
1

Introduction to Database Systems
CSE 414

Lecture 28:
Transactions Wrap-up

1CSE 414 - Autumn 2018

Announcements

• 2 late days for HW 8 are now free
– No more than 2 late days allowed. Monday

Dec. 10 is the hard cut off

• Office hours changes
– Ryan tomorrow at 11am instead of 10:30
– Andrew additional office hours Friday

CSE 414 - Autumn 2018 2

A New Problem:

Non-recoverable Schedule

CSE 414 - Autumn 2018 3

T1 T2

L1(A); L1(B); READ(A)

A :=A+100

WRITE(A); U1(A)

L2(A); READ(A)

A := A*2

WRITE(A);

L2(B); BLOCKED…

READ(B)

B :=B+100

WRITE(B); U1(B);

…GRANTED; READ(B)

B := B*2

WRITE(B); U2(A); U2(B);

Commit

Rollback

A New Problem:
Non-recoverable Schedule

CSE 414 - Autumn 2018 4

T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B);
Commit

Rollback
Elements A, B written
by T1 are restored
to their original value.

A New Problem:

Non-recoverable Schedule

CSE 414 - Autumn 2018 5

T1 T2

L1(A); L1(B); READ(A)

A :=A+100

WRITE(A); U1(A)

L2(A); READ(A)

A := A*2

WRITE(A);

L2(B); BLOCKED…

READ(B)

B :=B+100

WRITE(B); U1(B);

…GRANTED; READ(B)

B := B*2

WRITE(B); U2(A); U2(B);

Commit

Rollback

Elements A, B written

by T1 are restored

to their original value.

Dirty reads of

A, B lead to

incorrect writes.

A New Problem:

Non-recoverable Schedule

CSE 414 - Autumn 2018 6

T1 T2

L1(A); L1(B); READ(A)

A :=A+100

WRITE(A); U1(A)

L2(A); READ(A)

A := A*2

WRITE(A);

L2(B); BLOCKED…

READ(B)

B :=B+100

WRITE(B); U1(B);

…GRANTED; READ(B)

B := B*2

WRITE(B); U2(A); U2(B);

Commit

Rollback

Elements A, B written

by T1 are restored

to their original value. Can no longer undo!

Dirty reads of

A, B lead to

incorrect writes.

2

Strict 2PL

CSE 414 - Autumn 2018 7

All locks are held until commit/abort:
All unlocks are done together with commit/abort.

The Strict 2PL rule:

With strict 2PL, we will get schedules that
are both conflict-serializable and recoverable

Strict 2PL

8

T1 T2

L1(A); READ(A)

A :=A+100

WRITE(A);

L2(A); BLOCKED…

L1(B); READ(B)

B :=B+100

WRITE(B);

Rollback & U1(A);U1(B);

…GRANTED; READ(A)

A := A*2

WRITE(A);

L2(B); READ(B)

B := B*2

WRITE(B);

Commit & U2(A); U2(B);

Strict 2PL

• Lock-based systems always use strict
2PL

• Easy to implement:
– Before a transaction reads or writes an

element A, insert an L(A)
– When the transaction commits/aborts, then

release all locks
• Ensures both conflict serializability and

recoverability CSE 414 - Autumn 2018 9

Another problem: Deadlocks

• T1: R(A), W(B)
• T2: R(B), W(A)

• T1 holds the lock on A, waits for B
• T2 holds the lock on B, waits for A

This is a deadlock!
CSE 414 - Autumn 2018 10

Another problem: Deadlocks
To detect a deadlocks, search for a cycle in the
waits-for graph:
• T1 waits for a lock held by T2;
• T2 waits for a lock held by T3;
• . . .
• Tn waits for a lock held by T1

Relatively expensive: check periodically, if deadlock is
found, then abort one transaction.
need to continuously re-check for deadlocks

11

A “Solution”?: Lock Modes

• S = shared lock (for READ)
• X = exclusive lock (for WRITE)

CSE 414 - Autumn 2018 12

None S X
None

S
X

Lock compatibility matrix:

3

A “Solution”?: Lock Modes

• S = shared lock (for READ)
• X = exclusive lock (for WRITE)

CSE 414 - Autumn 2018 13

None S X
None

S
X

Lock compatibility matrix:

Can only fix deadlocks if transactions declare
exclusive locks in advance.

