
Introduction to Database Systems
CSE 414

Lecture 6: SQL Subqueries

1CSE 414 - Autumn 2018

Announcements

• Web Quiz 2 due Friday night

• HW 2 due Tuesday at midnight

• Section this week important for HW 3,
must attend

CSE 414 - Autumn 2018 3

Announcements

• Many students did not turn in hw1 correctly –
need to make sure your files are here:

https://gitlab.cs.washington.edu/cse414-2018au/cse414-
[username]/tree/master/hw/hw[homework#]/submission

E.g. https://gitlab.cs.washington.edu/cse414-2018au/cse414-
maas/tree/master/hw/hw1/submission

AND you have the hw1 tag here:
https://gitlab.cs.washington.edu/cse414-2018au/cse414-[username]/tags

• Commit, then use ./turnInHw.sh hw2 script.
• MUST have this correct for HW2

CSE 414 - Autumn 2018 4

https://gitlab.cs.washington.edu/cse414-2018au/cse414-%5Busername%5D/tree/master/hw/hw%5Bhomework
https://gitlab.cs.washington.edu/cse414-2018au/cse414-maas/tree/master/hw/hw1/submission
https://gitlab.cs.washington.edu/cse414-2018au/cse414-%5Busername%5D/tags

Semantics of SQL With

Group-By

CSE 414 - Autumn 2018
5

Evaluation steps:

1. Evaluate FROM-WHERE using Nested Loop Semantics

2. Group by the attributes a1,…,ak

3. Apply condition C2 to each group (may have aggregates)

4. Compute aggregates in S and return the result

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

FWGHOS

Aggregate + Join

Product(pid,pname,manufacturer)
Purchase(id,product_id,price,month)

For each manufacturer, compute how many products
with price > $100 they sold

CSE 414 - Autumn 2018 6

Aggregate + Join

Product(pid,pname,manufacturer)
Purchase(id,product_id,price,month)

For each manufacturer, compute how many products
with price > $100 they sold
Problem: manufacturer is in Product, price is in Purchase...

CSE 414 - Autumn 2018 7

Aggregate + Join

Product(pid,pname,manufacturer)
Purchase(id,product_id,price,month)

For each manufacturer, compute how many products
with price > $100 they sold
Problem: manufacturer is in Product, price is in Purchase...

-- step 1: think about their join
SELECT ...
FROM Product x, Purchase y
WHERE x.pid = y.product_id

and y.price > 100

manu
facturer ... price ...

Hitachi 150

Canon 300

Hitachi 180

CSE 414 - Autumn 2018 8

Aggregate + Join

-- step 2: do the group-by on the join
SELECT x.manufacturer, count(*)
FROM Product x, Purchase y
WHERE x.pid = y.product_id

and y.price > 100
GROUP BY x.manufacturer

Product(pid,pname,manufacturer)
Purchase(id,product_id,price,month)

manu
facturer count(*)

Hitachi 2

Canon 1

...

For each manufacturer, compute how many products
with price > $100 they sold
Problem: manufacturer is in Product, price is in Purchase...

-- step 1: think about their join
SELECT ...
FROM Product x, Purchase y
WHERE x.pid = y.product_id

and y.price > 100

manu
facturer ... price ...

Hitachi 150

Canon 300

Hitachi 180

CSE 414 - Autumn 2018 9

Aggregate + Join

SELECT x.manufacturer, y.month, count(*)
FROM Product x, Purchase y
WHERE x.pid = y.product_id

and y.price > 100
GROUP BY x.manufacturer, y.month

Product(pid,pname,manufacturer)
Purchase(id,product_id,price,month)

manu
facturer month count(*)

Hitachi Jan 2

Hitachi Feb 1

Canon Jan 3

...

Variant:
For each manufacturer, compute how many products
with price > $100 they sold in each month

CSE 414 - Autumn 2018 10

Including Empty Groups

• In the result of a group by query, there
is one row per group in the result

CSE 414 - Autumn 2018 11

SELECT x.manufacturer, count(*)
FROM Product x, Purchase y
WHERE x.pname = y.product
GROUP BY x.manufacturer

Count(*) is not
0 because

there are no
tuples to count!

FWGHOS

Including Empty Groups

pname manufacturer …

Gizmo GizmoWorks

Camera Canon

OneClick Hitachi

product price ...

Camera 150

Camera 300

OneClick 180

pname manu
facturer … manu

facturer price …

Camera Canon Canon 150

Camera Canon Canon 300

OneClick Hitachi Hitachi 180

SELECT x.manufacturer, count(*)
FROM Product x, Purchase y
WHERE x.pname = y.product
GROUP BY x.manufacturer

Product Purchase

Join(Product, Purchase)

manufacturer Count(*)

Canon 2

Hitachi 1

Final results

No
GizmoWorks!

