CSE 414: Section 6
NoSQL, SQL++

November 1st, 2018

Query workload types “One Size Fite A’ An e Whose Time

OLTP (Online Transactional Processing)

e Atomic operations (one or multi entities). E-commerce, webapps.
e A small number of records per query - “Latest state”

OLAP (Online Analytical Processing)

e Analytics and data-warehousing. Reporting, decision support. ’ “:;"[m;_
e Many records per query - “Aggregated stats” on “Bigger data” ‘ mﬂr . r:]

dx I |Ix
= — I}

https://cs.brown.edu/~ugur/fits_all.pdf
https://cs.brown.edu/~ugur/fits_all.pdf

Scaling methods

Scale up (vertically)

e Add more power to a single node
e diminishing returns

Scale out (horizontally)

e Cheap commodity hardware
e Management / coordination complexity

Partitioning & Replication

Partitioning
Or “Sharding”, “Distribution, "Fragmentation”

e Motivation:

o BIG data - need to split up! (e.g. PB-level)

o Availability: better write (and single-record read) throughput
e Challenge: fair share of requests

o Choice of partitioning schemes
o “Justin Bieber Effect” -> “hot spots”

Partitioning & Replication

Replication

e Motivation:

o Fault-tolerance / durability: power / disk failures
o Keep data close to the user (geographically)
o Availability: better read (and potentially write) throughput

e Challenge: keeping data in sync

o E.g. write to a leader and then propagate
o Choice of consistency models

No clear definition :\

Non-relational

+ scalability, + availability, + flexibility
- consistency, - OLAP performance
Open source implementations

Motivation
o The need to scale
o Lots of web apps mostly OLTP queries
m Read/write intensive
m but fewer joins & aggregates

o O O O

SQL vs. NoSQL Databases: What's the Difference?

F‘HPBHHCSHEE % Cassandra

sriak

N
lax l{ ‘ .mongODB
HYPERTABLE~

17 Neo4j g redis

https://www.upwork.com/hiring/data/sql-vs-nosql-databases-whats-the-difference/

Data Models

e Key-value stores

(@)

(@)

Opaque value
e.g., Project Voldemort, Memcached

e Document stores

O

(@)

“key-object”
e.g., SimpleDB, CouchDB, MongoDB, AsterixDB

e Extensible Record Stores

(@)

O

“column groups”
e.g., BigTable, HBase, Cassandra, PNUTS

e Graph

(@)

E.g. Neo4j

Key-Value

Column-Family

NoSQL: DynamoDB

Document and Key-Value Stores!?
Jeff Bezos wants his shopping carts full

Throughput motivated

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

Amazon.com

ABSTRACT One of t.he less.f)ns our organization has learned from operating

A . : : Amazon’s platform is that the reliability and scalability of a

Reliability at massive scale is one of the biggest challenges we L o : I ; o
: system is on how its state is

face at Amazon.com, one of me la"gesl e-commerce operanons n A cnniaeniom' ncn: LTRg O T Ammwnli’:; fanmaatly aresmbe en-:.'m.\

JSON and Semi-Structured Data

JSON, XML, Protobuf (also an IDL)

Familiar - as your HTTP request/response

{“person”:
e (Good for data exchange [{name”: “Mary",
: “address”™
e Maps to OOP paradigm {‘street”“Maple”,
“no”":345,

. “city”: “Seattle”}},
Also - as a database file {“name”: “John”,

“address”: “Thailand”,
“phone”:2345678}}

e Flexible tree-structured model]
e Query langs: XQuery, XPath, etc. }

AsterixDB, SQL++ Asterixe>

e A semistructured NoSQL style data model (ADM)
e Extends JSON with object database ideas

Know the following:

e DDL: type (open vs. closed), data types (e.g. multiset). Creating an index.
e DML: Heterogenous Collections, Nesting / Unnesting.
e (Asterix stores data as flattened tables behind the scenes)

What is SQL++?

Just like SQL but parsed for processing JSON data

SQL++ has keywords to handle collections of data (i.e. non-flat data)

Motivation for SQL++

Why SQL++? Why not some other query language?
People are used to/like specifying data through SQL syntax

SQL-like language enforces idea of physical data independence

Useful Keywords/Syntax for HW

is array(..) -—>checks if value is an array
split (s, d) —- > splits string s on delimiter d

[..] —— > explicitly construct array

n

(CASE WHEN .. THEN .. ELSE .. END) -—->combine with “is array (..)

MISSING —-> reserved keyword like “NULL"

" n

.~ —->backtick needed for accessing keys with names containing “-

