alice”, “age”: 40} repeated fields
— Fields must be distinct:
{“Name”: “Alice”, “age”: 40, “age”:56}
* Ordered arrays:
- [1, 3, “Fred”, 2, 9]
— Can contain values of different types
» Multisets (aka bags):
- {{1, 3, “Fred”, 2, 9}}
— Mostly internal use only but can be used as inputs
— All multisets are converted into ordered arrays (in arbitrary
order) when returned at the end

+ Uses Json as data model TE_e_y a're
* Query language: SQL++ ng-
— SQL-like syntax for Json data
CSE 414 - Spring 18 13
Examples
What do these queries return? 2oy

SELECT x.phone
FROM [{"name": "Alice", "phone": [300, 150]}6)AS X;

SELECT x.phone
FROM {{ {"name": "Alice", "phone": [300, 150]} }} AS Xx;

Can only query from
multi-set or array (not object)

-=- error
SELECT x.phone vbfoC
FROM {"name": "Alice", "phone": [300, 150]} AS Xx;

CSE 414 - Spring 18 15

Datatypes

» Boolean, integer, float (various precisions),
geometry (point, line, ...), date, time, etc

* UUID = universally unique identifier
Use it as a system-generated unique key

CSE 414 - Spring 18 16

null v.s. missing
« {"age": null} = the value NULL (like in SQL)
o {"age": missing} ={ } = really missing
[SELECT x.b FROM [{"a":1, "b":2}, {"a":3}] AS x; |

Answer 1{:b ¢ 2}

}
SELECT x.b
FROM [{"a":1, "b":2}, {"a":3, "b":null }] AS x;
'b": 2}
Answer {"b": null }
SELECT x.b
FROM [{"a":1, "b":2}, {"a":3, "b":missing }] AS x;

{"b": 2}
{3

Answer

Finally, a language that we can use!

SELECT x.age

FROM Person AS x

WHERE x.age > 21

GROUP BY x.gender
HAVING x.salary > 10000
ORDER BY Xx.name;

is exactly the same as

FROM Person AS x

WHERE x.age > 21
GROUP BY x.gender FWGHOS
HAVING x.salary > 10000 lives!!

C SELECT x.age
ORDER BY x.name;

SQL++ Overview

+ Data Definition Language: create a
— Type
— Dataset (like a relation)
— Dataverse (a collection of datasets)
— Index
«» For speeding up query execution

» Data Manipulation Language:
SELECT-FROM-WHERE

CSE 414 - Spring 18 19

Dataverse

A Dataverse is a Database
(i.e., collection of tables)

CREATE DATAVERSE myDB
CREATE DATAVERSE myDB IF NOT EXISTS

DROP DATAVERSE myDB
DROP DATAVERSE myDB IF EXISTS

USE myDB

20

Type

» Defines the schema of a collection
* ltlists all required fields
Fields followed by ? are optional

CLOSED type = no other fields allowed
« OPEN type = other fields allowed

CSE 414 - Spring 18 21

Closed Types

USE myDB;

DROP TYPE PersonType IF EXISTS;

CREATE TYPE PersonType AS CLOSED {
name: string, —_—
age: int,

email: strinéﬁ)
}

"name": "Alice",

age": 30, "email": "a@alice.com"}
"name": "Bob", "age": 40}

--not OK:
"name": "Carol", " 1123456789 »

Open Types

USE myDB;
DROP TYPE PersonType IF EXISTS;
CREATE TYPE PersonType AS OPEN {
name: string,
age: int,
email: string?

}

"name": "Alice", "age": 30, "email": "a@alice.com"}

"name": "Bob", "age": 40}

--now it’s OK:

"name”; "Carol", "age":20, " " 1123456789 5,

Types with Nested Collections

USE myDB;
DROP TYPE PersonType IF EXISTS;
CREATE TYPE PersonType AS CLOSED {
Name : string,
phone: [string]

¥

{"Name": "Carol", "phone": ["1234"]}
{"Name": "David", "phone": [“2345", “6789"]}

{"Name": "Evan", "phone": []}

24

Datasets
» Dataset = relation

* Must have a type

— Can be a trivial OPEN type
* Must have a key

— Can also be a trivial one

CSE 414 - Spring 18

25

Dataset with Existing Key

USE myDB;
DROP TYPE PersonType IF EXISTS;
CREATE TYPE PersonType AS CLOSED {
name: string,
email: string?

{“name”: “Alice”
{“name”: “Bob”}

USE myDB;
DROP DATASET Person IF EXISTS;

CREATE DATASET Person(PersonType) PRIMARY KEY Name;

CSE 414 - Spring 18

26

Dataset with Auto Generated Key

USE myDB;
DROP TYPE PersonType IF EXISTS;
CREATE TYPE PersonType AS CLOSED {
myKey: uuid,
Name : string,
email: string?

¥

{“name”: “Alice”
{“name”: “Bob”}

Note: no myKey
inserted as it is
autogenerated

USE myDB;

DROP DATASET Person IF EXISTS;

CREATE DATASET Person(PersonType)
PRIMARY KEY myKey AUTOGENERATED;

— —
CSE 414 - Spring 18

27

