
Introduction to Database Systems
CSE 414

Lecture 17:
Basics of Query Optimization and

Query Cost Estimation

CSE 414 - Autumn 2018 1

Announcements

• Midterm will be released by end of day today
• Need to start one HW6 step NOW:

– https://aws.amazon.com/education/awseducate/apply/
– Need to make an AWS account, can use existing

Amazon account
– Click on application button under Students and fill out

form with your @uw.edu email
– Will then be sent email for verification, must click to

verify your email address

CSE 414 - Autumn 2018 2

https://aws.amazon.com/education/awseducate/apply/

Two typical kinds of queries

• Point queries

• What data structure

should be used for

index?

3

SELECT *

FROM Movie

WHERE year = ?

SELECT *

FROM Movie

WHERE year >= ? AND
year <= ?

• Range queries

• What data structure

should be used for

index?

Choosing Index is Not Enough

• To estimate the cost of a query plan, we still
need to consider other factors:

– How each operator is implemented

– The cost of each operator

– Let’s start with the basics

CSE 414 - Autumn 2018 4

Cost of Reading
Data From Disk

CSE 414 - Autumn 2018 5

Cost Parameters
• Cost = I/O + CPU + Network BW

– We will focus on I/O in this class
• Parameters (a.k.a. statistics):

– B(R) = # of blocks (i.e., pages) for relation R
– T(R) = # of tuples in relation R
– V(R, a) = # of distinct values of attribute a

6CSE 414 - Autumn 2018

Cost Parameters
• Cost = I/O + CPU + Network BW

– We will focus on I/O in this class
• Parameters (a.k.a. statistics):

– B(R) = # of blocks (i.e., pages) for relation R
– T(R) = # of tuples in relation R
– V(R, a) = # of distinct values of attribute a

7

When a is a key, V(R,a) = T(R)
When a is not a key, V(R,a) can be anything <= T(R)

CSE 414 - Autumn 2018

Cost Parameters
• Cost = I/O + CPU + Network BW

– We will focus on I/O in this class
• Parameters (a.k.a. statistics):

– B(R) = # of blocks (i.e., pages) for relation R
– T(R) = # of tuples in relation R
– V(R, a) = # of distinct values of attribute a

• DBMS collects statistics about base tables
must infer them for intermediate results

8

When a is a key, V(R,a) = T(R)
When a is not a key, V(R,a) can be anything <= T(R)

CSE 414 - Autumn 2018

Selectivity Factors for Conditions

How many tuples would this select:

SELECT *
FROM One_year
WHERE did = 32

1 tuple (out of 365)

CSE 414 - Autumn 2018 9

One_year(did, month) e.g. (1, Jan), (2, Jan)…(365, Dec)

Selectivity Factors for Conditions

How many tuples would this select:

SELECT *
FROM One_year
WHERE month = Jan

31 tuples (out of 365)
This is roughly 1/12 of the tuples, because 12 distinct
values equally distributed.

CSE 414 - Autumn 2018 10

One_year(did, month) e.g. (1, Jan), (2, Jan)…(365, Dec)

Cost Parameters
• Cost = I/O + CPU + Network BW

– We will focus on I/O in this class
• Parameters (a.k.a. statistics):

– B(R) = # of blocks (i.e., pages) for relation R
– T(R) = # of tuples in relation R
– V(R, a) = # of distinct values of attribute a

• DBMS collects statistics about base tables
must infer them for intermediate results

11

When a is a key, V(R,a) = T(R)
When a is not a key, V(R,a) can be anything <= T(R)

CSE 414 - Autumn 2018

Selectivity Factors for Conditions

• A = c /* σA= c (R) */
– Selectivity f = 1/V(R,A)

• A < c /* σA< c (R)*/
– Selectivity f = (c - min(R, A))/(max(R,A) - min(R,A))

• c1 < A < c2 /* σc1 < A < c2 (R)*/
– Selectivity f = (c2 – c1)/(max(R,A) - min(R,A))

• Cond1 ∧ Cond2 ∧ Cond3 ∧ ... –
– Selectivity = f1*f2*f3* ...(assumes independence)

CSE 414 - Autumn 2018 12

Cost of Reading Data From Disk

• Sequential scan for relation R costs B(R)

• Index-based selection
– Estimate selectivity factor f (see previous slide)
– Clustered index: f*B(R)
– Unclustered index f*T(R)

CSE 414 - Autumn 2018 13

Note: we ignore I/O cost for index pages

Index Based Selection

• Example:

• Table scan:
• Index based selection:

CSE 414 - Autumn 2018 14

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?

