
Introduction to Data Management

CSE 414

Unit 4: RDBMS Internals

Logical and Physical Plans

Query Execution

Query Optimization

(3 lectures)

CSE 414 - Autumn 2018 1

Introduction to Database Systems
CSE 414

Lecture 16:
Basics of Data Storage and Indexes

CSE 414 - Autumn 2018 2

Query Performance
• My database application is too slow… why?
• One of the queries is very slow… why?

• To understand performance, we need to
understand:
– How is data organized on disk
– How to estimate query costs

– In this course we will focus on disk-based DBMSs

CSE 414 - Autumn 2018 3

Data Storage

• DBMSs store data in files
• Most common organization is row-wise storage
• On disk, a file is split into

blocks
• Each block contains

a set of tuples

In the example, we have 4 blocks with 2 tuples each

CSE 414 - Autumn 2018 4

10 Tom Hanks

20 Amy Hanks

50 … …

200 …

220

240

420

800

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

block 1

block 2

block 3

Data File Types

The data file can be one of:
• Heap file

– Unsorted
• Sequential file

– Sorted according to some attribute(s) called key

5

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

CSE 414 - Autumn 2018

Index

• An additional file, that allows fast access to
records in the data file given a search key

6CSE 414 - Autumn 2018

Index

• An additional file, that allows fast access to
records in the data file given a search key

• The index contains (key, value) pairs:
– The key = an attribute value (e.g., student ID or name)
– The value = a pointer to the record

7CSE 414 - Autumn 2018

Index

• An additional file, that allows fast access to
records in the data file given a search key

• The index contains (key, value) pairs:
– The key = an attribute value (e.g., student ID or name)
– The value = a pointer to the record

• Could have many indexes for one table

8

Key = means here search key

CSE 414 - Autumn 2018

This Is Not A Key

Different keys:

• Primary key – uniquely identifies a tuple

• Key of the sequential file – how the data file is

sorted, if at all

• Index key – how the index is organized

CSE 414 - Autumn 2018 9

10

Example 1:
Index on ID

10

20

50

200

220

240

420

800

CSE 414 - Autumn 2018

Data File Student

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

10 Tom Hanks

20 Amy Hanks

50 … …

200 …

220

240

420

800
950

…

Index Student_ID on Student.ID

11

Example 2:
Index on fName

CSE 414 - Autumn 2018

Index Student_fName
on Student.fName

Student

Amy

Ann

Bob

Cho

…

…

…

…

…

…

Tom

10 Tom Hanks

20 Amy Hanks

50 … …

200 …

220

240

420

800

Data File Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

Index Organization
• Hash table

• B+ trees – most common
– They are search trees, but they are not binary

instead have higher fan-out
– Will discuss them briefly next

• Specialized indexes: bit maps, R-trees,
inverted index

CSE 414 - Autumn 2018 12

13

Hash table example

10

20

50

200

220

240

420

800

… …

… …

CSE 414 - Autumn 2018

Data File Student

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

10 Tom Hanks

20 Amy Hanks

50 … …

200 …

220

240

420

800

Index Student_ID on Student.ID

Index File
(preferably
in memory)

Data file
(on disk)

14

B+ Tree Index by Example

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

d = 2 Find the key 40

40 <= 80

20 < 40 <= 60

30 < 40 <= 40

CSE 414 - Autumn 2018

Clustered vs Unclustered

Index entries
(Index File)

(Data file)

Data Records

Index entries

Data Records
CLUSTERED UNCLUSTERED

B+ Tree B+ Tree

15CSE 414 - Autumn 2018

Every table can have only one clustered and many unclustered indexes
Why?

16

Index Classification

• Clustered/unclustered
– Clustered = records close in index are close in data

• Option 1: Data inside data file is sorted on disk
• Option 2: Store data directly inside the index (no separate files)

– Unclustered = records close in index may be far in data

CSE 414 - Autumn 2018

17

Index Classification

• Clustered/unclustered
– Clustered = records close in index are close in data

• Option 1: Data inside data file is sorted on disk
• Option 2: Store data directly inside the index (no separate files)

– Unclustered = records close in index may be far in data

• Primary/secondary
– Meaning 1:

• Primary = is over attributes that include the primary key
• Secondary = otherwise

– Meaning 2: means the same as clustered/unclustered

CSE 414 - Autumn 2018

18

Index Classification

• Clustered/unclustered
– Clustered = records close in index are close in data

• Option 1: Data inside data file is sorted on disk
• Option 2: Store data directly inside the index (no separate files)

– Unclustered = records close in index may be far in data

• Primary/secondary
– Meaning 1:

• Primary = is over attributes that include the primary key
• Secondary = otherwise

– Meaning 2: means the same as clustered/unclustered

• Organization B+ tree or Hash table

CSE 414 - Autumn 2018

Scanning a Data File

• Disks are mechanical devices!

