Introduction to Data Management
CSE 414

Unit 4: RDBMS Internals
Logical and Physical Plans
Query Execution
Query Optimization

(3 lectures)

CSE 414 - Autumn 2018

Introduction to Data Management
CSE 414

Lecture 15: Introduction to Query
Evaluation

CSE 414 - Autumn 2018 2

Announcements

+ WQ5 (datalog) due tomorrow

*« HW4 (datalog) due tomorrow

« Midterm review session this evening
— 5:30pm, CSE 2™ Floor Breakout

CSE 414 - Autumn 2018

Class Overview

» Unit 1: Intro
» Unit 2: Relational Data Models and Query Languages

. i - - i 3
« Unit 4: RDMBS internals and query optimization

« Unit 5: Parallel query processing

« Unit 6: DBMS usability, conceptual design
» Unit 7: Transactions

» Unit 8: Advanced topics (time permitting)

CSE 414 - Autumn 2018 4

From Logical RA Plans
to Physical Plans

CSE 414 - Autumn 2018

Query Evaluation Steps Review
SQLguery

[Parse & Rewrite Query]
Logical

Select Logical Plan plan (RA)

plan

Query
optimizatiol

Logical vs Physical Plans
« Logical plans:
— Created by the parser from the input SQL text
— Expressed as a relational algebra tree
— Each SQL query has many possible logical plans

« Physical plans:

— Goal is to choose an efficient implementation for
each operator in the RA tree

— Each logical plan has many possible physical plans

CSE 414 - Autumn 2018

Supplier(gid, sname, scity, sstate)
Supply(sid. png, quantity)

Review: Relational Algebra

SELECT sname
FROM Supplier x, Supply y TMsname
WHERE x.sid = y.sid

and y.pno = 2

and x.scity = ‘Seattle’

and x.sstate = ‘WA’

Oscity=‘Seattle’ and sstate= ‘WA and pno=2

><] sid =sid
Relational algebra expression is / \
also called the “logical query plan”
Supplier Supply

CSE 414 - Autumn 2018

Logical Plan v.s. Physical Plan
« Logical Plan = a Relational Algebra tree

« Physical Plan = a Logical Plan plus annotation
of each operator with an algorithm

CSE 414 - Autumn 2018

Query Optimization and
Execution

* Query optimizer:

— Choose a good logical plan

— Refine it to a good physical plan

— Sometimes these steps are intertwined
* Query execution

— Execute the physical plan

CSE 414 - Autumn 2018

Query Execution

CSE 414 - Autumn 2018

Physical Operators

Relational algebra operators:

» Selection, projection, join, union, difference
» Group-by, distinct, sort

Physical operators:

* For each operators above, several possible
algorithms

* Main memory algorithms, or disk-based
algorithms

CSE 414 - Autumn 2018

Supplier(gid, sname, scity, sstate)
Supply(sid. pno, quantity)

Main Memory Algorithms

Logical operator:

Supplier Psig=sia Supply

Propose three physical operators for the join, assuming the
tables are in main memory:

1.

2.

3.

CSE 414 - Autumn 2018 13

Supplier(gid, sname, scity, sstate)
Supply(sid. png, quantity)

Main Memory Algorithms

Logical operator:

Supplier Pdsig=sia Supply

Propose three physical operators for the join, assuming the
tables are in main memory:

1. Nested Loop Join 0O(??)
2. Merge join 0O(??)
3. Hash join 0O(??)
CSE 414 - Autumn 2018 14

Supplier(sid, sname, scity, sstate)
Supply(sid. pno, quantity)

Main Memory Algorithms

Logical operator:

Supplier Psig=sia Supply

Propose three physical operators for the join, assuming the
tables are in main memory:

1. Nested Loop Join O(n?)
2. Merge join O(n log n)
3. Hash join O(n) ... O(n?)
CSE 414 - Autumn 2018 15

BRIEF Review of Hash Tables

Separate chaining:

A (naive) hash function: 0

1

|h(x)=xmod10| 2

3

4

. 5
Operations: 6) 7 o6

1 = 7?7 7

find(103) = ?7 T
insert(488) = ?7? 9
CSE 414 - Autumn 2018 16

BRIEF Review of Hash Tables

« insert(k, v) = inserts a key k with value v

* Many values for one key
— Hence, duplicate k’s are OK

« find(k) = returns the list of all values v
associated to the key k

CSE 414 - Autumn 2018 17

Query Execution

» Join R I S: e.g. using hash-join:
— Nested-loop: forall x in R forally in S do ...
— Hash—join: build a hash table on S, probe R
» Selection: o(R): e.g. “on-the-fly” |
PR
» But what about a larger plan? ></ N "

L]
— Each operator implements \S TI \K
the Iterator Interface 1

CSE 414 - Autumn 2018 18

Implementing Query Operators
with the Iterator Interface

Each operator implements three methods:

« open() .
|
- next() N
VAR U AN
« close() : s T K

CSE 414 - Autumn 2018 19

Implementing Query Operators
with the Iterator Interface

Example “on the fly” selection operator

interface Operator {

} CSE 414 - Autumn 2018 20

Implementing Query Operators
with the Iterator Interface

Example “on the fly” selection operator

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

} CSE 414 - Autumn 2018 21

Implementing Query Operators
with the Iterator Interface

Example “on the fly” selection operator

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

CSE 414 - Autumn 2018 22

Implementing Query Operators
with the Iterator Interface

Example “on the fly” selection operator

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close (); CSE 414 - Autumn 2018 23

Implementing Query Operators
with the Iterator Interface

Example “on the fly” selection operator
interface Operator { class Select implements Operator {...
void open (Predicate p,
Operator child) {
this.p = p; this.child = child;

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close (); CSE 414 - Autumn 2018 24

1 1

Implementing Query Operators
with the Iterator Interface

Example “on the fly” selection operator

interface Operator { class Select implements Operator {...
void open (Predicate p,
Operator child) {

this.p = p; this.child = child;

// initializes operator state
// and sets parameters

void open (...); }

Tuple next () {

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any) }
void close (); CSE 414 - Autumn 2018 25

)i 1

Implementing Query Operators
with the Iterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

Example “on the fly” selection operator

class Select implements Operator {...

void open (Predicate p,
Operator child) {
this.p = p; this.child = child;

}
Tuple next () {
boolean found = false;
Tuple r = null;
while (!found) {
r = child.next();
if (r == null) break;
found = p(in);

// cleans up (if any) }
void close (); CSE 414 - Autumn 2018 26

i 1

Implementing Query Operators
with the Iterator Interface

Example “on the fly” selection operator

interface Operator { class Select implements Operator {...
void open (Predicate p,
Operator child) {

this.p = p; this.child = child;

// initializes operator state
// and sets parameters
void open (...); }
Tuple next () {

boolean found = false;
// calls next() on its inputs Tuple r = null;
// processes an input tuple while (!found) {
// produces output tuple(s) r = child.next();
// returns null when done if (r == null) break;
Tuple next (); found = p(in);

return r;
// cleans up (if any)
void close (); CSE 414 - Autumn 2018 27

)i 1

Implementing Query Operators
with the Iterator Interface

Example “on the fly” selection operator

interface Operator { class Select implements Operator {...
void open (Predicate p,
Operator child) {

this.p = p; this.child = child;

// initializes operator state
// and sets parameters
void open (...); }
Tuple next () {

boolean found = false;
// calls next() on its inputs Tuple r = null;
// processes an input tuple while (!found) {
// produces output tuple(s) r = child.next();
// returns null when done if (r == null) break;
Tuple next (); found = p(in);

return r;
// cleans up (if any)
void close ();

)i 1

}
void close () { child.close(R$ }

Implementing Query Operators
with the Iterator Interface

interface Operator { .
Query plan execution
// initializes operator state
// and sets parameters
void open (...);

Operator q = parse(“SELECT ...”);
q = optimize(q);

q.open();

while (true) {
Tuple t = q.next();
if (t == null) break;
else printOnScreen(t);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done

Tuple next (); q.close();
. ;

// cleans up (if any)

void close (); CSE 414 - Autumn 2018 29

Supplier(sid, sname, scity, sstate)

Supply(sid. png, quantity) Plpehnlng

(On the fly) TTsname

(On the fly) Oscity=‘Seattle’ and sstate= ‘WA and pno=2

SNo = SN0

(Nested loop)

Suppliers Supplies

(File scan) (File scan)
CSE 414 - Autumn 2018 30

Supplier(sid, sname, scity, sstate)

Supply(sid. pno, quantity) Plpellnlng

open
(On the fly) Trsnamep v
(On the fly) Oscity=‘Seattle” and sstate= ‘WA and pno=2

SNo = sno

(Nested loop)

Suppliers
(File scan)

Supplies
(File scan)
CSE 414 - Autumn 2018

for nested looj

open/next/close
n

31

Supplier(gid, sname, scity, sstate)

Supply(sid. png, quantity) Pipelining

iscuss: open/next/close
for nested loop join

open
(On the fly) T[snamep 0
open()
(On the fly) Oscity=‘Seattle’ and sstate= ‘WA and pno=2

SN0 = SN0

(Nested loop)

Suppliers

(File scan)
CSE 414 - Autumn 2018

Supplies
(File scan)
32

Supplier(gid, sname, scity, sstate)

Supply(sid. pno, quantity) Pipelining

open
(On the fly) Trsnamep 0
| open()
(On the fly) oscity="Seattie’ and sstate= WA and pno=2
| open()
(Nested loop) £S5
Suppliers Supplies
(File scan) (File scan)

CSE 414 - Autumn 2018

for nested loop join

33

Supplier(gid, sname, scity, sstate)

supply(sidoang, auentity) Pipelining

open()
Tsname

(On the fly)

(On the fly)

(Nested loop)

SI!O =sno

open()
Suppliers

(File scan)
CSE 414 - Autumn 2018

Discus:
for nested loop join

open()