Index Based Selection

• Example:

• Table scan: B(R) = 2,000 I/Os
• Index based selection:

CSE 414 - Autumn 2018 15

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?

Index Based Selection

• Example:

• Table scan: B(R) = 2,000 I/Os
• Index based selection:

– If index is clustered:

– If index is unclustered:

CSE 414 - Autumn 2018 16

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?

Index Based Selection

• Example:

• Table scan: B(R) = 2,000 I/Os

• Index based selection:

– If index is clustered: B(R) * 1/V(R,a) = 100 I/Os

Why: we know we can scan a full block to get the desired range

– If index is unclustered:

CSE 414 - Autumn 2018 17

B(R) = 2000

T(R) = 100,000

V(R, a) = 20

cost of sa=v(R) = ?

Index Based Selection

• Example:

• Table scan: B(R) = 2,000 I/Os
• Index based selection:

– If index is clustered: B(R) * 1/V(R,a) = 100 I/Os
Why: we know we can scan a full block to get the desired range

– If index is unclustered: T(R) * 1/V(R,a) = 5,000 I/Os

CSE 414 - Autumn 2018 18

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?

Index Based Selection

• Example:

• Table scan: B(R) = 2,000 I/Os
• Index based selection:

– If index is clustered: B(R) * 1/V(R,a) = 100 I/Os
Why: we know we can scan a full block to get the desired range

– If index is unclustered: T(R) * 1/V(R,a) = 5,000 I/Os

CSE 414 - Autumn 2018 19

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?

Lesson: Don’t build unclustered indexes when V(R,a) is small !

20

Percentage tuples retrieved

Cost

0 100

Sequential scan

Clustered index

Un
clu

st
er

ed
 in

de
x

CSE 414 - Autumn 2018

SELECT *
FROM R
WHERE R.K>? and R.K<?

Cost of Executing Operators
(Focus on Joins)

CSE 414 - Autumn 2018 21

Outline

• Join operator algorithms
– One-pass algorithms (Sec. 15.2 and 15.3)
– Index-based algorithms (Sec 15.6)

• Note about readings:
– In class, we discuss only algorithms for joins
– Other operators are easier: read the book

CSE 414 - Autumn 2018 22

Join Algorithms

• Hash join

• Nested loop join

CSE 414 - Autumn 2018 23

Hash Join

Hash join: R ⋈ S
• Scan R, build buckets in main memory
• Then scan S and join
• Cost: B(R) + B(S)
• Which relation to build the hash table on?

CSE 414 - Autumn 2018 24

Hash Join

Hash join: R ⋈ S
• Scan R, build buckets in main memory
• Then scan S and join
• Cost: B(R) + B(S)
• Which relation to build the hash table on?

• One-pass algorithm when B(R) ≤ M
– M = number of memory pages available

CSE 414 - Autumn 2018 25

Hash Join Example

26

Patient Insurance

Patient(pid, name, address)
Insurance(pid, provider, policy_nb)

1 ‘Bob’ ‘Seattle’
2 ‘Ela’ ‘Everett’

3 ‘Jill’ ‘Kent’
4 ‘Joe’ ‘Seattle’

Patient
2 ‘Blue’ 123
4 ‘Prem’ 432

Insurance

4 ‘Prem’ 343
3 ‘GrpH’ 554

Two tuples
per page

Hash Join Example

27

Patient Insurance

1 2

3 4

Patient

2 4

Insurance

4 3

Showing

pid only

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

Some large-

enough #

This is one page

with two tuples

Hash Join Example

28

Step 1: Scan Patient and build hash table in memory
Can be done in
method open()

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 43 96 85

1 2

Hash Join Example

29

Step 2: Scan Insurance and probe into hash table
Done during
calls to next()