– Technology from the 60s;

– Density increases over time

• Read only at the rotation speed!

• Consequence: sequential scan faster than random

– Good: read blocks 1,2,3,4,5,…

– Bad: read blocks 2342, 11, 321,9, …

• Rule of thumb:

– Random read 1-2% of file ≈ sequential scan entire file;

– 1-2% decreases over time, because of increased density

• Solid state (SSD): still too expensive today
19CSE 414 - Autumn 2018

Summary So Far

• Index = a file that enables direct access to
records in another data file
– B+ tree / Hash table
– Clustered/unclustered

• Data resides on disk
– Organized in blocks
– Sequential reads are efficint
– Random access less efficient
– Random read 1-2% of data worse than sequential

CSE 414 - Autumn 2018 20

Example

CSE 414 - Autumn 2018 21

SELECT *
FROM Student x, Takes y
WHERE x.ID=y.studentID AND y.courseID > 300

Assume the database has indexes on these attributes:
• index_takes_courseID = index on Takes.courseID
• index_student_ID = index on Student.ID

Student(ID, fname, lname)
Takes(studentID, courseID)

⨝

Takes

Studentσ

Example

CSE 414 - Autumn 2018 22

SELECT *
FROM Student x, Takes y
WHERE x.ID=y.studentID AND y.courseID > 300

Assume the database has indexes on these attributes:
• index_takes_courseID = index on Takes.courseID
• index_student_ID = index on Student.ID

for y in Takes
if courseID > 300 then

for x in Student
if x.ID=y.studentID

output *

Student(ID, fname, lname)
Takes(studentID, courseID)

⨝

Takes

Studentσ

Example

CSE 414 - Autumn 2018 23

SELECT *
FROM Student x, Takes y
WHERE x.ID=y.studentID AND y.courseID > 300

Assume the database has indexes on these attributes:
• Takes_courseID = index on Takes.courseID
• Student_ID = index on Student.ID

for y in Takes
if courseID > 300 then

for x in Student
if x.ID=y.studentID

output *

Student(ID, fname, lname)
Takes(studentID, courseID)

⨝

Takes

Studentσ

Example

CSE 414 - Autumn 2018 24

SELECT *
FROM Student x, Takes y
WHERE x.ID=y.studentID AND y.courseID > 300

for y’ in Takes_courseID where y’.courseID > 300
y = fetch the Takes record pointed to by y’
for x’ in index_student_ID where x.ID = y.studentID

x = fetch the Student record pointed to by x’
output *

Assume the database has indexes on these attributes:
• Takes_courseID = index on Takes.courseID
• Student_ID = index on Student.ID

for y in Takes
if courseID > 300 then

for x in Student
if x.ID=y.studentID

output *

Student(ID, fname, lname)
Takes(studentID, courseID)

⨝

Takes

Studentσ

Example

CSE 414 - Autumn 2018 25

SELECT *
FROM Student x, Takes y
WHERE x.ID=y.studentID AND y.courseID > 300

for y’ in Takes_courseID where y’.courseID > 300
y = fetch the Takes record pointed to by y’
for x’ in index_student_ID where x.ID = y.studentID

x = fetch the Student record pointed to by x’
output *

Assume the database has indexes on these attributes:
• Takes_courseID = index on Takes.courseID
• Student_ID = index on Student.ID

for y in Takes
if courseID > 300 then

for x in Student
if x.ID=y.studentID

output *
Index selection

Student(ID, fname, lname)
Takes(studentID, courseID)

