Introduction to Databases CSE 414

Lecture 2: Data Models

CSE 414 - Autumn 2018

Class Overview

- Unit 1: Intro
- Unit 2: Relational Data Models and Query Languages
- Data models, SQL, Relational Algebra, Datalog
- Unit 3: Non-relational data
- Unit 4: RDMBS internals and query optimization
- Unit 5: Parallel query processing
- · Unit 6: DBMS usability, conceptual design
- · Unit 7: Transactions

CSE 414 - Autumn 2018

Review

- · What is a database?
 - A collection of files storing related data
- · What is a DBMS?
 - An application program that allows us to manage efficiently the collection of data files

CSE 414 - Autumn 2018

3

Data Models

- Recall our example: want to design a database of books:
 - author, title, publisher, pub date, price, etc
 - How should we describe this data?
- Data model = mathematical formalism (or conceptual way) for describing the data

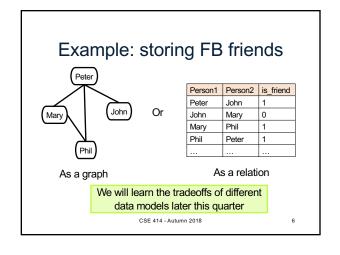
CSE 414 - Autumn 2018

Data Models

• Relational

— Data represented as relations

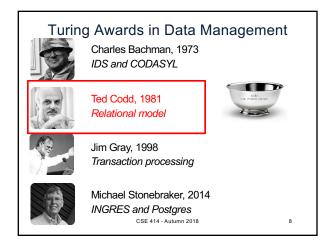
• Semi-structured (JSon)

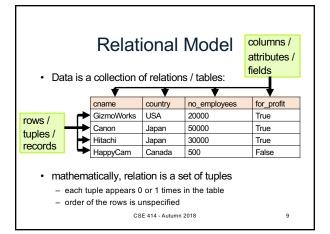

— Data represented as trees

• Key-value pairs

— Used by NoSQL systems

• Graph


• Object-oriented



3 Elements of Data Models

- Instance
 - The actual data
- Schema
 - Describe what data is being stored
- Query language
 - How to retrieve and manipulate data

CSE 414 - Autumn 2018

The Relational Data Model

- Degree (arity) of a relation = #attributes
- Each attribute has a type.
 - Examples types:
 - Strings: CHAR(20), VARCHAR(50), TEXT
 - Numbers: INT, SMALLINT, FLOAT
 - MONEY, DATETIME, ...
 - Few more that are vendor specific
 - Statically and strictly enforced

CSE 414 - Autumn 2018

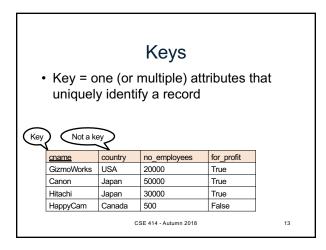
10

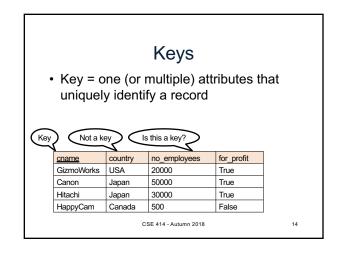
Keys

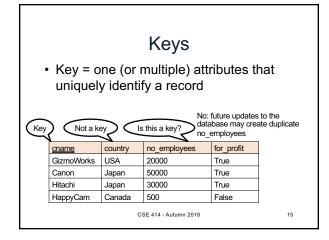
• Key = one (or multiple) attributes that uniquely identify a record

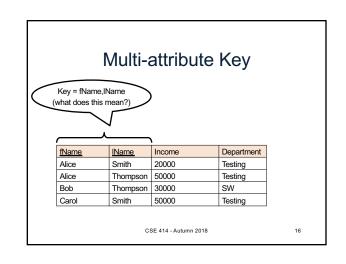
CSE 414 - Autumn 2018

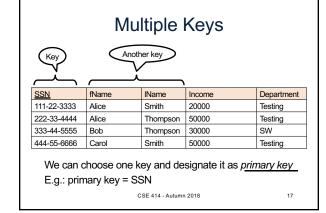
Keys

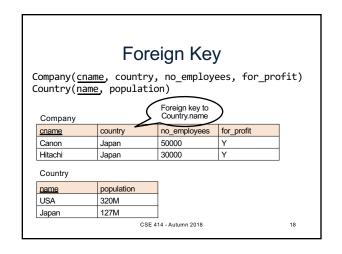

 Key = one (or multiple) attributes that uniquely identify a record




<u>cname</u>	country	no_employees	for_profit
GizmoWorks	USA	20000	True
Canon	Japan	50000	True
Hitachi	Japan	30000	True
HannyCam	Canada	500	False


