CSE 414: Section /
Parallel Databases

November 8th, 2018

Agenda for Today

This section:

e Quick touch up on parallel databases
o

Distributed Query Processing

In this class, only shared-nothing architecture and intra-operator parallelism
Horizontal Data Partitioning:

e Block Partition
e Hash partitioned on attribute A
e Range partitioned on attribute A

Distributed Query Processing

In this class, only shared-nothing architecture and intra-operator parallelism

Horizontal Data Partitioning:

o WTH?
e Block Partition

e Hash partitioned on attribute A
e Range partitioned on attribute A

Distributed Query Processing

In this class, only shared-nothing architecture and intra-operator parallelism

Horizontal Data Partitioning: \

WTH?
e Block Partition
e Hash partitioned on attribute A / \
e Range partitioned on attribute A “Our processor/storage

nodes are separate from
each other and deal with only
one operation at a time. We
toss around whole tuples.”

Moving Data

We have a “network layer” to move tuples temporarily between nodes.

Transferring data is expensive so we need to be efficient (especially on joins
and grouping).

Moving Data:

Partitioned Hash-Join Mechanism

We have p machines

We wish to join on some
attribute (say R.x and S.y)

Call our hash function h(z)

Contains
tuples s.t.
h(R.x) =
h(S.y) = red

Contains
tuples s.t.
h(R.x) = h(S.y)
= green

Contains
tuples s.t.
h(R.x) = h(S.y)
= blue

Moving Data:

Broadcast Join (Map-Side Join) Mechanism

We want to think about
how to prevent sending all
data through the network.

Take advantage of small

datasets (meaning the {

whole dataset can fit into
. Contains all Contains all Contains all
main memory) oS oo oS

Now What?

“Cool. | know how to split data up and move it around efficiently. What does
that have to do with my queries?”

Now What?

“Cool. | know how to split data up and move it around efficiently. What does
that have to do with my queries?”

SELECT *
FROM O rdero,Line i

W HERE o.tem = iitem -

AND odate = today()

= date = today()

— Item i — Order o

Query

Single Node Plan

Multi-Node Plan

Parallel Query Plans

SELECT *
FROM O rdero,Line i

W HERE o.tem = iitem -

AND odate = today()

date = today()

— Item i — Order o

Query

Single Node Plan

Multi-Node Plan

Know how to derive parallel plans though this pipeline.

SELECT *
FROM O rdero,Line i
W HERE o tem = iitem
AND o date = today()

Parallel Query Plans

Know how to derive parallel plans from your single node plans.

e Which RA operations can you do without talking to other nodes?
e Which RA operations require moving tuples?
e Can we take advantage of how our data is already stored? (partitioning)

D] O TT

Parallel DB Practicel!

We have a distributed database that hold the relations:
Drug(spec VARCHAR(255), compatibility INT)
Person(name VARCHAR(100) PK, compatibility INT)

We want to COmpu‘te: *This is a pretty hard question*
SELECT P.name, count(D.spec)
FROM Person AS P, Drug AS D
WHERE P.compatibility = D.compatibility
GROUP BY P.name;

Drug is block-partitioned
Person is hash-partitioned on compatibility [h(n)]
You have three nodes. Draw a parallel query plan.

Take advantage of:

Y (P> 1. Hash partitioning of [h(n)]
L-name, count(D.spec) 2. The PK uniqueness of name

Apache

Cluster-computing framework
Apache Hadoop Mapreduce vs. Apache Spark

https://www.datamation.com/data-center/hadoop-vs.-spark-the-new-age-of-bi
g-data.html

“Hadoop MapReduce”

Distributed File System (DFS) -> Hadoop Distributed File System (HDFS)
MapReduce Job:

e Map Task (Emitintermediate)
e Reduce Task (Emit)

Fault Tolerance (replicated chunks, write intermediate files to disk)

Word Counting in MapReduce

map (String key, String value): reduce (String key, Iterator values):

// key: document name // key: a word

// value: document contents // values: a list of counts

for each word w in value: int result = 0;
emitIntermediate (w, “17); for each v in values:

result += Parselnt (v);
emit (AsString(result));

“Spark” (HW6)

Resilient Distributed Datasets (RDD)
High level commands:

e Transformations (map, join, sort...) -> Lazy
e Actions (count, reduce, save...) -> Eager

Fault Tolerance (main memory and lineage)

Spark Objects for HW6

Row

RowFactory.create (Objects...)
Dataset<Row>

JavaRDD<Row>

JavaPairRDD<K, V>

Tuple2<> you can leave the generics empty

Spark Methods for HW6

spark.sqgl (Y"SELECT ... FROM ...”) spark must be a SparkSession
d.filter(t -> f£(t) == true/false)
d.distinct ()

d.map () d must be a JavaRDD
d.mapToPair (t -> new Tuple2<>(K, V))

d.reduceByKey ((vl, v2) -> f(vl, v2)) dmustbea JavaPairRDD

About Migterms Celebrations of Knowledge

Understand content in the lecture slides

Look at previous tests to try problems
(we use a pretty standard format for questions)

Tests are usually pretty long so don't feel obligated to complete everything

This quarter's materials are in a different order than other quarters