⨝

Takes

Studentσ

Example

CSE 414 - Autumn 2018 26

SELECT *
FROM Student x, Takes y
WHERE x.ID=y.studentID AND y.courseID > 300

for y’ in Takes_courseID where y’.courseID > 300
y = fetch the Takes record pointed to by y’
for x’ in Student_ID where x’.ID = y.studentID

x = fetch the Student record pointed to by x’
output *

Assume the database has indexes on these attributes:
• Takes_courseID = index on Takes.courseID
• Student_ID = index on Student.ID

for y in Takes
if courseID > 300 then

for x in Student
if x.ID=y.studentID

output *
Index selection

Index join

Student(ID, fname, lname)
Takes(studentID, courseID)

⨝

Takes

Studentσ

Example

CSE 414 - Autumn 2018 27

SELECT *
FROM Student x, Takes y
WHERE x.ID=y.studentID AND y.courseID > 300

for y’ in Takes_courseID where y’.courseID > 300
y = fetch the Takes record pointed to by y’
for x’ in Student_ID where x’.ID = y.studentID

x = fetch the Student record pointed to by x’
output *

Assume the database has indexes on these attributes:
• Takes_courseID = index on Takes.courseID
• Student_ID = index on Student.ID

for y in Takes
if courseID > 300 then

for x in Student
if x.ID=y.studentID

output *
Index selection

Index join

Student(ID, fname, lname)
Takes(studentID, courseID)

⨝

Takes

Studentσ

Example

CSE 414 - Autumn 2018 28

SELECT *
FROM Student x, Takes y
WHERE x.ID=y.studentID AND y.courseID > 300

for y’ in Takes_courseID where y’.courseID > 300
y = fetch the Takes record pointed to by y’
for x’ in Student_ID where x’.ID = y.studentID

x = fetch the Student record pointed to by x’
output *

Assume the database has indexes on these attributes:
• Takes_courseID = index on Takes.courseID
• Student_ID = index on Student.ID

for y in Takes
if courseID > 300 then

for x in Student
if x.ID=y.studentID

output *
Index selection

Index join

Student(ID, fname, lname)
Takes(studentID, courseID)

⨝

Takes

Studentσ

Index join

Index selection

Getting Practical:
Creating Indexes in SQL

29

CREATE INDEX V1 ON V(N)

CREATE TABLE V(M int, N varchar(20), P int);

CREATE INDEX V2 ON V(P, M)

CREATE INDEX V3 ON V(M, N)

CREATE CLUSTERED INDEX V5 ON V(N)

CSE 414 - Autumn 2018

CREATE UNIQUE INDEX V4 ON V(N)

Getting Practical:
Creating Indexes in SQL

30

CREATE INDEX V1 ON V(N)

CREATE TABLE V(M int, N varchar(20), P int);

CREATE INDEX V2 ON V(P, M)

CREATE INDEX V3 ON V(M, N)

CREATE CLUSTERED INDEX V5 ON V(N)

CSE 414 - Autumn 2018

CREATE UNIQUE INDEX V4 ON V(N)

What does this mean?

Getting Practical:
Creating Indexes in SQL

31

CREATE INDEX V1 ON V(N)

CREATE TABLE V(M int, N varchar(20), P int);

CREATE INDEX V2 ON V(P, M)

CREATE INDEX V3 ON V(M, N)

CREATE CLUSTERED INDEX V5 ON V(N)

CSE 414 - Autumn 2018

CREATE UNIQUE INDEX V4 ON V(N)

What does this mean?

select *
from V
where P=55 and M=77

yes

Getting Practical:
Creating Indexes in SQL

32

CREATE INDEX V1 ON V(N)

CREATE TABLE V(M int, N varchar(20), P int);

CREATE INDEX V2 ON V(P, M)

CREATE INDEX V3 ON V(M, N)

CREATE CLUSTERED INDEX V5 ON V(N)

CSE 414 - Autumn 2018

CREATE UNIQUE INDEX V4 ON V(N)

What does this mean?

select *
from V
where P=55

select *
from V
where P=55 and M=77

yes

Getting Practical:
Creating Indexes in SQL

33

CREATE INDEX V1 ON V(N)

CREATE TABLE V(M int, N varchar(20), P int);

CREATE INDEX V2 ON V(P, M)

CREATE INDEX V3 ON V(M, N)

CREATE CLUSTERED INDEX V5 ON V(N)

