Introduction to Database Systems
CSE 414

Lecture 18: (Query evaluation wrap-up)
Parallel DBMS
Announcements

• HW 6 releases tonight
 – Due Nov. 20th
 – Waiting for AWS credit can take up to *two days*
 – Sign up early:

• Extended office hours Friday to help with first parts of HW 6
 – 11:30 to 5:00pm in CSE 023
Class Overview

• Unit 1: Intro
• Unit 2: Relational Data Models and Query Languages
• Unit 3: Non-relational data
• Unit 4: RDMBS internals and query optimization
• Unit 5: Parallel query processing
 – Spark and Hadoop
• Unit 6: DBMS usability, conceptual design
• Unit 7: Transactions
• Unit 8: Advanced topics (time permitting)
Why compute in parallel?

• Multi-cores:
 – Most processors have multiple cores
 – This trend will likely increase in the future

• Big data: too large to fit in main memory
 – Distributed query processing on 100x-1000x servers
 – Widely available now using cloud services
 – Recall HW3
Performance Metrics for Parallel DBMSs

Nodes = processors, computers

• **Speedup:**
 – More nodes, same data \rightarrow higher speed

• **Scaleup:**
 – More nodes, more data \rightarrow same speed
Linear v.s. Non-linear Speedup

![Graph showing linear and non-linear speedup with # nodes (P) on the x-axis and speedup on the y-axis, ideal speedup line and non-ideal speedup line.]

CSE 414 - Autumn 2018
Linear v.s. Non-linear Scaleup

Batch Scaleup

nodes (=P) AND data size

Ideal

×1 ×5 ×10 ×15

CSE 414 - Autumn 2018
Why Sub-linear Speedup and Scaleup?

• **Startup cost**
 – Cost of starting an operation on many nodes

• **Interference**
 – Contention for resources between nodes

• **Skew**
 – Slowest node becomes the bottleneck
Architectures for Parallel Databases

• Shared memory

• Shared disk

• Shared nothing
Shared Memory

- Nodes share both RAM and disk
- Dozens to hundreds of processors

Example: SQL Server runs on a single machine and can leverage many threads to speed up a query
 - check your HW3 query plans

- Easy to use and program
- Expensive to scale
 - last remaining cash cows in the hardware industry
Shared Disk

- All nodes access the same disks
- Found in the largest "single-box" (non-cluster) multiprocessors

Example: Oracle

- No need to worry about shared memory
- Hard to scale: existing deployments typically have fewer than 10 machines
Shared Nothing

- Cluster of commodity machines on high-speed network
- Called "clusters" or "blade servers"
- Each machine has its own memory and disk: lowest contention.

Example: Google

Because all machines today have many cores and many disks, shared-nothing systems typically run many "nodes" on a single physical machine.

- Easy to maintain and scale
- Most difficult to administer and tune.

We discuss only Shared Nothing in class
Approaches to Parallel Query Evaluation

- **Inter-query parallelism**
 - Transaction per node
 - Good for transactional workloads

- **Inter-operator parallelism**
 - Operator per node
 - Good for analytical workloads

- **Intra-operator parallelism**
 - Operator on multiple nodes
 - Good for both?

We study only intra-operator parallelism: most scalable
Single Node Query Processing (Review)

Given relations $R(A,B)$ and $S(B, C)$, no indexes:

- **Selection**: $\sigma_{A=123}(R)$
 - Scan file R, select records with $A=123$

- **Group-by**: $\gamma_{A,\text{sum}(B)}(R)$
 - Scan file R, insert into a hash table using A as key
 - When a new key is equal to an existing one, add B to the value

- **Join**: $R \bowtie S$
 - Scan file S, insert into a hash table using B as key
 - Scan file R, probe the hash table using B
Distributed Query Processing

- Data is horizontally partitioned on many servers

- Operators may require data reshuffling

- First let’s discuss how to distribute data across multiple nodes / servers
Horizontal Data Partitioning

<table>
<thead>
<tr>
<th>K</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- **Data:**
- **Servers:**

1. 2. ... P

CSE 414 - Autumn 2018
Horizontal Data Partitioning

Data:

<table>
<thead>
<tr>
<th>K</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Servers:

1.

<table>
<thead>
<tr>
<th>K</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

2.

<table>
<thead>
<tr>
<th>K</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

...

P.