12

FWGHOS

Including Empty Groups

CSE 414 - Autumn 2018 13

SELECT x.manufacturer, count(y.pid)
FROM Product x LEFT OUTER JOIN Purchase y
ON x.pname = y.product
GROUP BY x.manufacturer

Count(pid) is 0
when all pid’s in

the group are
NULL

FWGHOS

Including Empty Groups

pname manufacturer …

Gizmo GizmoWorks

Camera Canon

OneClick Hitachi

product price ...

Camera 150

Camera 300

OneClick 180

pname manufacturer … product price …

Camera Canon Camera 150

Camera Canon Camera 300

OneClick Hitachi OneClick 180

Gizmo GizmoWorks … NULL NULL NULL

SELECT x.manufacturer, count(y.pid)
FROM Product x LEFT OUTER JOIN Purchase y
ON x.pname = y.product
GROUP BY x.manufacturer

Product Purchase

Left Outer Join(Product, Purchase)

manufacturer Count(y.pid)

Canon 2

Hitachi 1

GizmoWorks 0

Final results

GizmoWorks
is paired with

NULLs

Why 0 for
GizmoWorks?

14

Including Empty Groups

pname manufacturer …

Gizmo GizmoWorks

Camera Canon

OneClick Hitachi

product price ...

Camera 150

Camera 300

OneClick 180

pname manufacturer … product price …

Camera Canon Camera 150

Camera Canon Camera 300

OneClick Hitachi OneClick 180

Gizmo GizmoWorks … NULL NULL NULL

SELECT x.manufacturer, count(*)
FROM Product x LEFT OUTER JOIN Purchase y
ON x.pname = y.product
GROUP BY x.manufacturer

Product Purchase

Left Outer Join(Product, Purchase)

manufacturer Count(*)

Canon 2

Hitachi 1

GizmoWorks 1

Final results

Probably not
what we want!

15

What we have in our SQL toolbox
• Projections (SELECT * / SELECT c1, c2, …)
• Selections (aka filtering) (WHERE cond, HAVING)
• Joins (inner and outer)
• Aggregates
• Group by
• Inserts, updates, and deletes

Make sure you read the textbook!

16CSE 414 - Autumn 2018

Subqueries

• In the relational model, the output of a
query is also a relation

• Can use output of one query as input to
another

CSE 414 - Autumn 2018 17

Subqueries
• A subquery is a SQL query nested inside a larger query
• Such inner-outer queries are called nested queries
• A subquery may occur in:

– A SELECT clause
– A FROM clause
– A WHERE clause

• Rule of thumb: avoid nested queries when possible
– But sometimes it’s impossible, as we will see

CSE 414 - Autumn 2018 18

FWGHOS

Subqueries…
• Can return a single value to be included in a
SELECT clause

• Can return a relation to be included in the
FROM clause, aliased using a tuple variable

• Can return a single value to be compared
with another value in a WHERE clause

• Can return a relation to be used in the WHERE
or HAVING clause under an existential
quantifier

CSE 414 - Autumn 2018 19

Subqueries…
Subqueries are often:
• Intuitive to write
• Slow

Be careful!

CSE 414 - Autumn 2018 20

1. Subqueries in SELECT

CSE 414 - Autumn 2018 21

Product (pname, price, cid)
Company (cid, cname, city)

For each product return the city where it is manufactured

SELECT X.pname, (SELECT Y.city
FROM Company Y
WHERE Y.cid=X.cid) as City

FROM Product X

What happens if the subquery returns more than one city?
We get a runtime error

(and SQLite simply ignores the extra values…)

“correlated
subquery”

1. Subqueries in SELECT

CSE 414 - Autumn 2018 22

Whenever possible, don’t use a nested queries:

SELECT X.pname, Y.city
FROM Product X, Company Y
WHERE X.cid=Y.cid

=

SELECT X.pname, (SELECT Y.city
FROM Company Y
WHERE Y.cid=X.cid) as City

FROM Product X

Product (pname, price, cid)
Company (cid, cname, city)

We have
“unnested”
the query

1. Subqueries in SELECT

CSE 414 - Autumn 2018 23

Compute the number of products made by each company

SELECT DISTINCT C.cname, (SELECT count(*)
FROM Product P
WHERE P.cid=C.cid)

FROM Company C

Product (pname, price, cid)
Company (cid, cname, city)