CSE 414 - Autumn 2018

CREATE UNIQUE INDEX V4 ON V(N)

What does this mean?

select *
from V
where P=55

select *
from V
where P=55 and M=77

yes

yes

Getting Practical:
Creating Indexes in SQL

34

CREATE INDEX V1 ON V(N)

CREATE TABLE V(M int, N varchar(20), P int);

CREATE INDEX V2 ON V(P, M)

CREATE INDEX V3 ON V(M, N)

CREATE CLUSTERED INDEX V5 ON V(N)

CSE 414 - Autumn 2018

CREATE UNIQUE INDEX V4 ON V(N)

What does this mean?

select *
from V
where P=55

select *
from V
where M=77

select *
from V
where P=55 and M=77

yes

yes

Getting Practical:

Creating Indexes in SQL

35

CREATE INDEX V1 ON V(N)

CREATE TABLE V(M int, N varchar(20), P int);

CREATE INDEX V2 ON V(P, M)

CREATE INDEX V3 ON V(M, N)

CREATE CLUSTERED INDEX V5 ON V(N)

CSE 414 - Autumn 2018

CREATE UNIQUE INDEX V4 ON V(N)

What does this mean?

select *

from V

where P=55

select *

from V

where M=77

select *

from V

where P=55 and M=77

no

yes

yes

Getting Practical:

Creating Indexes in SQL

36

CREATE INDEX V1 ON V(N)

CREATE TABLE V(M int, N varchar(20), P int);

CREATE INDEX V2 ON V(P, M)

CREATE INDEX V3 ON V(M, N)

CREATE CLUSTERED INDEX V5 ON V(N)

CSE 414 - Autumn 2018

CREATE UNIQUE INDEX V4 ON V(N)

What does this mean?

select *

from V

where P=55

select *

from V

where M=77

select *

from V

where P=55 and M=77

no

yes

yes

Not supported
in SQLite

Which Indexes?

• How many indexes could we create?

• Which indexes should we create?

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

CSE 414 - Autumn 2018 37

Which Indexes?

• How many indexes could we create?

• Which indexes should we create?

In general this is a very hard problem

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

38CSE 414 - Autumn 2018

Which Indexes?

• The index selection problem
– Given a table, and a “workload” (big Java

application with lots of SQL queries), decide which
indexes to create (and which ones NOT to create!)

• Who does index selection:
– The database administrator DBA

– Semi-automatically, using a database
administration tool

39CSE 414 - Autumn 2018

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

Which Indexes?

• The index selection problem
– Given a table, and a “workload” (big Java

application with lots of SQL queries), decide which
indexes to create (and which ones NOT to create!)

• Who does index selection:
– The database administrator DBA

– Semi-automatically, using a database
administration tool

40CSE 414 - Autumn 2018

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

Index Selection: Which Search Key

• Make some attribute K a search key if the
WHERE clause contains:
– An exact match on K
– A range predicate on K
– A join on K

41CSE 414 - Autumn 2018

The Index Selection Problem 1

42

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

CSE 414 - Autumn 2018

The Index Selection Problem 1

43

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

What indexes ?

CSE 414 - Autumn 2018

The Index Selection Problem 1

44

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

A: V(N) and V(P) (hash tables or B-trees)

CSE 414 - Autumn 2018

The Index Selection Problem 2

45

V(M, N, P);

SELECT *
FROM V
WHERE N>? and N<?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:

Your workload is this

What indexes ?

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

CSE 414 - Autumn 2018

The Index Selection Problem 2

46

V(M, N, P);

SELECT *
FROM V
WHERE N>? and N<?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:

Your workload is this

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

CSE 414 - Autumn 2018

A: definitely V(N) (must B-tree); unsure about V(P)

The Index Selection Problem 3

47

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE N=? and P>?

100000 queries: 1000000 queries:

Your workload is this

What indexes ?

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

CSE 414 - Autumn 2018

The Index Selection Problem 3

48

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE N=? and P>?

100000 queries: 1000000 queries:

Your workload is this

A: V(N, P)

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

CSE 414 - Autumn 2018

How does this index differ from:
1. Two indexes V(N) and V(P)?
2. An index V(P, N)?

The Index Selection Problem 4

49

V(M, N, P);

SELECT *
FROM V
WHERE P>? and P<?

