Introduction to Data Management CSE 414

Unit 6: Conceptual Design E/R Diagrams Integrity Constraints BCNF

(3 lectures)

Introduction to Data Management CSE 414

E/R Diagrams

Class Overview

- Unit 1: Intro
- Unit 2: Relational Data Models and Query Languages
- Unit 3: Non-relational data
- Unit 4: RDMBS internals and query optimization
- Unit 5: Parallel query processing
- Unit 6: DBMS usability, conceptual design
 - E/R diagrams
 - Schema normalization
- Unit 7: Transactions
- Unit 8: Advanced topics (time permitting)

Database Design

What it is:

 Starting from scratch, design the database schema: relation, attributes, keys, foreign keys, constraints etc

Why it's hard

• The database will be in operation for a very long time (years). Updating the schema while in production is very expensive (why?)

Database Design

- Consider issues such as:
 - What entities to model
 - How entities are related
 - What constraints exist in the domain
- Several formalisms exists
 - We discuss E/R diagrams
 - UML, model-driven architecture
- Reading: Sec. 4.1-4.6

Database Design Process

Entity / Relationship Diagrams

- Entity set = a class – An entity = an object
 Attribute
- Relationship

Keys in E/R Diagrams

• Every entity set must have a key

What is a Relation ?

- A mathematical definition: - if A, B are sets, then a relation R is a subset of A \times
- A={1,2,3}, B={a,b,c,d}, $A \times B = \{(1,a), (1,b), \ldots, (3,d)\}$ $R = \{(1,a), (1,c), (3,b)\}$

Product

В

CSE 414 – Autumn 2018

makes

Multiplicity of E/R Relations

• one-one:

1

2

3

а

b

с

Multiplicity of E/R Relations

Multiplicity of E/R Relations

Attributes on Relationships

Multi-way Relationships

How do we model a purchase relationship between buyers, products and stores?

Can still model as a mathematical set (How?)

As a set of triples \subseteq Person × Product × Store

Arrows in Multiway Relationships

A: Any person buys a given product from at most one store

[Fine print: Arrow pointing to E means that if we select one entity from each of the other entity sets in the relationship, those entities are related to at most one entity in E]

Arrows in Multiway Relationships

Converting Multi-way Relationships to Binary

Converting Multi-way Relationships to Binary

3. Design Principles

Moral: Be faithful to the specifications of the application!

Design Principles: What's Wrong?

From E/R Diagrams to Relational Schema

- Entity set \rightarrow relation
- Relationship \rightarrow relation

Entity Set to Relation

Product(prod-ID, category, price)

prod-ID	category	price
Gizmo55	Camera	99.99
Pokemn19	Тоу	29.99

N-N Relationships to Relations

N-N Relationships to Relations

N-1 Relationships to Relations

CSE 414 – Autumn 2018

N-1 Relationships to Relations

Shipping-Co(name, address)

Remember: no separate relations for many-one relationship

Modeling Subclasses

Product

<u>Name</u>	Price	Category	Platforms	Age-group
Gizmo	99	gadget	unix	NULL
Camera	49	photo	NULL	NULL
Тоу	39	gadget	NULL	infant

Modeling Subclasses

Product

<u>Name</u>	Price	Category	Platforms	Age-group
Gizmo	99	gadget	unix	NULL
Camera	49	photo	NULL	NULL
Тоу	39	gadget	NULL	infant

Product Modeling Subclasses

<u>Name</u>	Price	Category	
Camera	49	photo	

Software Product

<u>Name</u>	Price	Category	Platforms
Gizmo	99	gadget	unix

Educational Product

<u>Name</u>	Price	Category	Age-group
Тоу	39	gadget	infant

Modeling Subclasses

Some objects in a class may be special

- define a new class
- better: define a *subclass*

So --- we define subclasses in E/R

Modeling Union Types with Subclasses

FurniturePiece

Say: each piece of furniture is owned either by a person or by a company

Modeling Union Types with Subclasses

Say: each piece of furniture is owned either by a person or by a company

Solution 1. Acceptable but imperfect (What's wrong ?)

Modeling Union Types with Subclasses

Solution 2: better, more laborious

Weak Entity Sets

Entity sets are weak when their key comes from other classes to which they are related.

Team(sport, <u>number, universityName</u>) University(<u>name</u>)

Introduction to Data Management CSE 344

Integrity Constraints

Integrity Constraints Motivation

An integrity constraint is a condition specified on a database schema that restricts the data that can be stored in an instance of the database.

- ICs help prevent entry of incorrect information
- How? DBMS enforces integrity constraints
 - Allows only legal database instances (i.e., those that satisfy all constraints) to exist
 - Ensures that all necessary checks are always performed and avoids duplicating the verification logic in each application

Constraints in E/R Diagrams

Finding constraints is part of the modeling process. Commonly used constraints:

Keys: social security number uniquely identifies a person.

Single-value constraints: a person can have only one father.

Referential integrity constraints: if you work for a company, it must exist in the database.

Other constraints: peoples' ages are between 0 and 150.

Keys in E/R Diagrams

Single Value Constraints

Referential Integrity Constraints

