
Introduction to Database Systems
CSE 414

Lecture 17:
Basics of Query Optimization and 

Query Cost Estimation
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Announcements

• Midterm will be released by end of day today
• Need to start one HW6 step NOW:

– https://aws.amazon.com/education/awseducate/apply/
– Need to make an AWS account, can use existing 

Amazon account
– Click on application button under Students and fill out 

form with your @uw.edu email
– Will then be sent email for verification, must click to 

verify your email address
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https://aws.amazon.com/education/awseducate/apply/


Two typical kinds of queries

• Point queries

• What data structure 

should be used for 

index?
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SELECT * 

FROM Movie

WHERE year = ?

SELECT * 

FROM Movie

WHERE year >= ? AND
year <= ?

• Range queries

• What data structure 

should be used for 

index?



Choosing Index is Not Enough

• To estimate the cost of a query plan, we still 
need to consider other factors:

– How each operator is implemented

– The cost of each operator

– Let’s start with the basics
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Cost of Reading
Data From Disk

CSE 414 - Autumn 2018 5



Cost Parameters
• Cost = I/O + CPU + Network BW

– We will focus on I/O in this class
• Parameters (a.k.a. statistics):

– B(R) = # of blocks (i.e., pages) for relation R
– T(R) = # of tuples in relation R
– V(R, a) = # of distinct values of attribute a
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Cost Parameters
• Cost = I/O + CPU + Network BW

– We will focus on I/O in this class
• Parameters (a.k.a. statistics):

– B(R) = # of blocks (i.e., pages) for relation R
– T(R) = # of tuples in relation R
– V(R, a) = # of distinct values of attribute a
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When a is a key, V(R,a) = T(R)
When a is not a key, V(R,a) can be anything <= T(R)
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Cost Parameters
• Cost = I/O + CPU + Network BW

– We will focus on I/O in this class
• Parameters (a.k.a. statistics):

– B(R) = # of blocks (i.e., pages) for relation R
– T(R) = # of tuples in relation R
– V(R, a) = # of distinct values of attribute a

• DBMS collects statistics about base tables
must infer them for intermediate results
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When a is a key, V(R,a) = T(R)
When a is not a key, V(R,a) can be anything <= T(R)
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Selectivity Factors for Conditions

How many tuples would this select:

SELECT * 
FROM One_year
WHERE did = 32

1 tuple (out of 365)
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One_year(did, month)           e.g. (1, Jan), (2, Jan)…(365, Dec)



Selectivity Factors for Conditions

How many tuples would this select:

SELECT * 
FROM One_year
WHERE month = Jan

31 tuples (out of 365)
This is roughly 1/12 of the tuples, because 12 distinct 
values equally distributed.
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One_year(did, month)           e.g. (1, Jan), (2, Jan)…(365, Dec)



Cost Parameters
• Cost = I/O + CPU + Network BW

– We will focus on I/O in this class
• Parameters (a.k.a. statistics):

– B(R) = # of blocks (i.e., pages) for relation R
– T(R) = # of tuples in relation R
– V(R, a) = # of distinct values of attribute a

• DBMS collects statistics about base tables
must infer them for intermediate results
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When a is a key, V(R,a) = T(R)
When a is not a key, V(R,a) can be anything <= T(R)
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Selectivity Factors for Conditions

• A = c     /* σA= c (R) */
– Selectivity f = 1/V(R,A)

• A < c      /* σA< c (R)*/
– Selectivity f = (c - min(R, A))/(max(R,A) - min(R,A))

• c1 < A < c2      /* σc1 < A < c2 (R)*/
– Selectivity f = (c2 – c1)/(max(R,A) - min(R,A))

• Cond1  ∧ Cond2  ∧ Cond3  ∧ ... –
– Selectivity = f1*f2*f3* ...(assumes independence)
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Cost of Reading Data From Disk

• Sequential scan for relation R costs B(R)

• Index-based selection
– Estimate selectivity factor f (see previous slide)
– Clustered index: f*B(R)
– Unclustered index f*T(R)
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Note: we ignore I/O cost for index pages



Index Based Selection

• Example:

• Table scan:
• Index based selection:
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B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?



Index Based Selection

• Example:

• Table scan: B(R) = 2,000 I/Os
• Index based selection:
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B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?



Index Based Selection

• Example:

• Table scan: B(R) = 2,000 I/Os
• Index based selection:

– If index is clustered:

– If index is unclustered:
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B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?



Index Based Selection

• Example:

• Table scan: B(R) = 2,000 I/Os

• Index based selection:

– If index is clustered: B(R) * 1/V(R,a) = 100 I/Os

Why: we know we can scan a full block to get the desired range

– If index is unclustered:
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B(R) = 2000

T(R) = 100,000

V(R, a) = 20

cost of sa=v(R) = ?



Index Based Selection

• Example:

• Table scan: B(R) = 2,000 I/Os
• Index based selection:

– If index is clustered: B(R) * 1/V(R,a) = 100 I/Os
Why: we know we can scan a full block to get the desired range

– If index is unclustered: T(R) * 1/V(R,a) = 5,000 I/Os
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B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?



