Introduction to Data Management
CSE 414

Unit 6: Conceptual Design
E/R Diagrams
Integrity Constraints
BCNF
(3 lectures)

Class Overview
• Unit 1: Intro
• Unit 2: Relational Data Models and Query Languages
• Unit 3: Non-relational data
• Unit 4: RDBMS internals and query optimization
• Unit 5: Parallel query processing
• Unit 6: DBMS usability, conceptual design
 – E/R diagrams
 – Schema normalization
• Unit 7: Transactions
• Unit 8: Advanced topics (time permitting)

Database Design
What it is:
• Starting from scratch, design the database schema: relation, attributes, keys, foreign keys, constraints etc
Why it’s hard
• The database will be in operation for a very long time (years). Updating the schema while in production is very expensive (why?)

Database Design Process

Consider issues such as:
- What entities to model
- How entities are related
- What constraints exist in the domain

Several formalisms exists
- We discuss E/R diagrams
- UML, model-driven architecture

Reading: Sec. 4.1-4.6
Entity / Relationship Diagrams

- Entity set = a class
 - An entity = an object

- Attribute

- Relationship

Keys in E/R Diagrams

- Every entity set must have a key

What is a Relation?

- A mathematical definition:
 - if A, B are sets, then a relation R is a subset of A \times B
 - A={1,2,3}, B={a,b,c,d},
 A \times B = \{(1,a),(1,b), \ldots, (3,d)\}
 R = \{(1,a), (1,c), (3,b)\}

- makes is a subset of Product \times Company:

Multiplicity of E/R Relations

- one-one:

- many-one
Multiplicity of E/R Relations

- one-one:
- many-one:
- many-many:

Attributes on Relationships

- What does this say?
 - name
 - price
 - address
 - date
 - name

Multi-way Relationships

How do we model a purchase relationship between buyers, products and stores?

- Purchase
- Product
- Person
- Store

Can still model as a mathematical set (How?)

As a set of triples $\subseteq \text{Person} \times \text{Product} \times \text{Store}$

Arrows in Multiway Relationships

Q: What does the arrow mean?

A: Any person buys a given product from at most one store

[Fine print: Arrow pointing to E means that if we select one entity from each of the other entity sets in the relationship, those entities are related to at most one entity in E]

Q: What does the arrow mean?

A: Any person buys a given product from at most one store AND every store sells to every person at most one product
3. Design Principles

What’s wrong?

- Product
- Purchase
- Person
- Country
- President
- Person

Moral: Be faithful to the specifications of the application!

Design Principles: What’s Wrong?

- Product
- Purchase
- Store
- date
- personName
- personAddr
- Moral: pick the right kind of entities.

Moral: don’t complicate life more than it already is

From E/R Diagrams to Relational Schema

- Entity set \rightarrow relation
- Relationship \rightarrow relation
Entity Set to Relation

```
Product(prodid, category, price)
```

<table>
<thead>
<tr>
<th>prod-ID</th>
<th>category</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo55</td>
<td>Camera</td>
<td>99.99</td>
</tr>
<tr>
<td>Pokem119</td>
<td>Toy</td>
<td>29.99</td>
</tr>
</tbody>
</table>

N-N Relationships to Relations

```
Orders(prodid, custid, date)  
Shipment(prodid, custid, name, date)  
Shipping-Co(name, address)
```

N-1 Relationships to Relations

```
Orders(prodid, custid, date1, name, date2)  
Shipping-Co(name, address)
```

Modeling Subclasses

<table>
<thead>
<tr>
<th>Product</th>
<th>Name</th>
<th>Price</th>
<th>Category</th>
<th>Platforms</th>
<th>Age-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>99</td>
<td>gadget</td>
<td>unix</td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>Camera</td>
<td>49</td>
<td>photo</td>
<td>NULL</td>
<td>NULL</td>
<td>infant</td>
</tr>
<tr>
<td>Toy</td>
<td>39</td>
<td>gadget</td>
<td>NULL</td>
<td>infant</td>
<td></td>
</tr>
</tbody>
</table>

Remember: no separate relations for many-one relationship.
Modeling Subclasses

Some objects in a class may be special
• define a new class
• better: define a subclass

So --- we define subclasses in E/R

Subclasses to Relations

Other ways to convert are possible

Modeling Union Types with Subclasses

Say: each piece of furniture is owned either by a person or by a company
Modeling Union Types with Subclasses
Say: each piece of furniture is owned either by a person or by a company
Solution 1. Acceptable but imperfect (What’s wrong ?)

Solution 2: better, more laborious

Weak Entity Sets
Entity sets are weak when their key comes from other classes to which they are related.

Introduction to Data Management
CSE 344

Integrity Constraints Motivation
An integrity constraint is a condition specified on a database schema that restricts the data that can be stored in an instance of the database.

• ICs help prevent entry of incorrect information
• How? DBMS enforces integrity constraints
 – Allows only legal database instances (i.e., those that satisfy all constraints) to exist
 – Ensures that all necessary checks are always performed and avoids duplicating the verification logic in each application

Constraints in E/R Diagrams
Finding constraints is part of the modeling process. Commonly used constraints:

 Keys: social security number uniquely identifies a person.

 Single-value constraints: a person can have only one father.

 Referential integrity constraints: if you work for a company, it must exist in the database.

 Other constraints: peoples’ ages are between 0 and 150.
Keys in E/R Diagrams

No formal way to specify multiple keys in E/R diagrams.

Single Value Constraints

Referential Integrity Constraints

Each product made by at least one company.
Some products made by no company.

Each product made by exactly one company.