
1

Introduction to Data Management

CSE 414

Unit 4: RDBMS Internals

Logical and Physical Plans

Query Execution

Query Optimization

(3 lectures)

CSE 414 - Autumn 2018 1

Introduction to Data Management
CSE 414

Lecture 15: Introduction to Query
Evaluation

CSE 414 - Autumn 2018 2

Announcements

• WQ5 (datalog) due tomorrow

• HW4 (datalog) due tomorrow

• Midterm review session this evening
– 5:30pm, CSE 2nd Floor Breakout

CSE 414 - Autumn 2018 3

Class Overview

• Unit 1: Intro
• Unit 2: Relational Data Models and Query Languages
• Unit 3: Non-relational data
• Unit 4: RDMBS internals and query optimization
• Unit 5: Parallel query processing
• Unit 6: DBMS usability, conceptual design
• Unit 7: Transactions
• Unit 8: Advanced topics (time permitting)

4CSE 414 - Autumn 2018

From Logical RA Plans
to Physical Plans

CSE 414 - Autumn 2018 5

Query Evaluation Steps Review

6

Parse & Rewrite Query

Select Logical Plan

Select Physical Plan

Query Execution

Disk

SQL query

Query
optimization

Logical
plan (RA)

Physical
plan

2

Logical vs Physical Plans
• Logical plans:

– Created by the parser from the input SQL text
– Expressed as a relational algebra tree
– Each SQL query has many possible logical plans

• Physical plans:
– Goal is to choose an efficient implementation for

each operator in the RA tree
– Each logical plan has many possible physical plans

CSE 414 - Autumn 2018 7

Review: Relational Algebra

CSE 414 - Autumn 2018 8

Supplier Supply

sid = sid

σscity=�Seattle� and sstate=�WA’ and pno=2

πsname

Relational algebra expression is
also called the “logical query plan”

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

Logical Plan v.s. Physical Plan

• Logical Plan = a Relational Algebra tree

• Physical Plan = a Logical Plan plus annotation
of each operator with an algorithm

CSE 414 - Autumn 2018 9

Query Optimization and
Execution

• Query optimizer:
– Choose a good logical plan
– Refine it to a good physical plan
– Sometimes these steps are intertwined

• Query execution
– Execute the physical plan

CSE 414 - Autumn 2018 10

Query Execution

CSE 414 - Autumn 2018 11

Physical Operators

Relational algebra operators:
• Selection, projection, join, union, difference
• Group-by, distinct, sort

Physical operators:
• For each operators above, several possible

algorithms
• Main memory algorithms, or disk-based

algorithms
CSE 414 - Autumn 2018 12

3

Main Memory Algorithms

Logical operator:
Supplier ⨝sid=sid Supply
Propose three physical operators for the join, assuming the
tables are in main memory:
1.
2.
3.

CSE 414 - Autumn 2018 13

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Main Memory Algorithms

Logical operator:
Supplier ⨝sid=sid Supply
Propose three physical operators for the join, assuming the
tables are in main memory:
1. Nested Loop Join O(??)
2. Merge join O(??)
3. Hash join O(??)

CSE 414 - Autumn 2018 14

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Main Memory Algorithms

Logical operator:

Supplier ⨝sid=sid Supply

Propose three physical operators for the join, assuming the

tables are in main memory:

1. Nested Loop Join O(n2)

2. Merge join O(n log n)

3. Hash join O(n) … O(n2)

CSE 414 - Autumn 2018 15

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

BRIEF Review of Hash Tables
0

1
2

3
4

5
6

7
8

9

Separate chaining:

h(x) = x mod 10

A (naïve) hash function:

503 103

76 666

48

503

Duplicates OK
WHY ??

Operations:

find(103) = ??
insert(488) = ??

CSE 414 - Autumn 2018 16

BRIEF Review of Hash Tables

• insert(k, v) = inserts a key k with value v

• Many values for one key
– Hence, duplicate k’s are OK

• find(k) = returns the list of all values v
associated to the key k

CSE 414 - Autumn 2018 17

Query Execution

• Join R ⨝ S: e.g. using hash-join:

– Nested-loop: forall x in R forall y in S do …

– Hash–join: build a hash table on S, probe R

• Selection: σ(R): e.g. “on-the-fly”

• But what about a larger plan?

– Each operator implements
the Iterator Interface

CSE 414 - Autumn 2018 18

⨝

⨝ ⨝

⨝

R

S T K

W

σ

σ

4

Implementing Query Operators
with the Iterator Interface

Each operator implements three methods:

• open()

• next()

• close()

CSE 414 - Autumn 2018 19

⨝

⨝ ⨝

⨝

R

S T K

W

σ

σ

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p,

Iterator child) {
this.p = p; this.child = child;

}
Tuple next () {

boolean found = false;
while (!found) {

Tuple in = child.next();
if (in == EOF) return EOF;
found = p(in);

}
return in;

}
void close () { child.close(); }

}

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

CSE 414 - Autumn 2018 20

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p,

Iterator child) {
this.p = p; this.child = child;

}
Tuple next () {

boolean found = false;
while (!found) {

Tuple in = child.next();
if (in == EOF) return EOF;
found = p(in);

}
return in;

}
void close () { child.close(); }

}

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

CSE 414 - Autumn 2018 21

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

}

class Select implements Operator {...
void open (Predicate p,

Iterator child) {
this.p = p; this.child = child;

}
Tuple next () {

boolean found = false;
while (!found) {

Tuple in = child.next();
if (in == EOF) return EOF;
found = p(in);

}
return in;

