
1

Introduction to Database Systems
CSE 414

Lecture 26: More Transactions

1CSE 414 - Autumn 2018

Announcements
• Web quiz due tonight
• HW7 due tonight

• HW8 out, make sure to do setup early

CSE 414 - Autumn 2018 2

HW8

CSE 414 - Autumn 2018 3

What can go wrong?
• Manager: balance budgets among projects

– Remove $10k from project A
– Add $7k to project B
– Add $3k to project C

• CEO: check company’s total balance
– SELECT SUM(money) FROM budget;

• This is called a dirty / inconsistent read 
aka a WRITE-READ conflict

CSE 414 - Autumn 2018 4

What can go wrong?
• App 1: 

SELECT inventory FROM products WHERE pid = 1

• App 2: 
UPDATE products SET inventory = 0 WHERE pid = 1

• App 1:
SELECT inventory * price FROM products 
WHERE pid = 1

• This is known as an unrepeatable read 
aka READ-WRITE conflict

CSE 414 - Autumn 2018 5

What can go wrong?
Account 1 = $100
Account 2 = $100

Total = $200
• App 1:

– Set Account 1 = $200
– Set Account 2 = $0

• App 2:
– Set Account 2 = $200
– Set Account 1 = $0

• At the end:
– Total = $200

• App 1: Set Account 1 = $200

• App 2: Set Account 2 = $200

• App 1: Set Account 2 = $0

• App 2: Set Account 1 = $0

• At the end: 
– Total = $0

This is called the lost update aka WRITE-WRITE conflict
CSE 414 - Autumn 2018 6



2

What can go wrong?

• Buying tickets to the next Bieber concert:

– Fill up form with your mailing address

– Put in debit card number

– Click submit

– Screen shows money deducted from your account

– [Your browser crashes]

CSE 414 - Autumn 2018 7

Lesson:

Changes to the database

should be ALL or NOTHING

Transactions

• Collection of statements that are executed 
atomically (logically speaking)

8

BEGIN TRANSACTION 
[SQL statements]

COMMIT or     
ROLLBACK (=ABORT)

[single SQL statement]

If BEGIN… missing,
then TXN consists

of a single instruction
CSE 414 - Autumn 2018

9

Know your chemistry 

transactions: ACID
• Atomic

– State shows either all the effects of txn, or none of them

• Consistent

– Txn moves from a DBMS state where integrity holds, to 

another where integrity holds 
• remember integrity constraints?

• Isolated

– Effect of txns is the same as txns running one after 
another (i.e., looks like batch mode)

• Durable

– Once a txn has committed, its effects remain in the 
database

CSE 414 - Autumn 2018

Transaction Schedules

CSE 414 - Autumn 2018 10

Schedules

CSE 414 - Autumn 2018 11

A schedule is a sequence 
of interleaved actions 
from all transactions

Serial Schedule

• A serial schedule is one in which transactions are 

executed one after the other, in some sequential 

order

• Fact: nothing can go wrong if the system executes 

transactions serially 

– (up to what we have learned so far)

– But DBMS don’t do that because we want better overall 

system performance

CSE 414 - Autumn 2018 12



3

Example

T1 T2
READ(A, t) READ(A, s)
t := t+100 s := s*2
WRITE(A, t) WRITE(A,s)
READ(B, t) READ(B,s)
t := t+100 s := s*2
WRITE(B,t) WRITE(B,s)

CSE 414 - Autumn 2018 13

A and B are elements
in the database

t and s are variables 
in txn source code

Example of a (Serial) Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

CSE 414 - Autumn 2018 14

T
im

e
Another Serial Schedule

T1 T2
READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

CSE 414 - Autumn 2018 15

Ti
m

e

Review: Serializable Schedule

CSE 414 - Autumn 2018 16

A schedule is serializable if it is 
equivalent to a serial schedule

A Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)

READ(B, t)
t := t+100
WRITE(B,t)

READ(B,s)
s := s*2
WRITE(B,s)

CSE 414 - Autumn 2018 17

Ti
m

e

A Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)

READ(B, t)
t := t+100
WRITE(B,t)

READ(B,s)
s := s*2
WRITE(B,s)

CSE 414 - Autumn 2018 18

Ti
m

e



4

A Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

CSE 414 - Autumn 2018 19

Ti
m

e

A Serializable Schedule

T1 T2

READ(A, t)

t := t+100

WRITE(A, t)

READ(A,s)

s := s*2

WRITE(A,s)

READ(B, t)

t := t+100

WRITE(B,t)

READ(B,s)

s := s*2

WRITE(B,s)

CSE 414 - Autumn 2018 20

T
im

e

This is a serializable schedule.