<table>
<thead>
<tr>
<th>K</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Which tuples go to what server?
Horizontal Data Partitioning

• **Block Partition:**
 – Partition tuples arbitrarily s.t. \(\text{size}(R_1) \approx \ldots \approx \text{size}(R_p) \)

• **Hash partitioned on attribute A:**
 – Tuple \(t \) goes to chunk \(i \), where \(i = h(t.A) \mod P + 1 \)
 – Recall: calling hash fn’s is free in this class

• **Range partitioned on attribute A:**
 – Partition the range of \(A \) into \(-\infty = v_0 < v_1 < \ldots < v_p = \infty \)
 – Tuple \(t \) goes to chunk \(i \), if \(v_{i-1} < t.A < v_i \)
Uniform Data v.s. Skewed Data

Let $R(K,A,B,C)$; which of the following partition methods may result in skewed partitions?

- **Block partition**
- **Hash-partition**
 - On the key K
 - On the attribute A

Assuming good hash function

E.g. when all records have the same value of the attribute A, then all records end up in the same partition.

Keep this in mind in the next few slides.
Parallel Execution of RA Operators: Grouping

Data: \(R(K,A,B,C) \)
Query: \(\gamma_{A,\text{sum}(C)}(R) \)

How to compute group by if:

- \(R \) is hash-partitioned on \(A \)?
- \(R \) is block-partitioned?
- \(R \) is hash-partitioned on \(K \)?
Parallel Execution of RA Operators: Grouping

Data: \(R(K,A,B,C) \)
Query: \(\gamma_{A,\text{sum}(C)}(R) \)

- \(R \) is block-partitioned or hash-partitioned on \(K \)

Reshuffle \(R \) on attribute \(A \)
Run grouping on reshuffled partitions
Speedup and Scaleup

• Consider:
 – Query: $\gamma_{A,\text{sum}(C)}(R)$
 – Runtime: only consider I/O costs

• If we double the number of nodes P, what is the new running time?
 – Half (each server holds $\frac{1}{2}$ as many chunks)

• If we double both P and the size of R, what is the new running time?
 – Same (each server holds the same # of chunks)

But only if the data is without skew!
Skewed Data

• $R(K,A,B,C)$
• Informally: we say that the data is skewed if one server holds much more data than the average
• E.g. we hash-partition on A, and some value of A occurs very many times (“Justin Bieber”)
• Then the server holding that value will be skewed
Approaches to Parallel Query Evaluation

• **Inter-query parallelism**
 – One query per node
 – Good for transactional (OLTP) workloads

• **Inter-operator parallelism**
 – Operator per node
 – Good for analytical (OLAP) workloads

• **Intra-operator parallelism**
 – Operator on multiple nodes
 – Good for both?

We study only intra-operator parallelism: most scalable
Parallel Data Processing in the 20th Century
Parallel Execution of RA Operators: Partitioned Hash-Join

- **Data**: $R(K_1, A, B), S(K_2, B, C)$
- **Query**: $R(K_1, A, B) \bowtie S(K_2, B, C)$
 - Initially, both R and S are partitioned on K_1 and K_2
 - Reshuffle R on $R.B$ and S on $S.B$
 - Each server computes the join locally
Data: $R(K_1, A, B)$, $S(K_2, B, C)$
Query: $R(K_1, A, B) \bowtie S(K_2, B, C)$

<table>
<thead>
<tr>
<th>R_1</th>
<th>S_1</th>
<th>R_2</th>
<th>S_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_1</td>
<td>B</td>
<td>K_2</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>101</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>102</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R_1'</th>
<th>S_1'</th>
<th>R_2'</th>
<th>S_2'</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_1</td>
<td>B</td>
<td>K_2</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>201</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>102</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>202</td>
<td>50</td>
</tr>
</tbody>
</table>

Partition

Shuffle on B

Local Join
Data: R(A, B), S(C, D)
Query: \(R(A,B) \bowtie_{B=C} S(C,D) \)

Broadcast Join

Why would you want to do this?
Parallel Data Processing @ 2000
Optional Reading

• Original paper:
 https://www.usenix.org/legacy/events/osdi04/tech/dean.html

• Rebuttal to a comparison with parallel DBs:
 http://dl.acm.org/citation.cfm?doid=1629175.1629198

• Chapter 2 (Sections 1,2,3 only) of Mining of Massive Datasets, by Rajaraman and Ullman
 http://i.stanford.edu/~ullman/mmds.html
Motivation

• We learned how to parallelize relational database systems

• While useful, it might incur too much overhead if our query plans consist of simple operations

• MapReduce is a programming model for such computation

• First, let’s study how data is stored in such systems
Distributed File System (DFS)

