CSE 414: Section 8
BCNF and Views

November 29th, 2018

Outline

BCNF decomposition

1) Check whether chosen FD violates BCNF
2) Use any FD that violates BCNF to decompose.

View construction and query processing
1) From vertically partitioned tables
2) From horizontally partitioned tables

We call an attribute that determines all other attributes in a schema to be a
superkey.

If it is the smallest set of attributes (in terms of cardinality) that does this we
call that set a minimal key or just key

Repeat until X doesn’t change do:
if B, ...B,2>C isaFDand
By, ..., B, areallin X

Closure Algorithm N iy

Goal:
We want everything that an attribute/set of attributes determine

Observation:

If we have A->Band B->C,then A->C

Soreally, A->Band C

Formal notation is {A}* = {A, B, C}

Since the closure of A is all attributes, A is a key

Conceptual Design

SSN Name, City
Name SSN PhoneNumber | City
Fred 123-45-6789 | 206-555-1234 | Seattle
Fred 123-45-6789 |206-555-6543 | Seattle
Joe 987-65-4321 908-555-2121 | Westfield

Conceptual Design

Anomalies:
* Redundancy = repeat data
- Update anomalies = what if Fred moves to “Bellevue”?

» Deletion anomalies = what if Joe deletes his phone humber?

Conceptual Design

e The BCNF (Boyce-Codd Normal Form) -— A relation R is in BCNF if every
set of attributes is either a superkey or its closure is the same set

BCNF Decomposition Algorithm

Normalize(R)
find X s.t.: X # X* and X* # [all attributes]
if (not found) then R is in BCNF
letY = X"-X; Z=]all attributes] - X*
decompose R into R1(X U Y)and R2(X U 2)

Normalize(R1); Normalize(R2);

Example

The relationis R (A, B, C, D, E)
FDs :

Question : Decompose R into BCNF.

Solution

Notice that {A}" = {A,E}, which violates the BCNF condition.
We split R to R1(A,E) and R2(A,B,C,D).
R1 satisfies BCNF now, but R2 does not because: {B,C}" = {B,C,A}.

Notice that there is no E in R2 table so we don't need to consider the FD DE —
B!

Split R2 to: R21(B,C,A) and R22(B,C,D)

Lossless Decomposition

Consider the relation R(A,B,C,D,E) g;gggg;
S3(ADE)

FDs:

S1= I_IABC(R), S2 =11 BCD(R), S3=1,,(R)

We need to show that R=S1 = S2 =« S3

Vertical Partitioning

Resumes | SSN Name |Address | Resume |Picture
234234 | Mary Houston |Doc1... JPG1...
345345 | Sue Seattle Doe?2.... JPLS2.
345343 | Joan Seattle Doc3... JPG3...
432432 | Ann Portland |Doc4... JPG4. ..

T T2 T3
SSN Name | Address SSN Resume SSN Picture
234234 | Mary |Houston 234234 | Doc1... 234234 |JPG1...
345345 | Sue | Seattle 345345 | Doc2... 345345 |JPG2...

T2.SSN is a key and a foreign key to T1.SSN. Same for T3.SSN |34

Vertical Partitioning

CREATE VIEW Resumes AS
SELECT T1.ssn, T1l.name, T1l.address,
T2.resume, T3.picture
FROM T1,T2,T3
WHERE T1.ssn=T2.ssn AND T1.ssn=T3.ssnh

SELECT address
FROM Resumes
WHERE name = ‘Sue’

Vertical Partitioning

Original query: Final query:

SELECT T1.address
FROM T1, T2, T3
WHERE T1.name = ‘Sue’ SELECT T1.address

AND T1.SSN=T2.SSN FROM T1
AND T1.SSN = T3.SSN WHERE T1.name = ‘Sue’

Vertical Partitioning Applications

e Advantages
o Speeds up queries that touch only a small fraction of columns
o Single column can be compressed effectively, reducing disk 1/0

e Disadvantages
o Updates are very expensive!
o Need many joins to access many columns
o Repeated key columns add overhead

Horizontal Partitioning

Customers
CustomersinHouston

SSN Name Pwy—\
SSN Name | Ci
ty 234234 | Mary Houston

234234 | Mary | Houston

345345 | Sue Seattle CustomersinSeattie
345343 | Joan Seattle SSN Name | City
234234 |Ann | Portland 345345 | Sue Aﬁtle\>
. Frank | Calgary 345343 | Joan eattle e

- Jean Montreal

Horizontal Partitioning

CREATE VIEW Customers AS
(SELECT SSN, name, ‘Houston’ as city
FROM CustomersinHouston)
UNION ALL
(SELECT SSN, name, ‘Seattle’ as city
FROM CustomersinSeattle)
UNION ALL

Horizontal Partitioning

SELECT name

FROM Customers
WHERE city = ‘Seattle’

SELECT name
FROM CustomersinSeattle

Horizontal Partitioning Applications

e Performance optimization
o Especially for data warehousing
o E.g., one partition per month
o E.g., archived applications and active applications

e Distributed and parallel databases