This is NOT a serial schedule

A Non-Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

CSE 414 - Autumn 2018 21

A Non-Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

CSE 414 - Autumn 2018 22

How do We Know if a Schedule 
is Serializable?

CSE 414 - Autumn 2018 23

T1: r1(A); w1(A); r1(B); w1(B)
T2: r2(A); w2(A); r2(B); w2(B)

Notation:

Key Idea: Focus on conflicting operations

Conflicts

• Write-Read – WR
• Read-Write – RW
• Write-Write – WW
• Read-Read?

CSE 414 - Autumn 2018 24



5

Conflict Serializability

Conflicts: (i.e., swapping will change program behavior)

ri(X); wi(Y)Two actions by same transaction Ti:

wi(X); wj(X)Two writes by Ti, Tj to same element

wi(X); rj(X)
Read/write by Ti, Tj to same element

ri(X); wj(X)

CSE 414 - Autumn 2018 25

Conflict Serializability

• A schedule is conflict serializable if it can be 
transformed into a serial schedule by a series of 
swappings of adjacent non-conflicting actions

• Every conflict-serializable schedule is serializable
• The converse is not true (why?)

– Conflict serializable only looks at conflicts, not values
- Schedules might have conflicts but would have the same 
output no matter the order depending on the values

CSE 414 - Autumn 2018 26

Conflict Serializability

CSE 414 - Autumn 2018 27

Example:
r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Conflict Serializability

CSE 414 - Autumn 2018 28

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Conflict Serializability

CSE 414 - Autumn 2018 29

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Conflict Serializability

CSE 414 - Autumn 2018 30

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)



6

Conflict Serializability

CSE 414 - Autumn 2018 31

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

r1(A); w1(A); r1(B); r2(A); w2(A); w1(B); r2(B); w2(B)

….

Testing for Conflict-Serializability

Precedence graph:
• A node for each transaction Ti, 
• An edge from Ti to Tj whenever an action in Ti

conflicts with, and comes before an action in Tj

• The schedule is conflict-serializable iff the 
precedence graph is acyclic

CSE 414 - Autumn 2018 32

Example 1

CSE 414 - Autumn 2018 33

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

Example 1

CSE 414 - Autumn 2018 34

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B) 

1 2 3

This schedule is conflict-serializable

AB

Example 2

CSE 414 - Autumn 2018 35

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3

Example 2

CSE 414 - Autumn 2018 36

1 2 3

This schedule is NOT conflict-serializable

A
B

B

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)



7

Implementing Transactions

CSE 414 - Autumn 2018 37

Scheduler

• Scheduler = the module that schedules the 
transaction’s actions, ensuring serializability

• Also called Concurrency Control Manager

• We discuss next how a scheduler may be 
implemented

CSE 414 - Autumn 2018 38

Implementing a Scheduler

Major differences between database vendors
• Locking Scheduler

– Aka “pessimistic concurrency control”
– SQLite, SQL Server, DB2

• Multiversion Concurrency Control (MVCC)
– Aka “optimistic concurrency control”
– Postgres, Oracle: Snapshot Isolation (SI)

We discuss only locking schedulers in this class
39CSE 414 - Autumn 2018

Locking Scheduler

Simple idea:
• Each element has a unique lock
• Each transaction must first acquire the lock 

before reading/writing that element
• If the lock is taken by another transaction, 

then wait
• The transaction must release the lock(s)

CSE 414 - Autumn 2018 40By using locks scheduler ensures conflict-serializability

What Data Elements are Locked?

Major differences between vendors:

• Lock on the entire database
– SQLite

• Lock on individual records
– SQL Server, DB2, etc

CSE 414 - Autumn 2018 41

More Notations

CSE 414 - Autumn 2018 42

Li(A) = transaction Ti acquires lock for element A

Ui(A) = transaction Ti releases lock for element A



8

A Non-Serializable Schedule

CSE 414 - Autumn 2018 43

T1 T2
READ(A)
A := A+100
WRITE(A)

READ(A)
A := A*2
WRITE(A)
READ(B)
B := B*2
WRITE(B)

READ(B)
B := B+100
WRITE(B)

Example

CSE 414 - Autumn 2018 44

T1 T2
L1(A); READ(A)
A := A+100
WRITE(A); U1(A); L1(B)

L2(A); READ(A)
A := A*2
WRITE(A); U2(A); 
L2(B); BLOCKED…

READ(B)
B := B+100
WRITE(B); U1(B); 

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(B); 

Scheduler has ensured a conflict-serializable schedule

But what if…

45

T1 T2
L1(A); READ(A)
A := A+100
WRITE(A); U1(A);

L2(A); READ(A)
A := A*2
WRITE(A); U2(A);
L2(B); READ(B)
B := B*2
WRITE(B); U2(B);

L1(B); READ(B)
B := B+100
WRITE(B); U1(B); 

Locks did not enforce conflict-serializability !!! What’s wrong ?