- For very large files: TBs, PBs
- Each file is partitioned into *chunks*, typically 64MB
- Each chunk is replicated several times (≥3), on different racks, for fault tolerance
- Implementations:
 - Google’s DFS: **GFS**, proprietary
 - Hadoop’s DFS: **HDFS**, open source
MapReduce

- Google: paper published 2004
- Free variant: Hadoop

- MapReduce = high-level programming model and implementation for large-scale parallel data processing
Typical Problems Solved by MR

- Read a lot of data
- **Map**: extract something you care about from each record
- Shuffle and Sort
- **Reduce**: aggregate, summarize, filter, transform
- Write the results

Paradigm stays the same, change map and reduce functions for different problems
Data Model

Files!

A file = a bag of \((\text{key}, \text{value})\) pairs
Sounds familiar after HW5?

A MapReduce program:
• Input: a bag of \((\text{inputkey}, \text{value})\) pairs
• Output: a bag of \((\text{outputkey}, \text{value})\) pairs
 – \text{outputkey} is optional
Step 1: the MAP Phase

User provides the MAP-function:

• Input: (input key, value)
• Output: bag of (intermediate key, value)

System applies the map function in parallel to all (input key, value) pairs in the input file
Step 2: the **REDUCE** Phase

User provides the **REDUCE** function:

- **Input:** *(intermediate key, bag of values)*
- **Output:** bag of output *(values)*

System groups all pairs with the same intermediate key, and passes the bag of values to the **REDUCE** function.
Example

• Counting the number of occurrences of each word in a large collection of documents

• Each Document
 – The key = document id (did)
 – The value = set of words (word)

```java
map(String key, String value):
    // key: document name
    // value: document contents
    for each word w in value:
        emitIntermediate(w, "1");
```

```java
reduce(String key, Iterator values):
    // key: a word
    // values: a list of counts
    int result = 0;
    for each v in values:
        result += ParseInt(v);
    emit(AsString(result));
```
MAP

<table>
<thead>
<tr>
<th>(did1,v1)</th>
<th>(w1,1)</th>
<th>(w2,1)</th>
<th>(w3,1)</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(did2,v2)</td>
<td>(w1,1)</td>
<td>(w2,1)</td>
<td>(w3,1)</td>
<td>...</td>
</tr>
<tr>
<td>(did3,v3)</td>
<td>(w1,1)</td>
<td>(w2,1)</td>
<td>(w3,1)</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

REDUCE

<table>
<thead>
<tr>
<th>(w1, (1,1,1,...,1))</th>
<th>(w2, (1,1,...))</th>
<th>(w3,(1...))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(w1, 25)</td>
<td>(w2, 77)</td>
</tr>
<tr>
<td></td>
<td>(w3, 12)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Workers

• A **worker** is a process that executes one task at a time

• Typically there is one worker per processor, hence 4 or 8 per node
MAP Tasks (M)

REDUCE Tasks (R)

Shuffle
Fault Tolerance

• If one server fails once every year…
 ... then a job with 10,000 servers will fail in less than one hour

• MapReduce handles fault tolerance by writing intermediate files to disk:
 – Mappers write file to local disk
 – Reducers read the files (=reshuffling); if the server fails, the reduce task is restarted on another server
Implementation

• There is one master node
• Master partitions input file into M splits, by key
• Master assigns workers (=servers) to the M map tasks, keeps track of their progress
• Workers write their output to local disk, partition into R regions
• Master assigns workers to the R reduce tasks
• Reduce workers read regions from the map workers’ local disks
Interesting Implementation Details

Backup tasks:
• *Straggler* = a machine that takes unusually long time to complete one of the last tasks. E.g.:
 – Bad disk forces frequent correctable errors (30MB/s → 1MB/s)
 – The cluster scheduler has scheduled other tasks on that machine
• Stragglers are a main reason for slowdown
• Solution: *pre-emptive backup execution of the last few remaining in-progress tasks*
Straggler Example

Worker 1
Worker 2
Worker 3

Backup execution
Straggler
Killed
Killed

time
Using MapReduce in Practice:
Implementing RA Operators in MR
Relational Operators in MapReduce

Given relations $R(A,B)$ and $S(B,C)$ compute:

- **Selection**: $\sigma_{A=123}(R)$
- **Group-by**: $\gamma_{A,\text{sum}(B)}(R)$
- **Join**: $R \bowtie S$
Selection $\sigma_{A=123}(R)$

map(Tuple t):
- if $t.A = 123$:
 - EmitIntermediate($t.A$, t);

reduce(String A, Iterator $values$):
- for each v in $values$:
 - Emit(v);