1000 queries: 100000 queries:
Your workload is this

SELECT *
FROM V
WHERE N>? and N<?

What indexes ?

CSE 414 - Autumn 2018

The Index Selection Problem 4

50

V(M, N, P);

SELECT *
FROM V
WHERE P>? and P<?

1000 queries: 100000 queries:
Your workload is this

SELECT *
FROM V
WHERE N>? and N<?

A: V(N) secondary, V(P) primary index

CSE 414 - Autumn 2018

Two typical kinds of queries
• Point queries
• What data structure

should be used for
index?

CSE 414 - Autumn 2018 51

SELECT *
FROM Movie
WHERE year = ?

SELECT *
FROM Movie
WHERE year >= ? AND

year <= ?

• Range queries
• What data structure

should be used for
index?

Basic Index Selection Guidelines

• Consider queries in workload in order of importance

• Consider relations accessed by query
– No point indexing other relations

• Look at WHERE clause for possible search key

• Try to choose indexes that speed-up multiple queries

CSE 414 - Autumn 2018 52

To Cluster or Not

• Range queries benefit mostly from clustering
• Covering indexes do not need to be

clustered: they work equally well unclustered

53CSE 414 - Autumn 2018

54

Percentage tuples retrieved

Cost

0 100

SELECT *
FROM R
WHERE R.K>? and R.K<?

CSE 414 - Autumn 2018

55

Percentage tuples retrieved

Cost

0 100

Sequential scan

CSE 414 - Autumn 2018

SELECT *
FROM R
WHERE R.K>? and R.K<?

56

Percentage tuples retrieved

Cost

0 100

Sequential scan

Clustered index

CSE 414 - Autumn 2018

SELECT *
FROM R
WHERE R.K>? and R.K<?

57

Percentage tuples retrieved

Cost

0 100

Sequential scan

Clustered index

Un
clu

st
er

ed
 in

de
x

CSE 414 - Autumn 2018

SELECT *
FROM R
WHERE R.K>? and R.K<?

Introduction to Database Systems
CSE 344

Lecture 17:
Basics of Query Optimization and

Query Cost Estimation

CSE 414 - Autumn 2018 58

Choosing Index is Not Enough

• To estimate the cost of a query plan, we still
need to consider other factors:

– How each operator is implemented

– The cost of each operator

– Let’s start with the basics

CSE 414 - Autumn 2018 59

Cost of Reading
Data From Disk

CSE 414 - Autumn 2018 60

Cost Parameters
• Cost = I/O + CPU + Network BW

– We will focus on I/O in this class
• Parameters (a.k.a. statistics):

– B(R) = # of blocks (i.e., pages) for relation R
– T(R) = # of tuples in relation R
– V(R, a) = # of distinct values of attribute a

61CSE 414 - Autumn 2018

Cost Parameters
• Cost = I/O + CPU + Network BW

– We will focus on I/O in this class
• Parameters (a.k.a. statistics):

– B(R) = # of blocks (i.e., pages) for relation R
– T(R) = # of tuples in relation R
– V(R, a) = # of distinct values of attribute a

62

When a is a key, V(R,a) = T(R)
When a is not a key, V(R,a) can be anything <= T(R)

CSE 414 - Autumn 2018

Cost Parameters
• Cost = I/O + CPU + Network BW

– We will focus on I/O in this class
• Parameters (a.k.a. statistics):

– B(R) = # of blocks (i.e., pages) for relation R
– T(R) = # of tuples in relation R
– V(R, a) = # of distinct values of attribute a

• DBMS collects statistics about base tables
must infer them for intermediate results

63

When a is a key, V(R,a) = T(R)
When a is not a key, V(R,a) can be anything <= T(R)

CSE 414 - Autumn 2018

Selectivity Factors for Conditions

• A = c /* σA=c(R) */
– Selectivity = 1/V(R,A)

• A < c /* σA<c(R)*/
– Selectivity = (c - min(R, A))/(max(R,A) - min(R,A))

• c1 < A < c2 /* σc1<A<c2(R)*/
– Selectivity = (c2 – c1)/(max(R,A) - min(R,A))

CSE 414 - Autumn 2018 64

Cost of Reading Data From Disk

• Sequential scan for relation R costs B(R)

• Index-based selection
– Estimate selectivity factor f (see previous slide)
– Clustered index: f*B(R)
– Unclustered index f*T(R)

CSE 414 - Autumn 2018 65

Note: we ignore I/O cost for index pages

Index Based Selection

• Example:

• Table scan:
• Index based selection:

CSE 414 - Autumn 2018 66

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?