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 43 96 85

1 22 4
Output buffer
2 2

Write to disk or
pass to next

operator

Hash Join Example

30

Step 2: Scan Insurance and probe into hash table
Done during
calls to next()

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 43 96 85

1 22 4
Output buffer
4 4

Hash Join Example

31

Step 2: Scan Insurance and probe into hash table
Done during
calls to next()

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 43 96 85

1 24 3
Output buffer
4 4

Keep going until read all of Insurance

Cost: B(R) + B(S)

Nested Loop Joins
• Tuple-based nested loop R ⋈ S
• R is the outer relation, S is the inner relation

CSE 414 - Autumn 2018 32

for each tuple t1 in R do
for each tuple t2 in S do

if t1 and t2 join then output (t1,t2)

What is the Cost?

Nested Loop Joins
• Tuple-based nested loop R ⋈ S
• R is the outer relation, S is the inner relation

• Cost: B(R) + T(R) B(S)
• Multiple-pass since S is read many times

CSE 414 - Autumn 2018 33

What is the Cost?

for each tuple t1 in R do
for each tuple t2 in S do

if t1 and t2 join then output (t1,t2)

Page-at-a-time Refinement

• Cost: B(R) + B(R)B(S)

CSE 414 - Autumn 2018 34

What is the Cost?

for each page of tuples r in R do

for each page of tuples s in S do

for all pairs of tuples t1 in r, t2 in s

if t1 and t2 join then output (t1,t2)

1 2

Page-at-a-time Refinement

35

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient

Output buffer
2 2

Input buffer for Insurance2 4

Page-at-a-time Refinement

36

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient1 2

Output buffer

Input buffer for Insurance4 3

1 2

Page-at-a-time Refinement

37

3 4

Patient
2 4

Insurance

4 3

8 5

9 6

8 9

6 6

1 3

Disk

Input buffer for Patient1 2

Output buffer

Input buffer for Insurance2 8

1 2

2 2

Cost: B(R) + B(R)B(S)

Keep going until read
all of Insurance

Then repeat for next
page of Patient… until end of Patient

1 2

2 8

INDEX JOINS

44

R

a b c

1 7 4

…

98 3 2

S

c d e

3 43 7

...

9 24 9

S

c d e

3 43 7

...

9 24 9

...

Index Nested Loop Join
R ⋈S

• Assume S has an index on the join attribute

• Iterate over R, for each tuple fetch
corresponding tuple(s) from S

• Cost:
– If index on S is clustered:

B(R) + T(R) * (B(S) * 1/V(S,a))

– If index on S is unclustered:
B(R) + T(R) * (T(S) * 1/V(S,a))

CSE 414 - Autumn 2018 45

Index Nested Loop Join

If index on S is clustered:
B(R) + T(R) * (B(S) * 1/V(S,a))

46

Still have to
scan in R

Why is the
multiplier

term T(R)?

What does
1/V(S,a)

represent?

T(R) must be used because we
cannot assume that a whole
block of R (B(R)) will have the
same attribute to join on, and
thus use the same index access
on S for.

1/V(S,a) represents the nature of the
B+ Tree index. We are only scanning
as much as we need. Note that the
performance of the index join will
decrease as V decreases.

Index Nested Loop Join

If index on S is unclustered:
B(R) + T(R) * (T(S) * 1/V(S,a))

47

Why did this
change from

B(R) to T(R)?

Remember that tuples are stored on contiguous
blocks. In a clustered index from before we know
we can scan a single chunk of the disk to get the
entire desired range. In an unclustered index we no
longer can assume contiguous access. Thus we
estimate that every tuple needs its own I/O
operation.