Lock Performance

CSE 414 - Autumn 2018 14

T
h

ro
u

g
h

p
u

t
(T

P
S

)

Active Transactions

thrashing

Why ?

TPS =

Transactions

per second

To avoid, use

admission control

Lock Granularity

• Fine granularity locking (e.g., tuples)
– High concurrency
– High overhead in managing locks
– E.g., SQL Server

• Coarse grain locking (e.g., tables, entire database)
– Many false conflicts
– Less overhead in managing locks
– E.g., SQL Lite

• Solution: lock escalation changes granularity as needed

CSE 414 - Autumn 2018 15

Phantom Problem
• So far we have assumed the database to be a

static collection of elements (=tuples)

• If tuples are inserted/deleted then the phantom
problem appears

CSE 414 - Autumn 2018 16

Phantom Problem

CSE 414 - Autumn 2018 17

Is this schedule serializable ?

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

Phantom Problem

CSE 414 - Autumn 2018 18

R1(A1);R1(A2);W2(A3);R1(A1);R1(A2);R1(A3)

T1 T2

SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

4

W2(A3);R1(A1);R1(A2);R1(A1);R1(A2);R1(A3)

Phantom Problem

R1(A1);R1(A2);W2(A3);R1(A1);R1(A2);R1(A3)

T1 T2

SELECT *

FROM Product

WHERE color=‘blue’

INSERT INTO Product(name, color)

VALUES (‘A3’,’blue’)

SELECT *

FROM Product

WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

•19

Phantom Problem
• A “phantom” is a tuple that is

invisible during part of a transaction execution but
not invisible during the entire execution

• In our example:
– T1: reads list of products
– T2: inserts a new product
– T1: re-reads: a new product appears !

CSE 414 - Autumn 2018 20

Dealing With Phantoms

• Lock the entire table

• Lock the index entry for ‘blue’

– If index is available

• Or use predicate locks

– A lock on an arbitrary predicate

CSE 414 - Autumn 2018 21

Dealing with phantoms is expensive !

Summary of Serializability

• Serializable schedule = equivalent to a serial
schedule

• (strict) 2PL guarantees conflict serializability
– What is the difference?

• Static database:
– Conflict serializability implies serializability

• Dynamic database:
– This no longer holds

CSE 414 - Autumn 2018 22

Isolation Levels in SQL

1. “Dirty reads”
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

2. “Committed reads”
SET TRANSACTION ISOLATION LEVEL READ COMMITTED

3. “Repeatable reads”
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

4. Serializable transactions
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

CSE 414 - Autumn 2018 23

ACID

For better performance
1. Isolation Level: Dirty Reads

• “Long duration” WRITE locks
– Strict 2PL

• No READ locks
– Read-only transactions are never delayed

CSE 414 - Autumn 2018 24

Possible problems: dirty and inconsistent reads

5

2. Isolation Level: Read Committed

• “Long duration” WRITE locks
– Strict 2PL

• “Short duration” READ locks
– Only acquire lock while reading (not 2PL)

CSE 414 - Autumn 2018 25

Unrepeatable reads:
When reading same element twice,
may get two different values

3. Isolation Level: Repeatable Read

• “Long duration” WRITE locks

– Strict 2PL

• “Long duration” READ locks

– Strict 2PL

CSE 414 - Autumn 2018 26

This is not serializable yet !!!

Why ?

4. Isolation Level Serializable

• “Long duration” WRITE locks
– Strict 2PL

• “Long duration” READ locks
– Strict 2PL

• Predicate locking
– To deal with phantoms

CSE 414 - Autumn 2018 27

Beware!

In commercial DBMSs:

• Default level is often NOT serializable

• Default level differs between DBMSs

• Some engines support subset of levels!

• Serializable may not be exactly ACID

– Locking ensures isolation, not atomicity

• Also, some DBMSs do NOT use locking and

different isolation levels can lead to different pbs

• Bottom line: RTFM for your DBMS!

CSE 414 - Autumn 2018 28

