
CSE 414: Section 7
Parallel Databases

November 8th, 2018

Agenda for Today

This section:
● Quick touch up on parallel databases
●

Distributed Query Processing

In this class, only shared-nothing architecture and intra-operator parallelism

Horizontal Data Partitioning:

● Block Partition
● Hash partitioned on attribute A
● Range partitioned on attribute A

Distributed Query Processing

In this class, only shared-nothing architecture and intra-operator parallelism

Horizontal Data Partitioning:

● Block Partition
● Hash partitioned on attribute A
● Range partitioned on attribute A

WTH?

Distributed Query Processing

In this class, only shared-nothing architecture and intra-operator parallelism

Horizontal Data Partitioning:

● Block Partition
● Hash partitioned on attribute A
● Range partitioned on attribute A

WTH?

“Our processor/storage
nodes are separate from
each other and deal with only
one operation at a time. We
toss around whole tuples.”

Moving Data

We have a “network layer” to move tuples temporarily between nodes.

Transferring data is expensive so we need to be efficient (especially on joins
and grouping).

Moving Data:
Partitioned Hash-Join Mechanism

We have p machines

We wish to join on some
attribute (say R.x and S.y)

Call our hash function h(z)

R1, S1 R2, S2 Rp, Sp

R1’, S1’ R2’, S2’ Rp’, Sp’

...

...

Contains
tuples s.t.
h(R.x) =
h(S.y) = red

Contains
tuples s.t.
h(R.x) = h(S.y)
= green

Contains
tuples s.t.
h(R.x) = h(S.y)
= blue

Moving Data:
Broadcast Join (Map-Side Join) Mechanism

We want to think about
how to prevent sending all
data through the network.

Take advantage of small
datasets (meaning the
whole dataset can fit into
main memory)

R1 R2 Rp

R1’, S R2’, S Rp’, S

...

...

S

Contains all
of S

Contains all
of S

Contains all
of S

Now What?

“Cool. I know how to split data up and move it around efficiently. What does
that have to do with my queries?”

Now What?

“Cool. I know how to split data up and move it around efficiently. What does
that have to do with my queries?”

Query
Single Node Plan

Multi-Node Plan

Parallel Query Plans

Know how to derive parallel plans though this pipeline.

Query
Single Node Plan

Multi-Node Plan

Parallel Query Plans

Know how to derive parallel plans from your single node plans.

● Which RA operations can you do without talking to other nodes?
● Which RA operations require moving tuples?
● Can we take advantage of how our data is already stored? (partitioning)

⋈ σ π

Parallel DB Practice!

We have a distributed database that hold the relations:
Drug(spec VARCHAR(255), compatibility INT)
Person(name VARCHAR(100) PK, compatibility INT)

We want to compute:
SELECT P.name, count(D.spec)
 FROM Person AS P, Drug AS D
 WHERE P.compatibility = D.compatibility
 GROUP BY P.name;

Drug is block-partitioned
Person is hash-partitioned on compatibility [h(n)]
You have three nodes. Draw a parallel query plan.

This is a pretty hard question

ƔP.name, count(D.spec)(P ⋈
D)

Node 1 Node 2 Node 3

P ⋈ D ⋈ ⋈

ƔP.name,count(D.spe

c)
Ɣ Ɣ

Hash [h(n)] Drug on compatibility

Take advantage of:
1. Hash partitioning of [h(n)]
2. The PK uniqueness of name

Apache

Cluster-computing framework

Apache Hadoop Mapreduce vs. Apache Spark

https://www.datamation.com/data-center/hadoop-vs.-spark-the-new-age-of-bi
g-data.html

“Hadoop MapReduce”

Distributed File System (DFS) -> Hadoop Distributed File System (HDFS)

MapReduce Job:

● Map Task (EmitIntermediate)
● Reduce Task (Emit)

Fault Tolerance (replicated chunks, write intermediate files to disk)

Word Counting in MapReduce

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:

emitIntermediate(w, “1”);

reduce(String key, Iterator values):
 // key: a word
 // values: a list of counts
 int result = 0;
 for each v in values:
 result += ParseInt(v);
 emit(AsString(result));

“Spark” (HW6)

Resilient Distributed Datasets (RDD)

High level commands:

● Transformations (map, join, sort…) -> Lazy
● Actions (count, reduce, save...) -> Eager

Fault Tolerance (main memory and lineage)

Spark Objects for HW6

Row

RowFactory.create(Objects...)

Dataset<Row>

JavaRDD<Row>

JavaPairRDD<K, V>

Tuple2<> you can leave the generics empty

Spark Methods for HW6

spark.sql(“SELECT ... FROM ...”) spark must be a SparkSession

d.filter(t -> f(t) == true/false)

d.distinct()

d.map() d must be a JavaRDD

d.mapToPair(t -> new Tuple2<>(K, V))

d.reduceByKey((v1, v2) -> f(v1, v2)) d must be a JavaPairRDD

MIDTERM IS
TOMORROW!!!

(you’ll be fine)

About Midterms Celebrations of Knowledge

Understand content in the lecture slides

Look at previous tests to try problems
(we use a pretty standard format for questions)

Tests are usually pretty long so don’t feel obligated to complete everything

This quarter’s materials are in a different order than other quarters