GENERATING QUERY PLANS
(REVIEW)

48CSE 414 - Spring 2018

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

Supplier Supply

σ

π

⨝

Review:
Logical vs Physical Plans

• Logical plans:
– Created by the parser from the input SQL text
– Expressed as a relational algebra tree
– Each SQL query has many possible logical plans

• Physical plans:
– Goal is to choose an efficient implementation for

each operator in the RA tree
– Each logical plan has many possible physical plans

CSE 414 - Spring 2018 49

Review: Relational Algebra

CSE 414 - Spring 2018 50

Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

Relational algebra expression is
also called the “logical query plan”

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

Review: Physical Query Plan 1

51

Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
A physical query plan is a logical
query plan annotated with
physical implementation details

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

Review: Physical Query Plan 2

52

Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Hash join)

(On the fly)

(On the fly)
Same logical query plan
Different physical plan

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

Query Optimization: Overview

• Compute cost of each operator

– This depends on:

• Table statistics (# of tuples etc)

• Algorithm used

• Cost of a physical plan =

sum(each operator cost)

• Cost each plan and choose the one with

lowest cost

CSE 414 - Spring 2018 54

Cost of Query Plans

CSE 414 - Autumn 2018 55

Logical Query Plan 1

Supply Supplier

sid = sid

σpno=2�scity=‘Seattle’�sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

56

Logical Query Plan 1

Supply Supplier

sid = sid

σpno=2�scity=‘Seattle’�sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 10000

57

Logical Query Plan 1

Supply Supplier

sid = sid

σpno=2�scity=‘Seattle’�sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 10000

T < 1

58

Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’�sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

59

Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’�sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 4 T= 5

60

Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’�sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 4 T= 5
Very wrong!

Why?

61

Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’�sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 4 T= 5
Very wrong!

Why?

T = 4

62

Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’�sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 4 T= 5
Very wrong!

Why?

T = 4

Different
estimate L

63

Physical Plan 1

Supply Supplier

sid = sid

σpno=2�scity=‘Seattle’�sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 10000

T < 1

Block nested loop join

Scan
Scan

Total cost: 100/10 * 100 = 1000

64

Physical Plan 1

Supply Supplier

sid = sid

σpno=2�scity=‘Seattle’�sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 10000

T < 1

Block nested loop join

Scan
Scan

Total cost: 100+100*100 = 10100

65

Physical Plan 2

Supply Supplier

sid = sid

σsstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 4

T= 5

T = 4

Unclustered
index lookup
Supply(pno)

Unclustered
index lookup
Supplier(scity)

σscity=‘Seattle’

Cost of Supply(pno) = 4
Cost of Supplier(scity) = 50
Total cost: 54

Main memory join

T= 50

66

Physical Plan 2

Supply Supplier

sid = sid

σsstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 4

T= 5

T = 4

Unclustered
index lookup
Supply(pno)

Unclustered
index lookup
Supplier(scity)

σscity=‘Seattle’

Cost of Supply(pno) = 4
Cost of Supplier(scity) = 50
Total cost: 54

Main memory join

T= 50

67

Physical Plan 2

Supply Supplier

sid = sid

σsstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 4

T= 5

T = 4

Unclustered
index lookup
Supply(pno)

Unclustered
index lookup
Supplier(scity)

σscity=‘Seattle’

Cost of Supply(pno) = 4
Cost of Supplier(scity) = 50
Total cost: 54

Main memory join

T= 50

68

Physical Plan 3

Supply Supplier

sid = sid

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 4

T = 4

Unclustered
index lookup
Supply(pno)

Cost of Supply(pno) = 4
Cost of Index join = 4
Total cost: 8

Clustered
Index join

σscity=‘Seattle’�sstate=‘WA’

69

Physical Plan 3

Supply Supplier

sid = sid

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 4

T = 4

Unclustered
index lookup
Supply(pno)

Cost of Supply(pno) = 4
Cost of Index join = 4
Total cost: 8

Clustered
Index join

σscity=‘Seattle’�sstate=‘WA’

70

Physical Plan 3

Supply Supplier

sid = sid

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 4

T = 4

Unclustered
index lookup
Supply(pno)

Cost of Supply(pno) = 4
Cost of Index join = 4
Total cost: 8

Clustered
Index join

σscity=‘Seattle’�sstate=‘WA’

71

Query Optimizer Summary

• Input: A logical query plan
• Output: A good physical query plan
• Basic query optimization algorithm

– Enumerate alternative plans (logical and physical)
– Compute estimated cost of each plan
– Choose plan with lowest cost

• This is called cost-based optimization

CSE 414 - Autumn 2018 72