Index Based Selection

• Example:

• Table scan: B(R) = 2,000 I/Os
• Index based selection:

CSE 414 - Autumn 2018 67

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?

Index Based Selection

• Example:

• Table scan: B(R) = 2,000 I/Os
• Index based selection:

– If index is clustered:
– If index is unclustered:

CSE 414 - Autumn 2018 68

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?

Index Based Selection

• Example:

• Table scan: B(R) = 2,000 I/Os
• Index based selection:

– If index is clustered: B(R) * 1/V(R,a) = 100 I/Os
– If index is unclustered:

CSE 414 - Autumn 2018 69

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?

Index Based Selection

• Example:

• Table scan: B(R) = 2,000 I/Os
• Index based selection:

– If index is clustered: B(R) * 1/V(R,a) = 100 I/Os
– If index is unclustered: T(R) * 1/V(R,a) = 5,000 I/Os

CSE 414 - Autumn 2018 70

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?

Index Based Selection

• Example:

• Table scan: B(R) = 2,000 I/Os
• Index based selection:

– If index is clustered: B(R) * 1/V(R,a) = 100 I/Os
– If index is unclustered: T(R) * 1/V(R,a) = 5,000 I/Os

CSE 414 - Autumn 2018 71

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?

Lesson: Don’t build unclustered indexes when V(R,a) is small !

Cost of Executing Operators
(Focus on Joins)

CSE 414 - Autumn 2018 72

Outline

• Join operator algorithms
– One-pass algorithms (Sec. 15.2 and 15.3)
– Index-based algorithms (Sec 15.6)

• Note about readings:
– In class, we discuss only algorithms for joins
– Other operators are easier: read the book

CSE 414 - Autumn 2018 73

Join Algorithms

• Hash join

• Nested loop join

• Sort-merge join

CSE 414 - Autumn 2018 74

Hash Join

Hash join: R ⋈ S
• Scan R, build buckets in main memory
• Then scan S and join
• Cost: B(R) + B(S)
• Which relation to build the hash table on?

CSE 414 - Autumn 2018 75

Hash Join

Hash join: R ⋈ S
• Scan R, build buckets in main memory
• Then scan S and join
• Cost: B(R) + B(S)
• Which relation to build the hash table on?

• One-pass algorithm when B(R) ≤ M
– M = number of memory pages available

CSE 414 - Autumn 2018 76

Hash Join Example

77

Patient Insurance

Patient(pid, name, address)
Insurance(pid, provider, policy_nb)

1 ‘Bob’ ‘Seattle’
2 ‘Ela’ ‘Everett’

3 ‘Jill’ ‘Kent’
4 ‘Joe’ ‘Seattle’

Patient
2 ‘Blue’ 123
4 ‘Prem’ 432

Insurance

4 ‘Prem’ 343
3 ‘GrpH’ 554

Two tuples
per page

CSE 414 - Autumn 2018

Hash Join Example

78

Patient Insurance

1 2

3 4

Patient

2 4

Insurance

4 3

Showing

pid only

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

Some large-

enough #

This is one page

with two tuples
CSE 414 - Autumn 2018

Hash Join Example

79

Step 1: Scan Patient and build hash table in memory
Can be done in
method open()

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 43 96 85

1 2

CSE 414 - Autumn 2018

Hash Join Example

80

Step 2: Scan Insurance and probe into hash table
Done during
calls to next()

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 43 96 85

1 22 4
Output buffer
2 2

Write to disk or
pass to next

operatorCSE 414 - Autumn 2018

Hash Join Example

81

Step 2: Scan Insurance and probe into hash table
Done during
calls to next()

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 43 96 85

1 22 4
Output buffer
4 4

CSE 414 - Autumn 2018

Hash Join Example

82

Step 2: Scan Insurance and probe into hash table
Done during
calls to next()

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 43 96 85

1 24 3
Output buffer
4 4

Keep going until read all of Insurance

Cost: B(R) + B(S)CSE 414 - Autumn 2018

Nested Loop Joins
• Tuple-based nested loop R ⋈ S
• R is the outer relation, S is the inner relation

CSE 414 - Autumn 2018 83

for each tuple t1 in R do
for each tuple t2 in S do

if t1 and t2 join then output (t1,t2)

What is the Cost?