Gscity=‘Seattle’ and sstate= ‘WA and pno=2

open()

Supplies
(File scan)
34

Supplier(sid, sname, scity, sstate)

supply(sid. png, quantity) Plpe|lnlng

open
(On the fly) Wsnamep 0
| open()
(On the fly) Oscity=‘Seattle” and sstate= ‘WA and pno=2
| open()
(Nested loop) i g
open() open()
Suppliers Supplies
(File scan) (File scan)

CSE 414 - Autumn 2018

: open/next/close

for nested loop join

35

Supplier(sid, sname, scity, sstate)

Supply(sid. png, quantity) Plpehnlng

Discuss: open/next/close
for nested loop join

next
(On the fly) TTsname 0
(On the fly) Oscity=‘Seattle’ and sstate= ‘WA and pno=2

SNo = SN0

(Nested loop)

Suppliers

(File scan)
CSE 414 - Autumn 2018

Supplies
(File scan)
36

Supplier(sid, sname, scity, sstate)

Supply(sid. pno, quantity) Plpellnlng

next
(On the ﬂy) Tenamy () for nested loop join

next()
Oscity= ‘Seattle’ and sstate= ‘WA and pno=2

SNo = sno

(On the fly)

(Nested loop)

Suppliers
(File scan)

Supplies
(File scan)
CSE 414 - Autumn 2018 37

Supplier(gid, sname, scity, sstate)

Supply(sid. png, quantity) Pipelining

for nested loop join

Supplies

next()
(On the fly) TTsname
next()
(On the fly) Oscity=‘Seattle’ and sstate= ‘WA and pno=2
next()
(Nested loop) £
Suppliers
(File scan)

CSE 414 - Autumn 2018

(File scan)
38

Supplier(gid, sname, scity, sstate)

Supply(sid. pno, quantity) P|pe||n|ng
nex fc ted |
(On the fly) Tsname SRS e

| next()

(On the fly) Oscity=‘Seattle’ and sstate= ‘WA and pno=2

| next()
(Nested loop)

SNo = sno
next()

Suppliers
(File scan)

Supplies
(File scan)
CSE 414 - Autumn 2018 39

Supplier(gid, sname, scity, sstate)

supply(sidoang, auentity) Pipelining

next()
(On the fly) TTsname

next()
(On the fly)

next()

SI!O =sno

(Nested loop)

next()

Suppliers

(File scan)
CSE 414 - Autumn 2018

CU! pen/next/close
for nested loop

Gscity=‘Seattle’ and sstate= ‘WA and pno=2

next()
Supplies

(File scan)
40

Supplier(sid, sname, scity, sstate)

supply(sid. png, quantity) Plpe|lnlng

Discuss: open/next/close

next
(On the fly) TTsname X0
| next
(On the fly) Oscity=‘Seattle’ and sstate= ‘WA'(;nd pno=2
| next()
(Nested loop) i g
next()
next()/ next()
Suppliers Supplies
(File scan) (File scan)

CSE 414 - Autumn 2018 41

Supplier(sid, sname, scity, sstate)

Supply(sid. png, quantity) Plpehnlng

Discuss hash-join

(On the fly) Tlsname in class
(On the fly) Oscity=‘Seattle’ and sstate= ‘WA and pno=2
(Hash Join)
SNO = snNo
Suppliers Supplies
(File scan) (File scan)

CSE 414 - Autumn 2018

42

Supplier(gid, sname, scity, sstate)
Supply(sid.png, quantity) P|pe||n|ng
Discuss hash-join

(On the fly) Tsname in class

(On the fly) Oscity=‘Seattle” and sstate= ‘WA and pno=2

(Hash Join)

SNo = sno

Tuples from

h.ere.are

Bhslies Suppliers Supplies

(File scan) (File scan)
CSE 414 - Autumn 2018 43

Pipeline v.s. Blocking

* Pipeline
— A tuple moves all the way through up the query plan
— Advantages: speed
— Disadvantage: need all hash at the same time in
memory
» Blocking
— The entire result of the subplan is computed (and
stored to disk) before the first tuple is sent up the plan
— Advantage: saves memory

— Disadvantage: slower
CSE 414 - Autumn 2018 47

Supplier(gid, sname, scity, sstate)
Supply(sid. png, quantity) Plpellnlng
Discuss hash-join
(On the fly) Tsname in class
(On the ﬂY) Oscity=‘Seattle’ and sstate= ‘WA and pno=2
| Tuples from
. here are
(Hash Join) £ “blocked”
Tuples from
here are
e Suppliers Supplies
(File scan) (File scan)
CSE 414 - Autumn 2018 44

Discussion on Physical Plan

More components of a physical plan:
* Access path selection for each relation
— Scan the relation or use an index (next lecture)

* Implementation choice for each operator
— Nested loop join, hash join, etc.
» Scheduling decisions for operators
— Pipelined execution or intermediate materialization

CSE 414 - Autumn 2018 48