1. Subqueries in SELECT

CSE 414 - Autumn 2018 24

Compute the number of products made by each company

SELECT DISTINCT C.cname, (SELECT count(*)
FROM Product P
WHERE P.cid=C.cid)

FROM Company C

Better: we can
unnest using a
GROUP BY

SELECT C.cname, count(*)
FROM Company C, Product P
WHERE C.cid=P.cid
GROUP BY C.cname

Product (pname, price, cid)
Company (cid, cname, city)

1. Subqueries in SELECT

CSE 414 - Autumn 2018 25

But are these really equivalent?
SELECT DISTINCT C.cname, (SELECT count(*)

FROM Product P
WHERE P.cid=C.cid)

FROM Company C

SELECT C.cname, count(*)
FROM Company C, Product P
WHERE C.cid=P.cid
GROUP BY C.cname

Product (pname, price, cid)
Company (cid, cname, city)

1. Subqueries in SELECT

CSE 414 - Autumn 2018 26

But are these really equivalent?
SELECT DISTINCT C.cname, (SELECT count(*)

FROM Product P
WHERE P.cid=C.cid)

FROM Company C

No! Different results if a
company has no products

SELECT C.cname, count(*)
FROM Company C, Product P
WHERE C.cid=P.cid
GROUP BY C.cname

SELECT C.cname, count(pname)
FROM Company C LEFT OUTER JOIN Product P
ON C.cid=P.cid
GROUP BY C.cname

Product (pname, price, cid)
Company (cid, cname, city)

2. Subqueries in FROM

CSE 414 - Autumn 2018 27

Find all products whose prices is > 20 and < 500

SELECT X.pname
FROM (SELECT *

FROM Product AS Y
WHERE price > 20) as X

WHERE X.price < 500

Product (pname, price, cid)
Company (cid, cname, city)

2. Subqueries in FROM

CSE 414 - Autumn 2018 28

Find all products whose prices is > 20 and < 500

SELECT X.pname
FROM (SELECT *

FROM Product AS Y
WHERE price > 20) as X

WHERE X.price < 500

Try to unnest this query !

Product (pname, price, cid)
Company (cid, cname, city)

2. Subqueries in FROM

CSE 414 - Autumn 2018 29

Find all products whose prices is > 20 and < 500

SELECT X.pname
FROM (SELECT *

FROM Product AS Y
WHERE price > 20) as X

WHERE X.price < 500

Try to unnest this query !

Product (pname, price, cid)
Company (cid, cname, city)

Side note: This is not a
correlated subquery. (why?)

3. Subqueries in WHERE

CSE 414 - Autumn 2018 32

Find all companies that make some products with price < 200

Product (pname, price, cid)
Company (cid, cname, city)

3. Subqueries in WHERE

CSE 414 - Autumn 2018 33

Find all companies that make some products with price < 200

Existential quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

3. Subqueries in WHERE

CSE 414 - Autumn 2018 34

Find all companies that make some products with price < 200

SELECT DISTINCT C.cname
FROM Company C
WHERE EXISTS (SELECT *

FROM Product P
WHERE C.cid = P.cid and P.price < 200)

Existential quantifiers

Using EXISTS:

Product (pname, price, cid)
Company (cid, cname, city)

3. Subqueries in WHERE

CSE 414 - Autumn 2018 35

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price < 200)

Using IN

Find all companies that make some products with price < 200

Existential quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

3. Subqueries in WHERE

CSE 414 - Autumn 2018 36

SELECT DISTINCT C.cname
FROM Company C
WHERE 200 > ANY (SELECT price

FROM Product P
WHERE P.cid = C.cid)

Using ANY:

Find all companies that make some products with price < 200

Existential quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

3. Subqueries in WHERE

CSE 414 - Autumn 2018 37

SELECT DISTINCT C.cname
FROM Company C
WHERE 200 > ANY (SELECT price

FROM Product P
WHERE P.cid = C.cid)

Using ANY:

Find all companies that make some products with price < 200

Existential quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

Not supported
in sqlite

3. Subqueries in WHERE

CSE 414 - Autumn 2018 38

SELECT DISTINCT C.cname
FROM Company C, Product P
WHERE C.cid = P.cid and P.price < 200

Now let’s unnest it:

Find all companies that make some products with price < 200

Existential quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

3. Subqueries in WHERE

CSE 414 - Autumn 2018 39

SELECT DISTINCT C.cname
FROM Company C, Product P
WHERE C.cid = P.cid and P.price < 200

Existential quantifiers are easy! J

Now let’s unnest it:

Find all companies that make some products with price < 200

Existential quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

3. Subqueries in WHERE

CSE 414 - Autumn 2018 40

same as:

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies that make only products with price < 200

Find all companies s.t. all their products have price < 200

3. Subqueries in WHERE

CSE 414 - Autumn 2018 41

same as:

Universal quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies that make only products with price < 200

Find all companies s.t. all their products have price < 200

3. Subqueries in WHERE

CSE 414 - Autumn 2018 42

Universal quantifiers are hard! L

same as:

Universal quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies that make only products with price < 200

Find all companies s.t. all their products have price < 200

3. Subqueries in WHERE

CSE 414 - Autumn 2018 43

1. Find the other companies that make some product ≥ 200
SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price >= 200)

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies s.t. all their products have price < 200

3. Subqueries in WHERE

CSE 414 - Autumn 2018 44

2. Find all companies s.t. all their products have price < 200

1. Find the other companies that make some product ≥ 200
SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price >= 200)

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies s.t. all their products have price < 200

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid NOT IN (SELECT P.cid

FROM Product P
WHERE P.price >= 200)

3. Subqueries in WHERE

CSE 414 - Autumn 2018 45

SELECT DISTINCT C.cname
FROM Company C
WHERE NOT EXISTS (SELECT *

FROM Product P
WHERE P.cid = C.cid and P.price >= 200)

Using EXISTS:

Universal quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies s.t. all their products have price < 200

3. Subqueries in WHERE

CSE 414 - Autumn 2018 46

SELECT DISTINCT C.cname
FROM Company C
WHERE 200 >= ALL (SELECT price

FROM Product P
WHERE P.cid = C.cid)

Using ALL:

Universal quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies s.t. all their products have price < 200

3. Subqueries in WHERE

CSE 414 - Autumn 2018 47

SELECT DISTINCT C.cname
FROM Company C
WHERE 200 >= ALL (SELECT price

FROM Product P
WHERE P.cid = C.cid)

Using ALL:

Universal quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies s.t. all their products have price < 200

Not supported
in sqlite

Question for Database Theory
Fans and their Friends

• Can we unnest the universal quantifier
query?

• We need to first discuss the concept of
monotonicity

CSE 414 - Autumn 2018 48

Monotone Queries
• Definition A query Q is monotone if:

– Whenever we add tuples to one or more input tables, the
answer to the query will not lose any of the tuples

CSE 414 - Autumn 2018 49

Product (pname, price, cid)
Company (cid, cname, city)

Monotone Queries
• Definition A query Q is monotone if:

– Whenever we add tuples to one or more input tables, the
answer to the query will not lose any of the tuples

CSE 414 - Autumn 2018 50

pname price cid

Gizmo 19.99 c001
Gadget 999.99 c004

Camera 149.99 c003

Product (pname, price, cid)
Company (cid, cname, city)

cid cname city

c002 Sunworks Bonn
c001 DB Inc. Lyon

c003 Builder Lodtz

Product Company

Q pname city

Gizmo Lyon
Camera Lodtz

Monotone Queries
• Definition A query Q is monotone if:

– Whenever we add tuples to one or more input tables, the
answer to the query will not lose any of the tuples

pname price cid

Gizmo 19.99 c001
Gadget 999.99 c004

Camera 149.99 c003

Product (pname, price, cid)
Company (cid, cname, city)

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c004
Camera 149.99 c003

iPad 499.99 c001

cid cname city

c002 Sunworks Bonn
c001 DB Inc. Lyon

c003 Builder Lodtz

Product Company
pname city

Gizmo Lyon
Camera Lodtz

pname city
Gizmo Lyon

Camera Lodtz

iPad Lyon

Product Company

Q

Qcid cname city

c002 Sunworks Bonn

c001 DB Inc. Lyon
c003 Builder Lodtz

So far it looks monotone...

Monotone Queries
• Definition A query Q is monotone if:

– Whenever we add tuples to one or more input tables, the
answer to the query will not lose any of the tuples

pname price cid

Gizmo 19.99 c001
Gadget 999.99 c004

Camera 149.99 c003

Product (pname, price, cid)
Company (cid, cname, city)

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c004
Camera 149.99 c003

iPad 499.99 c001

cid cname city

c002 Sunworks Bonn
c001 DB Inc. Lyon

c003 Builder Lodtz

Product Company
pname city

Gizmo Lyon
Camera Lodtz

pname city
Gizmo Lodtz

Camera Lodtz

iPad Lyon

Product Company

Q

Qcid cname city

c002 Sunworks Bonn

c001 DB Inc. Lyon
c003 Builder Lodtz

c004 Crafter Lodtz

Q is not monotone!