Nested Loop Joins
• Tuple-based nested loop R ⋈ S
• R is the outer relation, S is the inner relation

• Cost: B(R) + T(R) B(S)
• Multiple-pass since S is read many times

CSE 414 - Autumn 2018 84

What is the Cost?

for each tuple t1 in R do
for each tuple t2 in S do

if t1 and t2 join then output (t1,t2)

Page-at-a-time Refinement

• Cost: B(R) + B(R)B(S)

CSE 414 - Autumn 2018 85

What is the Cost?

for each page of tuples r in R do

for each page of tuples s in S do

for all pairs of tuples t1 in r, t2 in s

if t1 and t2 join then output (t1,t2)

1 2

Page-at-a-time Refinement

CSE 414 - Autumn 2018 86

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient

Output buffer
2 2

Input buffer for Insurance2 4

Page-at-a-time Refinement

CSE 414 - Autumn 2018 87

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient1 2

Output buffer

Input buffer for Insurance4 3

1 2

Page-at-a-time Refinement

88

3 4

Patient
2 4

Insurance

4 3

8 5

9 6

8 9

6 6

1 3

Disk

Input buffer for Patient1 2

Output buffer

Input buffer for Insurance2 8

1 2

2 2

Cost: B(R) + B(R)B(S)

Keep going until read
all of Insurance

Then repeat for next
page of Patient… until end of Patient

1 2

2 8
CSE 414 - Autumn 2018

Block-Nested-Loop Refinement

• Cost: B(R) + B(R)B(S)/(M-1)

CSE 414 - Autumn 2018 89

What is the Cost?

for each group of M-1 pages r in R do
for each page of tuples s in S do

for all pairs of tuples t1 in r, t2 in s
if t1 and t2 join then output (t1,t2)

Sort-Merge Join

Sort-merge join: R ⋈ S
• Scan R and sort in main memory
• Scan S and sort in main memory
• Merge R and S

• Cost: B(R) + B(S)
• One pass algorithm when B(S) + B(R) <= M
• Typically, this is NOT a one pass algorithm

CSE 414 - Autumn 2018 90

Sort-Merge Join Example

91

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 1: Scan Patient and sort in memory

CSE 414 - Autumn 2018

Sort-Merge Join Example

92

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 2: Scan Insurance and sort in memory

1 2 3 4

6 8 8 9

2 3 4 6

CSE 414 - Autumn 2018

Sort-Merge Join Example

93

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 3: Merge Patient and Insurance

1 2 3 4

6 8 8 9

2 3 4 6

Output buffer
1 1

CSE 414 - Autumn 2018

Sort-Merge Join Example

94

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 3: Merge Patient and Insurance

1 2 3 4

6 8 8 9

2 3 4 6

Output buffer
2 2

Keep going until end of first relation

CSE 414 - Autumn 2018

Index Nested Loop Join
R ⋈S

• Assume S has an index on the join attribute

• Iterate over R, for each tuple fetch
corresponding tuple(s) from S

• Cost:
– If index on S is clustered:

B(R) + T(R) * (B(S) * 1/V(S,a))

– If index on S is unclustered:
B(R) + T(R) * (T(S) * 1/V(S,a))

CSE 414 - Autumn 2018 95

Cost of Query Plans

CSE 414 - Autumn 2018 96

Logical Query Plan 1

Supply Supplier

sid = sid

σpno=2�scity=‘Seattle’�sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11CSE 414 - Autumn 2018 97

Logical Query Plan 1

Supply Supplier

sid = sid

σpno=2�scity=‘Seattle’�sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 10000

CSE 414 - Autumn 2018 98

Logical Query Plan 1

Supply Supplier

sid = sid

σpno=2�scity=‘Seattle’�sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)

M=11

T = 10000

T < 1

CSE 414 - Autumn 2018 99

Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’�sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11CSE 414 - Autumn 2018 100

Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’�sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4 T= 5

CSE 414 - Autumn 2018 101

Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’�sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000

B(Supplier) = 100

V(Supplier, scity) = 20

V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000

B(Supply) = 100

V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)

M=11

T = 4 T= 5
Very wrong!

