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Announcements

• WQ5 (datalog) due tomorrow

• HW4 (datalog) due tomorrow

• Midterm review session this evening
– 5:30pm, CSE 2nd Floor Breakout
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Class Overview

• Unit 1: Intro
• Unit 2: Relational Data Models and Query Languages
• Unit 3: Non-relational data
• Unit 4: RDMBS internals and query optimization
• Unit 5: Parallel query processing
• Unit 6: DBMS usability, conceptual design
• Unit 7: Transactions
• Unit 8: Advanced topics (time permitting)
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From Logical RA Plans 
to Physical Plans
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Query Evaluation Steps Review

6

Parse & Rewrite Query

Select Logical Plan

Select Physical Plan

Query Execution

Disk

SQL query

Query
optimization

Logical
plan (RA)

Physical
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Logical vs Physical Plans
• Logical plans:

– Created by the parser from the input SQL text
– Expressed as a relational algebra tree
– Each SQL query has many possible logical plans

• Physical plans:
– Goal is to choose an efficient implementation for 

each operator in the RA tree
– Each logical plan has many possible physical plans
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Review: Relational Algebra
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Supplier Supply

sid = sid

σscity=�Seattle� and sstate=�WA’ and pno=2

πsname

Relational algebra expression is 
also called the “logical query plan”

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and  y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

Logical Plan v.s. Physical Plan

• Logical Plan = a Relational Algebra tree

• Physical Plan = a Logical Plan plus annotation 
of each operator with an algorithm
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Query Optimization and 
Execution

• Query optimizer:
– Choose a good logical plan
– Refine it to a good physical plan
– Sometimes these steps are intertwined

• Query execution
– Execute the physical plan
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Query Execution
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Physical Operators

Relational algebra operators:
• Selection, projection, join, union, difference
• Group-by, distinct, sort

Physical operators:
• For each operators above, several possible 

algorithms
• Main memory algorithms, or disk-based 

algorithms
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Main Memory Algorithms

Logical operator:
Supplier ⨝sid=sid Supply
Propose three physical operators for the join, assuming the 
tables are in main memory:
1.
2.
3.
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Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Main Memory Algorithms

Logical operator:
Supplier ⨝sid=sid Supply
Propose three physical operators for the join, assuming the 
tables are in main memory:
1. Nested Loop Join O(??)
2. Merge join O(??)
3. Hash join O(??)
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Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Main Memory Algorithms

Logical operator:

Supplier ⨝sid=sid Supply

Propose three physical operators for the join, assuming the 

tables are in main memory:

1. Nested Loop Join O(n2)

2. Merge join O(n log n)

3. Hash join O(n) … O(n2)
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Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

BRIEF Review of Hash Tables
0

1
2

3
4

5
6

7
8

9

Separate chaining:

h(x) = x mod 10

A (naïve) hash function:

503 103

76 666

48

503

Duplicates OK
WHY ??

Operations:

find(103) = ??
insert(488) = ??
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BRIEF Review of Hash Tables

• insert(k, v) = inserts a key k with value v

• Many values for one key
– Hence, duplicate k’s are OK

• find(k) = returns the list of all values v
associated to the key k
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Query Execution

• Join R ⨝ S: e.g. using hash-join:

– Nested-loop: forall x in R forall y in S do …

– Hash–join: build a hash table on S, probe R

• Selection: σ(R): e.g. “on-the-fly”

• But what about a larger plan?

– Each operator implements
the Iterator Interface
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Implementing Query Operators 
with the Iterator Interface

Each operator implements three methods:

• open()

• next()

• close()
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interface Operator {

// initializes operator state 
// and sets parameters
void open (...); 

// calls next() on its inputs
// processes an input tuple    
// produces output tuple(s)
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p, 

Iterator child) {
this.p = p; this.child = child;

}  
Tuple next () {

boolean found = false;
while (!found) {

Tuple in = child.next();
if (in == EOF) return EOF;
found = p(in);

}
return in;

}  
void close () { child.close(); }

}

Example “on the fly” selection operator

Implementing Query Operators 
with the Iterator Interface
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Example “on the fly” selection operator

Implementing Query Operators 
with the Iterator Interface
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interface Operator {
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Implementing Query Operators 
with the Iterator Interface
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interface Operator {

// initializes operator state 
// and sets parameters
void open (...); 

// calls next() on its inputs
// processes an input tuple    
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p, 

Operator child) {
this.p = p; this.child = child;

}  
Tuple next () {

boolean found = false;
while (!found) {

Tuple in = child.next();
if (in == EOF) return EOF;
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return in;
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Example “on the fly” selection operator

Implementing Query Operators 
with the Iterator Interface
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interface Operator {

// initializes operator state 
// and sets parameters
void open (...); 

// calls next() on its inputs
// processes an input tuple    
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p, 

Operator child) {
this.p = p; this.child = child;

}  
Tuple next () {

}  

}

Example “on the fly” selection operator

Implementing Query Operators 
with the Iterator Interface
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interface Operator {

// initializes operator state 
// and sets parameters
void open (...); 

// calls next() on its inputs
// processes an input tuple    
// produces output tuple(s)
// returns null when done
Tuple next ();
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void close ();
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class Select implements Operator {...
void open (Predicate p, 

Operator child) {
this.p = p; this.child = child;

}  
Tuple next () {

boolean found = false;
Tuple r = null;
while (!found) {

r = child.next();
if (r == null) break;
found = p(in);

}

}  

}

Example “on the fly” selection operator

Implementing Query Operators 
with the Iterator Interface
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Implementing Query Operators 
with the Iterator Interface
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Implementing Query Operators 
with the Iterator Interface

interface Operator {

// initializes operator state 
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void open (...); 
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Example “on the fly” selection operator
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Implementing Query Operators 
with the Iterator Interface
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Operator q = parse(“SELECT ...”);
q = optimize(q);

q.open();
while (true) { 

Tuple t = q.next();
if (t == null) break;
else printOnScreen(t);

}
q.close();

Query plan execution
interface Operator {

// initializes operator state 
// and sets parameters
void open (...); 

// calls next() on its inputs
// processes an input tuple    
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}
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Pipelining
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Suppliers Supplies

sno = sno

σscity=�Seattle� and sstate=�WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join
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Pipelining
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Suppliers Supplies

sno = sno

σscity=�Seattle� and sstate=�WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
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Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Pipelining
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Suppliers Supplies

sno = sno

σscity=�Seattle� and sstate=�WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
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Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join
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Pipelining
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Suppliers Supplies

sno = sno

σscity=�Seattle� and sstate=�WA’ and pno=2

πsname

(File scan) (File scan)

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss hash-join
in class
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Pipelining
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Pipelining

CSE 414 - Autumn 2018 44

Suppliers Supplies

sno = sno
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πsname

(File scan) (File scan)

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss hash-join
in class

Tuples from

here are
pipelined

Tuples from

here are

“blocked”

Pipeline v.s. Blocking

• Pipeline
– A tuple moves all the way through up the query plan
– Advantages: speed
– Disadvantage: need all hash at the same time in 

memory
• Blocking

– The entire result of the subplan is computed (and 
stored to disk) before the first tuple is sent up the plan

– Advantage: saves memory
– Disadvantage: slower
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Discussion on Physical Plan

More components of a physical plan:
• Access path selection for each relation

– Scan the relation or use an index (next lecture)

• Implementation choice for each operator
– Nested loop join, hash join, etc.

• Scheduling decisions for operators
– Pipelined execution or intermediate materialization
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