<table>
<thead>
<tr>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
</tr>
<tr>
<td>t_2</td>
</tr>
<tr>
<td>t_3</td>
</tr>
<tr>
<td>t_4</td>
</tr>
</tbody>
</table>

$(123, \ [t_2, t_3] \)$

$(t_2, t_3 \)$
Selection $\sigma_{A=123}(R)$

```
map(Tuple t):
  if t.A = 123:
    EmitIntermediate(t.A, t);
```

```
reduce(String A, Iterator values):
  for each v in values:
    Emit(v);
```

No need for reduce.
But need system hacking in Hadoop
to remove reduce from MapReduce
Group By $\gamma_{A, \text{sum}(B)}(R)$

map(Tuple t):
- EmitIntermediate(t.A, t.B);

reduce(String A, Iterator values):
- $s = 0$
- for each v in values:
 - $s = s + v$
- Emit(A, s);

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>10</td>
</tr>
<tr>
<td>123</td>
<td>21</td>
</tr>
<tr>
<td>123</td>
<td>4</td>
</tr>
<tr>
<td>42</td>
<td>6</td>
</tr>
</tbody>
</table>

$(23, \ [t_1 \])$
$(42, \ [t_4 \])$
$(123, \ [t_2, t_3 \])$

$(23, 10), (42, 6), (123, 25)_{50}$
Join

Two simple parallel join algorithms:

• Partitioned hash-join (we saw it, will recap)

• Broadcast join
\(R(A,B) \bowtie_{B=C} S(C,D) \)

Partitioned Hash-Join

Initially, both \(R \) and \(S \) are horizontally partitioned.

- Reshuffle \(R \) on \(R.B \) and \(S \) on \(S.B \).
- Each server computes the join locally.

\[
\begin{align*}
R_1, S_1 & \quad R_2, S_2 & \quad \ldots & \quad R_P, S_P \\
R'_1, S'_1 & \quad R'_2, S'_2 & \quad \ldots & \quad R'_P, S'_P
\end{align*}
\]
R(A,B) \bowtie_{B=C} S(C,D)

Partitioned Hash-Join

```java
map(Tuple t):
    case t.relationName of
        'R': EmitIntermediate(t.B, ('R', t));
        'S': EmitIntermediate(t.C, ('S', t));

reduce(String k, Iterator values):
    R = empty;  S = empty;
    for each v in values:
        case v.type of:
            'R': R.insert(v)
            'S': S.insert(v);
    for v1 in R, for v2 in S
        Emit(v1,v2);
```
$$R(A,B) \bowtie_{B=C} S(C,D)$$

Broadcast Join

- Reshuffle R on $R.B$
- Broadcast S

```
R_1 \rightarrow R'_1, S
R_2 \rightarrow R'_2, S
\ldots
R_P \rightarrow R'_P, S
S
```
\[R(A,B) \bowtie_{B=C} S(C,D) \]

Broadcast Join

map (String value):
- readFromNetwork(S); /* over the network */
- \(\text{hashTable} = \text{new HashTable()} \)
- for each \(w \) in S:
 - \(\text{hashTable.insert}(w.C, w) \)

 for each \(v \) in value:
 - for each \(w \) in \(\text{hashTable.find}(v.B) \)
 - Emit(v, w);

reduce (...):
/* empty: map-side only */

- map should read several records of R: value = some group of tuples from R
- Read entire table S, build a Hash Table
HW6

• HW6 will ask you to write SQL queries and MapReduce tasks using Spark

• You will get to “implement” SQL using MapReduce tasks
 – Can you beat Spark’s implementation?
Spark
A Case Study of the MapReduce Programming Paradigm
Parallel Data Processing @ 2010
Issues with MapReduce

• Difficult to write more complex queries

• Need multiple MapReduce jobs: dramatically slows down because it writes all results to disk
Spark

- Open source system from UC Berkeley
- Distributed processing over HDFS
- Differences from MapReduce:
 - Multiple steps, including iterations
 - Stores intermediate results in main memory
 - Closer to relational algebra (familiar to you)
- Details:
 http://spark.apache.org/examples.html
Spark

• Spark supports interfaces in Java, Scala, and Python
 – Scala: extension of Java with functions/closures

• We will illustrate use the Spark Java interface in this class

• Spark also supports a SQL interface (SparkSQL), and compiles SQL to its native Java interface
Resilient Distributed Datasets