Two Phase Locking (2PL)

CSE 414 - Autumn 2018 46

In every transaction, all lock requests 
must precede all unlock requests

The 2PL rule:

Example: 2PL transactions

CSE 414 - Autumn 2018 47

T1 T2
L1(A); L1(B); READ(A)
A := A+100
WRITE(A); U1(A) 

L2(A); READ(A)
A := A*2
WRITE(A); 
L2(B); BLOCKED…

READ(B)
B := B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B); Now it is conflict-serializable

Two Phase Locking (2PL)

48

Theorem: 2PL ensures conflict serializability



9

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Two Phase Locking (2PL)

50

Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:

Two Phase Locking (2PL)

51

Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)    why?

U1(A) happened
strictly before L2(A)

Two Phase Locking (2PL)

52

Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A) 
L2(A)àU2(B)      why?

L2(A) happened
strictly before U1(A) 

Two Phase Locking (2PL)

53

Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A) 
L2(A)àU2(B)      why?

Two Phase Locking (2PL)

54

Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B)
U2(B)àL3(B) why?



10

Two Phase Locking (2PL)

55

Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B)
U2(B)àL3(B)

......etc.....

Two Phase Locking (2PL)

56

Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B)
U2(B)àL3(B)
L3(B)àU3(C)
U3(C)àL1(C)
L1(C)àU1(A)

Cycle in time:
Contradiction

A New Problem: 
Non-recoverable Schedule

CSE 414 - Autumn 2018 57

T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A) 

L2(A); READ(A)
A := A*2
WRITE(A); 
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B); 

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B); 
Commit

Rollback

A New Problem: 

Non-recoverable Schedule

CSE 414 - Autumn 2018 58

T1 T2

L1(A); L1(B); READ(A)

A :=A+100

WRITE(A); U1(A) 

L2(A); READ(A)

A := A*2

WRITE(A); 

L2(B); BLOCKED…

READ(B)

B :=B+100

WRITE(B); U1(B); 

…GRANTED; READ(B)

B := B*2

WRITE(B); U2(A); U2(B); 

Commit

Rollback

Elements A, B written

by T1 are restored

to their original value.

A New Problem: 
Non-recoverable Schedule

CSE 414 - Autumn 2018 59

T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A) 

L2(A); READ(A)
A := A*2
WRITE(A); 
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B); 

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B); 
Commit

Rollback

Elements A, B written
by T1 are restored
to their original value.

Dirty reads of
A, B lead to
incorrect writes.

A New Problem: 

Non-recoverable Schedule

CSE 414 - Autumn 2018 60

T1 T2

L1(A); L1(B); READ(A)

A :=A+100

WRITE(A); U1(A) 

L2(A); READ(A)

A := A*2

WRITE(A); 

L2(B); BLOCKED…

READ(B)

B :=B+100

WRITE(B); U1(B); 

…GRANTED; READ(B)

B := B*2

WRITE(B); U2(A); U2(B); 

Commit

Rollback

Elements A, B written

by T1 are restored

to their original value. Can no longer undo!

Dirty reads of

A, B lead to

incorrect writes.



11

Strict 2PL

CSE 414 - Autumn 2018 61

All locks are held until commit/abort:
All unlocks are done together with commit/abort.

The Strict 2PL rule:

With strict 2PL, we will get schedules that
are both conflict-serializable and recoverable

Strict 2PL

62

T1 T2

L1(A); READ(A)

A :=A+100

WRITE(A); 

L2(A); BLOCKED…

L1(B); READ(B)

B :=B+100

WRITE(B); 

Rollback & U1(A);U1(B); 

…GRANTED; READ(A)

A := A*2

WRITE(A); 

L2(B); READ(B)

B := B*2

WRITE(B); 

Commit & U2(A); U2(B); 

Strict 2PL

• Lock-based systems always use strict 2PL
• Easy to implement:

– Before a transaction reads or writes an element A, 
insert an L(A)

– When the transaction commits/aborts, then 
release all locks

• Ensures both conflict serializability and 
recoverability

CSE 414 - Autumn 2018 63


