
CSE 414: Section 6
NoSQL, SQL++
November 1st, 2018

Query workload types

OLTP (Online Transactional Processing)

● Atomic operations (one or multi entities). E-commerce, webapps.
● A small number of records per query - “Latest state”

OLAP (Online Analytical Processing)

● Analytics and data-warehousing. Reporting, decision support.
● Many records per query - “Aggregated stats” on “Bigger data”

“One Size Fits All”: An Idea Whose Time
Has Come and Gone

https://cs.brown.edu/~ugur/fits_all.pdf
https://cs.brown.edu/~ugur/fits_all.pdf

Scaling methods

Scale up (vertically)

● Add more power to a single node
● diminishing returns

Scale out (horizontally)

● Cheap commodity hardware
● Management / coordination complexity

Partitioning & Replication

Partitioning

Or “Sharding”, “Distribution, ”Fragmentation”

● Motivation:
○ BIG data - need to split up! (e.g. PB-level)
○ Availability: better write (and single-record read) throughput

● Challenge: fair share of requests
○ Choice of partitioning schemes
○ “Justin Bieber Effect” -> “hot spots”

Partitioning & Replication

Replication

● Motivation:
○ Fault-tolerance / durability: power / disk failures
○ Keep data close to the user (geographically)
○ Availability: better read (and potentially write) throughput

● Challenge: keeping data in sync
○ E.g. write to a leader and then propagate
○ Choice of consistency models

NoSQL

● No clear definition :\
○ Non-relational
○ + scalability, + availability, + flexibility
○ - consistency, - OLAP performance
○ Open source implementations

● Motivation
○ The need to scale
○ Lots of web apps mostly OLTP queries

■ Read/write intensive
■ but fewer joins & aggregates

SQL vs. NoSQL Databases: What’s the Difference?

https://www.upwork.com/hiring/data/sql-vs-nosql-databases-whats-the-difference/

Data Models

● Key-value stores
○ Opaque value
○ e.g., Project Voldemort, Memcached

● Document stores
○ “key-object”
○ e.g., SimpleDB, CouchDB, MongoDB, AsterixDB

● Extensible Record Stores
○ “column groups”
○ e.g., BigTable, HBase, Cassandra, PNUTS

● Graph
○ E.g. Neo4j

NoSQL: DynamoDB

Document and Key-Value Stores!?

Jeff Bezos wants his shopping carts full

Throughput motivated NANI?

JSON and Semi-Structured Data

JSON, XML, Protobuf (also an IDL)

Familiar - as your HTTP request/response

● Good for data exchange
● Maps to OOP paradigm

Also - as a database file

● Flexible tree-structured model
● Query langs: XQuery, XPath, etc.

AsterixDB, SQL++

● A semistructured NoSQL style data model (ADM)
● Extends JSON with object database ideas

Know the following:

● DDL: type (open vs. closed), data types (e.g. multiset). Creating an index.
● DML: Heterogenous Collections, Nesting / Unnesting.
● (Asterix stores data as flattened tables behind the scenes)

What is SQL++?

Just like SQL but parsed for processing JSON data

SQL++ has keywords to handle collections of data (i.e. non-flat data)

Motivation for SQL++

Why SQL++? Why not some other query language?

People are used to/like specifying data through SQL syntax

SQL-like language enforces idea of physical data independence

Useful Keywords/Syntax for HW

is_array(…) -----> checks if value is an array

split(s, d) -----> splits string s on delimiter d

[…] -----> explicitly construct array

(CASE WHEN … THEN … ELSE … END) -----> combine with “is_array(…)”

MISSING -----> reserved keyword like “NULL”

` … ` -----> backtick needed for accessing keys with names containing “-”