Index Based Selection

• Example:

• Table scan: B(R) = 2,000 I/Os
• Index based selection:

– If index is clustered: B(R) * 1/V(R,a) = 100 I/Os
Why: we know we can scan a full block to get the desired range

– If index is unclustered: T(R) * 1/V(R,a) = 5,000 I/Os
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B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?

Lesson: Don’t build unclustered indexes when V(R,a) is small !
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SELECT *
FROM R
WHERE R.K>? and R.K<?



Cost of Executing Operators
(Focus on Joins)
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Outline

• Join operator algorithms
– One-pass algorithms (Sec. 15.2 and 15.3)
– Index-based algorithms (Sec 15.6)

• Note about readings: 
– In class, we discuss only algorithms for joins
– Other operators are easier: read the book
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Join Algorithms

• Hash join

• Nested loop join
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Hash Join

Hash join:  R ⋈ S
• Scan R, build buckets in main memory
• Then scan S and join
• Cost: B(R) + B(S)
• Which relation to build the hash table on?
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Hash Join

Hash join:  R ⋈ S
• Scan R, build buckets in main memory
• Then scan S and join
• Cost: B(R) + B(S)
• Which relation to build the hash table on?

• One-pass algorithm when B(R) ≤ M
– M = number of memory pages available
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Hash Join Example
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Patient    Insurance 

Patient(pid, name, address)
Insurance(pid, provider, policy_nb)

1 ‘Bob’ ‘Seattle’
2 ‘Ela’ ‘Everett’

3 ‘Jill’ ‘Kent’
4 ‘Joe’ ‘Seattle’

Patient
2 ‘Blue’ 123
4 ‘Prem’ 432

Insurance

4 ‘Prem’ 343
3 ‘GrpH’ 554

Two tuples
per page



Hash Join Example
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Patient    Insurance 

1 2

3 4

Patient

2 4

Insurance

4 3

Showing 

pid only

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

Some large-

enough #

This is one page 

with two tuples



Hash Join Example

28

Step 1: Scan Patient and build hash table in memory
Can be done in
method open()

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 43 96 85

1 2



Hash Join Example
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Step 2: Scan Insurance and probe into hash table
Done during 
calls to next()

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 43 96 85

1 22 4
Output buffer
2 2

Write to disk or 
pass to next 

operator



Hash Join Example
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Step 2: Scan Insurance and probe into hash table
Done during 
calls to next()

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 43 96 85

1 22 4
Output buffer
4 4



Hash Join Example
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Step 2: Scan Insurance and probe into hash table
Done during 
calls to next()

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 43 96 85

1 24 3
Output buffer
4 4

Keep going until read all of Insurance

Cost: B(R) + B(S)



Nested Loop Joins
• Tuple-based nested loop R ⋈ S
• R is the outer relation, S is the inner relation
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for each tuple t1 in R do
for each tuple t2 in S do

if t1 and t2 join then output (t1,t2)

What is the Cost?



Nested Loop Joins
• Tuple-based nested loop R ⋈ S
• R is the outer relation, S is the inner relation

• Cost: B(R) + T(R) B(S)
• Multiple-pass since S is read many times
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What is the Cost?

for each tuple t1 in R do
for each tuple t2 in S do

if t1 and t2 join then output (t1,t2)



Page-at-a-time Refinement

• Cost: B(R) + B(R)B(S)
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What is the Cost?

for each page of tuples r in R do

for each page of tuples s in S do

for all pairs of tuples t1 in r, t2 in s

if t1 and t2 join then output (t1,t2)



1 2

Page-at-a-time Refinement
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1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient

Output buffer
2 2

Input buffer for Insurance2 4



Page-at-a-time Refinement
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1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient1 2

Output buffer

Input buffer for Insurance4 3

1 2



Page-at-a-time Refinement
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3 4

Patient
2 4

Insurance

4 3

8 5

9 6

8 9

6 6

1 3

Disk

Input buffer for Patient1 2

Output buffer

Input buffer for Insurance2 8

1 2

2 2

Cost: B(R) + B(R)B(S)

Keep going until read 
all of Insurance

Then repeat for next 
page of Patient… until end of Patient

1 2

2 8



INDEX JOINS
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R

a b c

1 7 4

… ... ...

98 3 2

S

c d e

3 43 7

... ... ...

9 24 9

S

c d e

3 43 7

... ... ...

9 24 9

...



Index Nested Loop Join
R ⋈S

• Assume S has an index on the join attribute

• Iterate over R, for each tuple fetch 
corresponding tuple(s) from S

• Cost:
– If index on S is clustered:  

B(R) + T(R) * (B(S) * 1/V(S,a))

– If index on S is unclustered: 
B(R) + T(R) * (T(S) * 1/V(S,a))
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Index Nested Loop Join

If index on S is clustered:  
B(R) + T(R) * (B(S) * 1/V(S,a))
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Still have to 
scan in R

Why is the 
multiplier 

term T(R)?

What does 
1/V(S,a) 

represent?