}
void close () { child.close(); }

}

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

CSE 414 - Autumn 2018 22

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p,

Iterator child) {
this.p = p; this.child = child;

}
Tuple next () {

boolean found = false;
while (!found) {

Tuple in = child.next();
if (in == EOF) return EOF;
found = p(in);

}
return in;

}
void close () { child.close(); }

}

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

CSE 414 - Autumn 2018 23

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p,

Operator child) {
this.p = p; this.child = child;

}
Tuple next () {

boolean found = false;
while (!found) {

Tuple in = child.next();
if (in == EOF) return EOF;
found = p(in);

}

return in;
}
void close () { child.close(); }

}

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

CSE 414 - Autumn 2018 24

5

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p,

Operator child) {
this.p = p; this.child = child;

}
Tuple next () {

}

}

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

CSE 414 - Autumn 2018 25

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p,

Operator child) {
this.p = p; this.child = child;

}
Tuple next () {

boolean found = false;
Tuple r = null;
while (!found) {

r = child.next();
if (r == null) break;
found = p(in);

}

}

}

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

CSE 414 - Autumn 2018 26

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p,

Operator child) {
this.p = p; this.child = child;

}
Tuple next () {

boolean found = false;
Tuple r = null;
while (!found) {

r = child.next();
if (r == null) break;
found = p(in);

}
return r;

}

}

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

CSE 414 - Autumn 2018 27

Implementing Query Operators
with the Iterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p,

Operator child) {
this.p = p; this.child = child;

}
Tuple next () {

boolean found = false;
Tuple r = null;
while (!found) {

r = child.next();
if (r == null) break;
found = p(in);

}
return r;

}
void close () { child.close(); }

}

Example “on the fly” selection operator

28

Implementing Query Operators
with the Iterator Interface

29

Operator q = parse(“SELECT ...”);
q = optimize(q);

q.open();
while (true) {

Tuple t = q.next();
if (t == null) break;
else printOnScreen(t);

}
q.close();

Query plan execution
interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

CSE 414 - Autumn 2018

Pipelining

CSE 414 - Autumn 2018 30

Suppliers Supplies

sno = sno

σscity=�Seattle� and sstate=�WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

6

Pipelining

CSE 414 - Autumn 2018 31

Suppliers Supplies

sno = sno

σscity=�Seattle� and sstate=�WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
open()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Pipelining

CSE 414 - Autumn 2018 32

Suppliers Supplies

sno = sno

σscity=�Seattle� and sstate=�WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
open()

open()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Pipelining

CSE 414 - Autumn 2018 33

Suppliers Supplies

sno = sno

σscity=�Seattle� and sstate=�WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
open()

open()

open()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Pipelining

CSE 414 - Autumn 2018 34

Suppliers Supplies

sno = sno

σscity=�Seattle� and sstate=�WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
open()

open()

open()

open()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Pipelining

CSE 414 - Autumn 2018 35

Suppliers Supplies

sno = sno

σscity=�Seattle� and sstate=�WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
open()

open()

open()

open() open()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Pipelining

CSE 414 - Autumn 2018 36

Suppliers Supplies

sno = sno

σscity=�Seattle� and sstate=�WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
next()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

7

Pipelining

CSE 414 - Autumn 2018 37

Suppliers Supplies

sno = sno

σscity=�Seattle� and sstate=�WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
next()

next()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Pipelining

CSE 414 - Autumn 2018 38

Suppliers Supplies

sno = sno

σscity=�Seattle� and sstate=�WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
next()

next()

next()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Pipelining

CSE 414 - Autumn 2018 39

Suppliers Supplies

sno = sno

σscity=�Seattle� and sstate=�WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
next()

next()

next()

next()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Pipelining

CSE 414 - Autumn 2018 40

Suppliers Supplies

sno = sno

σscity=�Seattle� and sstate=�WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
next()

next()

next()

next() next()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Pipelining

CSE 414 - Autumn 2018 41

Suppliers Supplies

sno = sno

σscity=�Seattle� and sstate=�WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
next()

next()

next()

next()
next()

next()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

Pipelining

CSE 414 - Autumn 2018 42

Suppliers Supplies

sno = sno

σscity=�Seattle� and sstate=�WA’ and pno=2

πsname

(File scan) (File scan)

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss hash-join
in class

8

Pipelining

CSE 414 - Autumn 2018 43

Suppliers Supplies

sno = sno

σscity=�Seattle� and sstate=�WA’ and pno=2

πsname

(File scan) (File scan)

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss hash-join
in class

Tuples from
here are
pipelined

Pipelining

CSE 414 - Autumn 2018 44

Suppliers Supplies

sno = sno

σscity=�Seattle� and sstate=�WA’ and pno=2

πsname

(File scan) (File scan)

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss hash-join
in class

Tuples from

here are
pipelined

Tuples from

here are

“blocked”

Pipeline v.s. Blocking

• Pipeline
– A tuple moves all the way through up the query plan
– Advantages: speed
– Disadvantage: need all hash at the same time in

memory
• Blocking

– The entire result of the subplan is computed (and
stored to disk) before the first tuple is sent up the plan

– Advantage: saves memory
– Disadvantage: slower

47CSE 414 - Autumn 2018

Discussion on Physical Plan

More components of a physical plan:
• Access path selection for each relation

– Scan the relation or use an index (next lecture)

• Implementation choice for each operator
– Nested loop join, hash join, etc.

• Scheduling decisions for operators
– Pipelined execution or intermediate materialization

CSE 414 - Autumn 2018 48