CSE 414 - Autumn 2018

Monotone Queries
• Theorem: If Q is a SELECT-FROM-WHERE query

that does not have subqueries, and no aggregates,
then it is monotone.

CSE 414 - Autumn 2018 53

Monotone Queries
• Theorem: If Q is a SELECT-FROM-WHERE query

that does not have subqueries, and no aggregates,
then it is monotone.

• Proof. We use the nested loop semantics: if we
insert a tuple in a relation Ri, this will not remove any
tuples from the answer

CSE 414 - Autumn 2018 54

SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

for x1 in R1 do
for x2 in R2 do

…
for xn in Rn do
if Conditions
output (a1,…,ak)

Monotone Queries
• The query:

is not monotone

55

Find all companies s.t. all their products have price < 200

Product (pname, price, cid)
Company (cid, cname, city)

CSE 414 - Autumn 2018

Monotone Queries
• The query:

is not monotone

56

Find all companies s.t. all their products have price < 200

pname price cid

Gizmo 19.99 c001

cid cname city

c001 Sunworks Bonn

cname

Sunworks

Product (pname, price, cid)
Company (cid, cname, city)

CSE 414 - Autumn 2018

Monotone Queries
• The query:

is not monotone

• Consequence: If a query is not monotonic, then we
cannot write it as a SELECT-FROM-WHERE query
without nested subqueries

57

Find all companies s.t. all their products have price < 200

pname price cid

Gizmo 19.99 c001

cid cname city

c001 Sunworks Bonn

cname

Sunworks

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c001

cid cname city

c001 Sunworks Bonn

cname

Product (pname, price, cid)
Company (cid, cname, city)

Queries that must be nested

• Queries with universal quantifiers or with
negation

CSE 414 - Autumn 2018 58

Queries that must be nested

• Queries with universal quantifiers or with
negation

• Queries that use aggregates in certain ways
– sum(..) and count(*) are NOT monotone,

because they do not satisfy set containment
– select count(*) from R is not monotone!

CSE 414 - Autumn 2018 59

More Unnesting

60

Author(login,name)
Wrote(login,url)

Find authors who wrote ≥ 10 documents:

More Unnesting

61

SELECT DISTINCT Author.name
FROM Author
WHERE (SELECT count(Wrote.url)

FROM Wrote
WHERE Author.login=Wrote.login)

>= 10

This is
SQL by
a novice

Attempt 1: with nested queries

Author(login,name)
Wrote(login,url)

Find authors who wrote ≥ 10 documents:

More Unnesting

62

Attempt 1: with nested queries

Author(login,name)
Wrote(login,url)

Find authors who wrote ≥ 10 documents:

SELECT Author.name
FROM Author, Wrote
WHERE Author.login=Wrote.login
GROUP BY Author.name
HAVING count(wrote.url) >= 10

This is
SQL by

an expert

Attempt 2: using GROUP BY and HAVING

Finding Witnesses

63

Product (pname, price, cid)
Company (cid, cname, city)

For each city, find the most expensive product made in that city

Finding Witnesses

64

SELECT x.city, max(y.price)
FROM Company x, Product y
WHERE x.cid = y.cid
GROUP BY x.city;

Finding the maximum price is easy…

But we need the witnesses, i.e., the products with max price

For each city, find the most expensive product made in that city

Product (pname, price, cid)
Company (cid, cname, city)

Finding Witnesses

65

To find the witnesses, compute the maximum price
in a subquery (in FROM)

SELECT DISTINCT u.city, v.pname, v.price
FROM Company u, Product v,

(SELECT x.city, max(y.price) as maxprice
FROM Company x, Product y
WHERE x.cid = y.cid
GROUP BY x.city) w

WHERE u.cid = v.cid
and u.city = w.city
and v.price = w.maxprice;

Product (pname, price, cid)
Company (cid, cname, city)

Joining three
tables

Finding Witnesses

CSE 344 - 2018au 66

Or we can use a subquery in where clause

SELECT u.city, v.pname, v.price
FROM Company u, Product v
WHERE u.cid = v.cid
AND v.price >= ALL (SELECT y.price

FROM Company x, Product y
WHERE u.city=x.city
AND x.cid=y.cid);

Product (pname, price, cid)
Company (cid, cname, city)

Finding Witnesses

CSE 344 - 2018au 67

There is a more concise solution here:

SELECT u.city, v.pname, v.price
FROM Company u, Product v, Company x, Product y
WHERE u.cid = v.cid AND

u.city = x.city AND
x.cid = y.cid

GROUP BY u.city, v.pname, v.price
HAVING v.price = max(y.price)

Product (pname, price, cid)
Company (cid, cname, city)