T(R) must be used because we 
cannot assume that a whole 
block of R (B(R)) will have the 
same attribute to join on, and 
thus use the same index access 
on S for.

1/V(S,a) represents the nature of the 
B+ Tree index. We are only scanning 
as much as we need. Note that the 
performance of the index join will 
decrease as V decreases.



Index Nested Loop Join

If index on S is unclustered: 
B(R) + T(R) * (T(S) * 1/V(S,a))
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Why did this 
change from 

B(R) to T(R)?

Remember that tuples are stored on contiguous 
blocks. In a clustered index from before we know 
we can scan a single chunk of the disk to get the 
entire desired range. In an unclustered index we no 
longer can assume contiguous access. Thus we 
estimate that every tuple needs its own I/O 
operation.



GENERATING QUERY PLANS
(REVIEW)
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SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and  y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

Supplier Supply

σ

π

⨝



Review: 
Logical vs Physical Plans

• Logical plans:
– Created by the parser from the input SQL text
– Expressed as a relational algebra tree
– Each SQL query has many possible logical plans

• Physical plans:
– Goal is to choose an efficient implementation for 

each operator in the RA tree
– Each logical plan has many possible physical plans
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Review: Relational Algebra
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Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

Relational algebra expression is 
also called the “logical query plan”

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and  y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’



Review: Physical Query Plan 1
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Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
A physical query plan is a logical 
query plan annotated with 
physical implementation details

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’



Review: Physical Query Plan 2
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Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Hash join)

(On the fly)

(On the fly)
Same logical query plan
Different physical plan

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’



Query Optimization: Overview

• Compute cost of each operator

– This depends on:

• Table statistics (# of tuples etc)

• Algorithm used

• Cost of a physical plan = 

sum(each operator cost)

• Cost each plan and choose the one with 

lowest cost
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Cost of Query Plans
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Logical Query Plan 1

Supply Supplier

sid = sid

σpno=2�scity=‘Seattle’�sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

56



Logical Query Plan 1

Supply Supplier

sid = sid

σpno=2�scity=‘Seattle’�sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 10000
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Logical Query Plan 1

Supply Supplier

sid = sid

σpno=2�scity=‘Seattle’�sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 10000

T  < 1
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Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’�sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)
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Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’�sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 4 T= 5
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Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’�sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 4 T= 5
Very wrong!

Why?
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Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’�sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 4 T= 5
Very wrong!

Why?

T = 4
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Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’�sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 4 T= 5
Very wrong!

Why?

T = 4

Different
estimate L
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Physical Plan 1

Supply Supplier

sid = sid

σpno=2�scity=‘Seattle’�sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 10000

T  < 1

Block nested loop join

Scan
Scan

Total cost:   100/10 * 100 = 1000
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Physical Plan 1

Supply Supplier

sid = sid

σpno=2�scity=‘Seattle’�sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 10000

T  < 1

Block nested loop join

Scan
Scan

Total cost:   100+100*100 = 10100
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Physical Plan 2

Supply Supplier

sid = sid

σsstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 4

T= 5

T = 4

Unclustered
index lookup
Supply(pno)

Unclustered
index lookup
Supplier(scity)

σscity=‘Seattle’

Cost of Supply(pno) = 4
Cost of Supplier(scity) = 50
Total cost:   54

Main memory join

T= 50
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Physical Plan 2

Supply Supplier

sid = sid

σsstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 4

T= 5

T = 4

Unclustered
index lookup
Supply(pno)

Unclustered
index lookup
Supplier(scity)

σscity=‘Seattle’

Cost of Supply(pno) = 4
Cost of Supplier(scity) = 50
Total cost:   54

Main memory join

T= 50
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Physical Plan 2

Supply Supplier

sid = sid

σsstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 4

T= 5

T = 4

Unclustered
index lookup
Supply(pno)

Unclustered
index lookup
Supplier(scity)

σscity=‘Seattle’

Cost of Supply(pno) = 4
Cost of Supplier(scity) = 50
Total cost:   54

Main memory join

T= 50
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Physical Plan 3

Supply Supplier

sid = sid

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 4

T = 4

Unclustered
index lookup
Supply(pno)

Cost of Supply(pno) = 4
Cost of Index join = 4
Total cost:   8

Clustered
Index join

σscity=‘Seattle’�sstate=‘WA’

69



Physical Plan 3

Supply Supplier

sid = sid

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 4

T = 4

Unclustered
index lookup
Supply(pno)

Cost of Supply(pno) = 4
Cost of Index join = 4
Total cost:   8

Clustered
Index join

σscity=‘Seattle’�sstate=‘WA’
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Physical Plan 3

Supply Supplier
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πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 4

T = 4

Unclustered
index lookup
Supply(pno)

Cost of Supply(pno) = 4
Cost of Index join = 4
Total cost:   8

Clustered
Index join

σscity=‘Seattle’�sstate=‘WA’
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Query Optimizer Summary

• Input: A logical query plan
• Output: A good physical query plan
• Basic query optimization algorithm

– Enumerate alternative plans (logical and physical)
– Compute estimated cost of each plan
– Choose plan with lowest cost

• This is called cost-based optimization
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