• RDD = Resilient Distributed Datasets
 – A distributed, immutable relation, together with its \textit{lineage}
 – Lineage = expression that says how that relation was computed = a relational algebra plan

• Spark stores intermediate results as RDD

• If a server crashes, its RDD in main memory is lost. However, the driver (=master node) knows the \textit{lineage}, and will simply recompute the lost partition of the RDD
Programming in Spark

- A Spark program consists of:
 - Transformations (map, reduce, join...). Lazy
 - Actions (count, reduce, save...). Eager

- Eager: operators are executed immediately

- Lazy: operators are not executed immediately
 - A operator tree is constructed in memory instead
 - Similar to a relational algebra tree

What are the benefits of lazy execution?
The RDD Interface
Collections in Spark

- **RDD<T>** = an RDD collection of type T
 - Partitioned, recoverable (through lineage), not nested

- **Seq<T>** = a sequence
 - Local to a server, may be nested
Example

Given a large log file hdfs://logfile.log
retrieve all lines that:

• Start with “ERROR”
• Contain the string “sqlite”

s = SparkSession.builder().getOrCreate();
lines = s.read().textFile("hdfs://logfile.log");
errors = lines.filter(l -> l.startsWith("ERROR"));
sqlerrors = errors.filter(l -> l.contains("sqlite"));
sqlerrors.collect();
Example

Given a large log file hdfs://logfile.log retrieve all lines that:
• Start with “ERROR”
• Contain the string “sqlite”

```scala
s = SparkSession.builder().getOrCreate();
lines = s.read().textFile("hdfs://logfile.log");
errors = lines.filter(l -> l.startsWith("ERROR"));
sqlerrors = errors.filter(l -> l.contains("sqlite"));
sqlerrors.collect();
```
Example

Given a large log file hdfs://logfile.log retrieve all lines that:

- Start with “ERROR”
- Contain the string “sqlite”

```java
s = SparkSession.builder.getOrCreate();
lines = s.read().textFile("hdfs://logfile.log");
errors = lines.filter(l -> l.startsWith("ERROR"));
sqlerrors = errors.filter(l -> l.contains("sqlite"));
sqlerrors.collect();
```

Lines, errors, sqlerrors have type JavaRDD<String>

Transformation: Not executed yet...

Action: triggers execution of entire program
Example

Recall: anonymous functions (lambda expressions) starting in Java 8

```
errors = lines.filter(l -> l.startsWith("ERROR"));
```

is the same as:

```
class FilterFn implements Function<Row, Boolean>{
    Boolean call (Row r)
    { return l.startsWith("ERROR"); }
}

errors = lines.filter(new FilterFn());
```
Example

Given a large log file hdfs://logfile.log retrieve all lines that:

• Start with “ERROR”
• Contain the string “sqlite”

```
s = SparkSession.builder().getOrCreate();
sqlerrors = s.read().textFile("hdfs://logfile.log")
  .filter(l -> l.startsWith("ERROR"))
  .filter(l -> l.contains("sqlite"))
  .collect();
```

“Call chaining” style
MapReduce Again…

Steps in Spark resemble MapReduce:

- `col.filter(p)` applies in parallel the predicate `p` to all elements `x` of the partitioned collection, and returns collection with those `x` where `p(x) = true`

- `col.map(f)` applies in parallel the function `f` to all elements `x` of the partitioned collection, and returns a new partitioned collection
Persistence

```scala
lines = s.read().textFile("hdfs://logfile.log");
errors = lines.filter(l->l.startsWith("ERROR"));
sqlerrors = errors.filter(l->l.contains("sqlite"));
sqlerrors.collect();
```

If any server fails before the end, then Spark must restart
Persistence

```scala
lines = s.read().textFile("hdfs://logfile.log");
errors = lines.filter(l->l.startsWith("ERROR"));
sqlerrors = errors.filter(l->l.contains("sqlite"));
sqlerrors.collect();
```

If any server fails before the end, then Spark must restart

RDD:
- `hdfs://logfile.log`
- `filter(...startsWith("ERROR"))`
- `filter(...contains("sqlite"))`
- `result`
Persistence

If any server fails before the end, then Spark must restart.

```scala
lines = s.read().textFile("hdfs://logfile.log");
errors = lines.filter(l -> l.startsWith("ERROR"));
sqlerrors = errors.filter(l -> l.contains("sqlite"));
sqlerrors.collect();
```

Spark can recompute the result from errors.
Persistence

If any server fails before the end, then Spark must restart.