Why?

CSE 414 - Autumn 2018 102

Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’�sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000

B(Supplier) = 100

V(Supplier, scity) = 20

V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000

B(Supply) = 100

V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)

M=11

T = 4 T= 5
Very wrong!

Why?

T = 4

CSE 414 - Autumn 2018 103

Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’�sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4 T= 5
Very wrong!

Why?

T = 4

Different
estimate L

CSE 414 - Autumn 2018 104

Physical Plan 1

Supply Supplier

sid = sid

σpno=2�scity=‘Seattle’�sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)

M=11

T = 10000

T < 1

Block nested loop join

Scan
Scan

Total cost: 100/10 * 100 = 1000

CSE 414 - Autumn 2018 105

Physical Plan 1

Supply Supplier

sid = sid

σpno=2�scity=‘Seattle’�sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 10000

T < 1

Block nested loop join

Scan
Scan

Total cost: 100+100*100/10 = 1100

CSE 414 - Autumn 2018 106

Physical Plan 2

Supply Supplier

sid = sid

σsstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000

B(Supplier) = 100

V(Supplier, scity) = 20

V(Supplier, state) = 10

T(Supply) = 10000

B(Supply) = 100

V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)

M=11

T = 4

T= 5

T = 4

Unclustered

index lookup

Supply(pno)

Unclustered

index lookup

Supplier(scity)

σscity=‘Seattle’

Cost of Supply(pno) = 4

Cost of Supplier(scity) = 50

Total cost: 54

Main memory join

T= 50

CSE 414 - Autumn 2018 107

Physical Plan 2

Supply Supplier

sid = sid

σsstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000

B(Supplier) = 100

V(Supplier, scity) = 20

V(Supplier, state) = 10

T(Supply) = 10000

B(Supply) = 100

V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)

M=11

T = 4

T= 5

T = 4

Unclustered

index lookup

Supply(pno)

Unclustered

index lookup

Supplier(scity)

σscity=‘Seattle’

Cost of Supply(pno) = 4

Cost of Supplier(scity) = 50

Total cost: 54

Main memory join

T= 50

CSE 414 - Autumn 2018 108

Physical Plan 2

Supply Supplier

sid = sid

σsstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000

B(Supplier) = 100

V(Supplier, scity) = 20

V(Supplier, state) = 10

T(Supply) = 10000

B(Supply) = 100

V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)

M=11

T = 4

T= 5

T = 4

Unclustered

index lookup

Supply(pno)

Unclustered

index lookup

Supplier(scity)

σscity=‘Seattle’

Cost of Supply(pno) = 4

Cost of Supplier(scity) = 50

Total cost: 54

Main memory join

T= 50

CSE 414 - Autumn 2018 109

Physical Plan 3

Supply Supplier

sid = sid

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4

T = 4

Unclustered
index lookup
Supply(pno)

Cost of Supply(pno) = 4
Cost of Index join = 4
Total cost: 8

Clustered
Index join

σscity=‘Seattle’�sstate=‘WA’

CSE 414 - Autumn 2018 110

Physical Plan 3

Supply Supplier

sid = sid

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4

T = 4

Unclustered
index lookup
Supply(pno)

Cost of Supply(pno) = 4
Cost of Index join = 4
Total cost: 8

Clustered
Index join

σscity=‘Seattle’�sstate=‘WA’

CSE 414 - Autumn 2018 111

Physical Plan 3

Supply Supplier

sid = sid

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4

T = 4

Unclustered
index lookup
Supply(pno)

Cost of Supply(pno) = 4
Cost of Index join = 4
Total cost: 8

Clustered
Index join

σscity=‘Seattle’�sstate=‘WA’

CSE 414 - Autumn 2018 112

Query Optimizer Summary

• Input: A logical query plan
• Output: A good physical query plan
• Basic query optimization algorithm

– Enumerate alternative plans (logical and physical)
– Compute estimated cost of each plan
– Choose plan with lowest cost

• This is called cost-based optimization

CSE 414 - Autumn 2018 113