CSE 414 - Autumn 2018


12



Keys: Summary

- Key = columns that uniquely identify tuple
 - Usually we underline
 - A relation can have many keys, but only one can be chosen as *primary key*
- Foreign key:
 - Attribute(s) whose value is a key of a record in some other relation
 - Foreign keys are sometimes called semantic pointer

CSE 414 - Autumn 2018

Query Language

- SQL
 - Structured Query Language
 - Developed by IBM in the 70s
 - Most widely used language to query relational data
- · Other relational query languages
 - Datalog, relational algebra

CSE 414 - Autumn 2018

20

Our First DBMS

- SQL Lite
- Will switch to SQL Server later in the quarter

CSE 414 - Autumn 2018

21

Demo 1

CSE 414 - Autumn 2018

Discussion

- · Tables are NOT ordered
 - they are sets or multisets (bags)
- · Tables are FLAT
 - No nested attributes
- Tables DO NOT prescribe how they are implemented / stored on disk
 - This is called physical data independence

CSE 414 - Autumn 2018

23

Table Implementation

• How would you implement this?

<u>cname</u>	country	no_employees	for_profit
GizmoWorks	USA	20000	True
Canon	Japan	50000	True
Hitachi	Japan	30000	True
HappyCam	Canada	500	False

CSE 414 - Autumn 2018

4

Table Implementation

· How would you implement this?

cname	country	no_employees	for_profit
GizmoWorks	USA	20000	True
Canon	Japan	50000	True
Hitachi	Japan	30000	True
HappyCam	Canada	500	False

Row major: as an array of objects

GizmoWorks		Hitachi	HappyCam
USA	Japan	Japan	Canada
20000	50000	30000	500
True	True	True	False

CSE 414 - Autumn 2018

25

Table Implementation

· How would you implement this?

<u>cname</u>	country	no_employees	for_profit
GizmoWorks	USA	20000	True
Canon	Japan	50000	True
Hitachi	Japan	30000	True
HappyCam	Canada	500	False

Column major: as one array per attribute

Canon	Hitachi	HappyCam
Japan	Japan	Canada
50000	30000	500
True CSE 4	14 - Autumn 2018 True	False
	50000	Japan Japan 50000 30000 CSE 414 - Autum 2018

26

Table Implementation

· How would you implement this?

cname	country	no_employees	for_profit
GizmoWorks	USA	20000	True
Canon	Japan	50000	True
Hitachi	Japan	30000	True
HappyCam	Canada	500	False

Physical data independence

The logical definition of the data remains unchanged, even when we make changes to the actual implementation

First Normal Form

cname	country	no_employees	for_profit
Canon	Japan	50000	Υ
Hitachi	Japan	30000	Υ

 All relations must be flat: we say that the relation is in first normal form

CSE 414 - Autumn 2018

28

First Normal Form

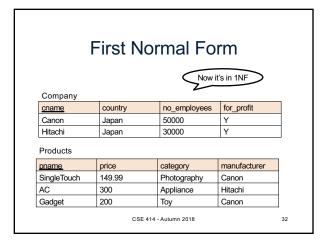
<u>cname</u>	country	no_employees	for_profit
Canon	Japan	50000	Υ
Hitachi	Japan	30000	Υ

- All relations must be flat: we say that the relation is in *first normal form*
- E.g. we want to add products manufactured by each company:

CSE 414 - Autumn 2018

First Normal Form

country no_employees for_pro


cname	country	no_employees	for_profit
Canon	Japan	50000	Υ
Hitachi	Japan	30000	Υ

- All relations must be flat: we say that the relation is in *first normal form*
- E.g., we want to add products manufactured by each company:

cname	country	no_employees	for_profit	F	oroducts		
Canon	Japan	50000	Υ		oname SingleTouch Gadget	price 149.99 200	Category Photography Toy
Hitachi	Japan	30000SE 414 - Auto	ır \∕ n 2018		pname AC	price 300	category Appliance

<u>cname</u>	country	no_employees	for_profit	products	
Canon	Japan	50000	Y	SingleTouch 149.99 Pi	hotography by
Hitachi	Japan	30000SE 414 - Auto	m Y n 2018		Category Appliance

Demo 1 (cont'd)

CSE 414 - Autumn 2018

Data Models: Summary

- Schema + Instance + Query language
- · Relational model:
 - Database = collection of tables
 - Each table is flat: "first normal form"
 - Key: may consists of multiple attributes
 - Foreign key: "semantic pointer"
 - Physical data independence

CSE 414 - Autumn 2018