Spark can recompute the result from errors.
Example

SELECT count(*) FROM R, S
WHERE R.B > 200 and S.C < 100 and R.A = S.A

R = s.read().textFile("R.csv").map(parseRecord).persist();
S = s.read().textFile("S.csv").map(parseRecord).persist();

Parses each line into an object
persisting on disk
Example

R = s.read().textFile("R.csv`).map(parseRecord).persist();
S = s.read().textFile("S.csv`).map(parseRecord).persist();
RB = R.filter(t -> t.b > 200).persist();
SC = S.filter(t -> t.c < 100).persist();
J = RB.join(SC).persist();
J.count();
Recap: Programming in Spark

• A Spark/Scala program consists of:
 – Transformations (map, reduce, join…). Lazy
 – Actions (count, reduce, save…). Eager

• RDD<T> = an RDD collection of type T
 – Partitioned, recoverable (through lineage), not nested

• Seq<T> = a sequence
 – Local to a server, may be nested
Transformations:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>map(f : T -> U)</code></td>
<td>RDD<T> -> RDD<U></td>
</tr>
<tr>
<td><code>flatMap(f: T -> Seq(U))</code></td>
<td>RDD<T> -> RDD<U></td>
</tr>
<tr>
<td><code>filter(f:T->Bool)</code></td>
<td>RDD<T> -> RDD<T></td>
</tr>
<tr>
<td><code>groupByKey()</code></td>
<td>RDD<(K,V)> -> RDD<(K,Seq[V])></td>
</tr>
<tr>
<td><code>reduceByKey(F:(V,V)-> V)</code></td>
<td>RDD<(K,V)> -> RDD<(K,V)></td>
</tr>
<tr>
<td><code>union()</code></td>
<td>(RDD<T>,RDD<T>) -> RDD<T></td>
</tr>
<tr>
<td><code>join()</code></td>
<td>(RDD<(K,V)>,RDD<(K,W)>) -> RDD<(K,(V,W))></td>
</tr>
<tr>
<td><code>cogroup()</code></td>
<td>(RDD<(K,V)>,RDD<(K,W)>) -> RDD<(K,((Seq<V>,Seq<W>)))></td>
</tr>
<tr>
<td><code>crossProduct()</code></td>
<td>(RDD<T>,RDD<U>) -> RDD<(T,U)></td>
</tr>
</tbody>
</table>

Actions:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>count()</code></td>
<td>RDD<T> -> Long</td>
</tr>
<tr>
<td><code>collect()</code></td>
<td>RDD<T> -> Seq<T></td>
</tr>
<tr>
<td><code>reduce(f:(T,T)->T)</code></td>
<td>RDD<T> -> T</td>
</tr>
<tr>
<td><code>save(path:String)</code></td>
<td>Outputs RDD to a storage system e.g., HDFS</td>
</tr>
</tbody>
</table>
Spark 2.0

The DataFrame and Dataset Interfaces
DataFrames

• Like RDD, also an immutable distributed collection of data

• Organized into *named columns* rather than individual objects
 – Just like a relation
 – Elements are untyped objects called Row’s

• Similar API as RDDs with additional methods
 – `people = spark.read().textFile(...);
 ageCol = people.col("age");
 ageCol.plus(10); // creates a new DataFrame`
Datasets

• Similar to DataFrames, except that elements must be typed objects

• E.g.: Dataset<People> rather than Dataset<Row>

• Can detect errors during compilation time

• DataFrames are aliased as Dataset<Row> (as of Spark 2.0)

• You will use both Datasets and RDD APIs in HW6
Datasets API: Sample Methods

• Functional API
 - `agg(Column expr, Column... exprs)`
 Aggregates on the entire Dataset without groups.
 - `groupBy(String col1, String... cols)`
 Groups the Dataset using the specified columns, so that we can run aggregation on them.
 - `join(Dataset<?> right)`
 Join with another DataFrame.
 - `orderBy(Column... sortExprs)`
 Returns a new Dataset sorted by the given expressions.
 - `select(Column... cols)`
 Selects a set of column based expressions.

• “SQL” API
 - `SparkSession.sql("select * from R");`

• Look familiar?
Conclusions

• Parallel databases
 – Predefined relational operators
 – Optimization
 – Transactions

• MapReduce
 – User-defined map and reduce functions
 – Must implement/optimize manually relational ops
 – No updates/transactions

• Spark
 – Predefined relational operators
 – Must optimize manually
 – No updates/transactions